
z/OS

IBM Health Checker for z/OS V2R2 User's
Guide
Version 2 Release 2

SC23-6843-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 671.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About This Information xiii
Who should use this document xiii

How to send your comments to IBM . . xv
If you have a technical problem xv

Summary of changes for z/OS Version
2 Release 2 (V2R2) xvii

Summary of changes for z/OS Version
2 Release 1 (V2R1) as updated
September 2014 xix

Summary of changes for z/OS Version
2 Release 1 as updated March 2014 . . xxi

z/OS Version 2 Release 1 summary of
changes xxiii
Exploitation of the Flash Express feature xxiii

Part 1. Using IBM Health Checker for
z/OS 1

Chapter 1. Introduction 3
What is a check? 4
For more information, see our fabulous Redpaper!. . 5
Background for IBM's checks 5

Chapter 2. Setting up IBM Health
Checker for z/OS 7
Stopping and Starting IBM Health Checker for z/OS
Manually 7
Sharing critical IBM Health Checker for z/OS
information between systems at different levels. . . 8

Sharing IEASYSxx 8
Sharing the HZSPROC procedure 8
Sharing HZSPRMxx 8

Steps for optimizing IBM Health Checker for z/OS . 9
In a rush? Use these basic steps 9

Software requirements 10
Software requirement for running REXX checks 10

Customizing the IBM Health Checker for z/OS
procedure 10
Allocate the HZSPDATA data set to save check data
between restarts 11

Monitoring and sizing the HZSPDATA data set 11
Optionally set up the HZSPRINT utility 12

Optionally define log streams to keep a record of
the check output. 12
Create security definitions 14

Setting up security for the IBM Health Checker
for z/OS started task 15
Setting up security for the HZSPRINT utility . . 16
Setting up security for IBM Health Checker for
SDSF support. 19

Create multilevel security definitions 20
Create HZSPRMxx parmlib members 21

Tell the system which HZSPRMxx members you
want to use 21

Assign IBM Health Checker for z/OS to a WLM
service class 23
Obtain checks for IBM Health Checker for z/OS . . 23

Chapter 3. Working with check output 25
Hey! My system has been configured like this for
years, and now I'm receiving exceptions! 27
Understanding system data issued with the check
messages 27
Understanding exception messages 28
Evaluating check output and resolving exceptions 30
Customizing check exceptions with dynamically
varying severity 31
Approaches to automation with IBM Health
Checker for z/OS 32

More automation ideas 32
Using HZS exception messages for automation 34

Understanding check state and status. 34
User controlled states 35
IBM Health Checker for z/OS controlled states 36
ACTIVE(DISABLED) and INACTIVE(ENABLED)
- understanding check state combinations . . . 36
Check status 37

Using the HZSPRINT utility 37
Example of HZSPRINT output 39
HZSPRINT utility completion codes 39

Finding check message documentation with LookAt 41

Chapter 4. Managing checks 43
Making dynamic, temporary changes to checks . . 44

Using SDSF to manage checks 45
Managing checks with the MODIFY hzsproc
command 47

Making persistent changes to checks 52
Creating and maintaining IBM Health Checker for
z/OS policies 53

How IBM Health Checker for z/OS builds
policies from policy statements 54
Can I put non-policy statements in my
HZSPRMxx member? 59
Using SYNCVAL in a policy to specify the time
of day that a check runs 60
Policy statement examples 63

© Copyright IBM Corp. 2006, 2015 iii

Can I create policy statements using the MODIFY
command?. 64
Specifying the HZSPRMxx members you want
the system to use 64

Using HZSPRMxx and MODIFY hzsproc command 66
Guidelines for HZSPRMxx parmlib members . . 67
Syntax and parameters for HZSPRMxx and
MODIFY hzsproc 69
Examples of DISPLAY output 90

Part 2. Developing Checks for IBM
Health Checker for z/OS 93

Chapter 5. Planning checks 95
Identifying potential checks 96
The life-cycle of a check - check terminology . . . 96
What kind of check do you want to write? 97

Local checks 97
Remote checks 98
Writing local and remote checks in Metal C . . 99
REXX checks 100
Summary of checks - differences and similarities 100

Issuing messages for your check - message table
checks versus DIRECTMSG checks 102
Where to next? A road map for developing your
check 103

Chapter 6. Writing local check
routines. 105
Metal C or assembler? 105
Sample local checks 106
Local check routine basics 106
Defining a local check to IBM Health Checker for
z/OS 108
Programming considerations 109

Environment 109
Requirements 109
Restrictions 109
Gotchas 109
Input Registers 110
Output Registers 110
Establishing a recovery routine for a check . . 110
Assembler reentrant entry and exit linkage . . 110

Using the check parameter parsing service
(HZSCPARS) 111
Using the HZSPQE data area in your local check
routine 111
Function codes for local check routines 113
Creating and using data saved between restarts 115
Using ENF event code 67 to listen for check status
changes 116
Issuing messages in your local check routine with
the HZSFMSG macro 117

Reporting check exceptions 118
Defining the variables for your messages 120

Using default HZSMGB data area format
(MGBFORMAT=0). 121
Using HZSMGB data area format
MGBFORMAT=1 123

Writing a check with dynamic severity levels . . . 124
Controlling check exception message WTOs and
their automation consequences 126
The well-behaved local check routine -
recommendations and recovery considerations . . 127
Building Metal C checks. 130
Debugging checks 132

Chapter 7. Writing remote check
routines. 135
Metal C or assembler? 135
Sample checks 136
Remote check routine basics 137
Programming considerations 138

Environment 138
Requirements 138
Restrictions 138
Establishing a recovery routine for a check . . 138

Preparing for check definition - making sure IBM
Health Checker for z/OS is up and running . . . 139

Using ENF event code 67 to listen for IBM
Health Checker for z/OS availability 139

Allocate a pause element token using IEAVAPE 140
Issue the HZSADDCK macro to define a remote
check to IBM Health Checker for z/OS 140

Example of an HZSADDCK macro call for a
remote check 142

Pause the remote check routine with IEAVPSE . . 143
Using HZSCHECK REQUEST=OPSTART and
REQUEST=OPCOMPLETE to communicate check
start and stop to IBM Health Checker for z/OS . . 143
Using the check parameter parsing service
(HZSCPARS) 143
Using the HZSPQE data area in your remote check
routine 144
Release codes for remote check routines 145
Ending a check that is coupled with an application 147
Creating and using data saved between restarts 148
Issuing messages in your remote check routine
with the HZSFMSG macro 150

Reporting check exceptions 151
Defining the variables for your messages 153

Using default HZSMGB data area format
(MGBFORMAT=0). 154
Using HZSMGB data area format
MGBFORMAT=1 157

Writing a check with dynamic severity levels . . . 158
Controlling check exception message WTOs and
their automation consequences 160
Recommendations and recovery considerations for
remote checks 161
Building Metal C checks. 163
Debugging checks 166

Chapter 8. Writing REXX checks . . . 169
Sample REXX checks 169
REXX check basics 170
Using input data sets in a TSO-environment REXX
check 174
Using REXXIN data sets. 174

iv IBM Health Checker for z/OS User's Guide

REXXIN data set naming conventions 174
Using REXXOUT data sets 175

REXXOUT data set naming conventions . . . 175
Examples: Capturing error data in REXXOUT 175

Defining a REXX check to IBM Health Checker for
z/OS 177
Creating and using data saved between restarts in
a REXX check 179
Using ENF event code 67 to listen for check status
changes 180
Issuing messages from your REXX check with the
HZSLFMSG function 181

Reporting check exceptions 183
Writing a check with dynamic severity levels . . . 185
Controlling check exception message WTOs and
their automation consequences 187
The well-behaved REXX check - recommendations
and recovery considerations 188
Debugging REXX checks 189

Chapter 9. Writing an HZSADDCHECK
exit routine 191
Programming considerations for the
HZSADDCHECK exit routine 194

Environment 194
Input Registers 194
Output Registers 195

Defining multiple local or REXX checks in a single
HZSADDCHECK exit routine 195
Dynamically adding local or REXX exec checks to
IBM Health Checker for z/OS 196

Using operator commands to add checks to the
system dynamically 196
Using a routine to add checks to the system
dynamically 197

Debugging HZSADDCHECK exit routine abends 197
Creating product code that automatically registers
checks at initialization 197
Creating product code that deletes checks as it
goes down 198

Chapter 10. Creating the message
input for your check 199
How messages and message variables are issued at
check runtime 200
Planning your check messages 201

Planning your exception messages 202
Planning your information messages 202
Planning your report messages 203
Planning your debug messages 203
Decide what release your check will run on . . 203
Decide whether to translate your check
exception messages into other national
languages 204
Rely on IBM Health Checker for z/OS to issue
basic check information for you 204

Creating the message table 204
Examples of message input. 205

Syntax of message input. 214
Message input tags 214

Special formatting tags for the message table 223
How messages are formatted in the message
buffer 225
Using symbols in the message table 227

Generating the compilable assembler CSECT for
the message table 230
Support for translating messages to other
languages 232

Guidelines for coding translatable exception
message text lines 232

Chapter 11. IBM Health Checker for
z/OS System REXX Functions 235
HZSLFMSG function 236

Input variables 236
HZSLFMSG Output variables 247
HZSLFMSG return codes 250

HZSLPDRD function 250
Input variables 251
HZSLPDRD Output variables 252
HZSLPDRD return codes 253

HZSLPDWR function. 254
Input variables 254
HZSLPDWR output variables 255
HZSLPDWR return codes 256

HZSLSTOP function 257
Input variables 257
Output variables 258
HZSLSTOP return codes. 258

HZSLSTRT function 260
Input variables 260
Output variables 261
HZSLSTRT return codes 263

Chapter 12. IBM Health Checker for
z/OS HZS macros 265
HZSADDCK macro — HZS add a check 266

Description 266
HZSCHECK macro — HZS Check command
request 285

Description 285
HZSCPARS macro — HZS Check Parameter
Parsing 300

Description 300
HZSFMSG macro — Issue a formatted check
message 313

Description 313
HZSPREAD macro — Read Check Persistent Data 346

Description 346
HZSPWRIT macro — Write Check Persistent Data 356

Description 356
HZSQUERY macro — HZS Query 364

Description 364

Part 3. Check Descriptions 387

Chapter 13. IBM Health Checker for
z/OS checks 389
Where are the migration checks? 389

Contents v

|
||

||
||
||
||
||
||
||
||

Allocation checks (IBMALLOC) 389
ALLOC_ALLC_OFFLN_POLICY 389
ALLOC_SPEC_WAIT_POLICY 391
ALLOC_TIOT_SIZE 392

ASM checks (IBMASM) 394
ASM_NUMBER_LOCAL_DATASETS 394
ASM_PAGE_ADD 395
ASM_PLPA_COMMON_SIZE 396
ASM_PLPA_COMMON_USAGE 397
ASM_LOCAL_SLOT_USAGE 398

Catalog checks (IBMCATALOG) 400
CATALOG_ATTRIBUTE_CHECK. 400
CATALOG_IMBED_REPLICATE 401
CATALOG_RNLS 402

Communications Server checks (IBMCS) 403
CSRES_AUTOQ_GLOBALTCPIPDATA 403
CSRES_AUTOQ_RESOLVEVIA 404
CSRES_AUTOQ_TIMEOUT 405
CSTCP_CINET_PORTRNG_RSV_tcpipstackname 406
CSTCP_IPMAXRT4_tcpipstackname 407
CSTCP_IPMAXRT6_tcpipstackname 408
CSTCP_SYSTCPIP_CTRACE_tcpipstackname . . 409
CSTCP_SYSPLEXMON_RECOV_tcpipstackname 410
CSTCP_TCPMAXRCVBUFRSIZE_tcpipstackname 411
CSVTAM_CSM_STG_LIMIT 412
CSVTAM_T1BUF_T2BUF_EE 413
CSVTAM_T1BUF_T2BUF_NOEE 414
CSVTAM_VIT_DSPSIZE 415
CSVTAM_VIT_OPT_ALL 415
CSVTAM_VIT_OPT_PSSSMS 416
CSVTAM_VIT_SIZE 417
ZOSMIGV2R1_CS_GATEWAY 418
ZOSMIGV2R2_Next_CS_SENDMAILCLIEN . . 419
ZOSMIGV2R2_Next_CS_SENDMAILDAEMN 420
ZOSMIGV2R2_Next_CS_SENDMAILMSA . . . 421
ZOSMIGV2R2_Next_CS_SENDMAILMTA. . . 422
ZOSMIGV2R2_Next_CS_SMTPDDAEMON . . 423
ZOSMIGV2R2_Next_CS_SMTPDMTA 424

Component trace checks (IBMCTRACE) 425
CTRACE_DEFAULT_OR_MIN. 425

Consoles checks (IBMCNZ). 427
CNZ_AMRF_Eventual_Action_Msgs 427
CNZ_Console_MasterAuth_Cmdsys 427
CNZ_Console_Mscope_And_Routcode 428
CNZ_Console_Operating_Mode 429
CNZ_Console_Routcode_11 429
CNZ_EMCS_Hardcopy_Mscope 430
CNZ_EMCS_Inactive_Consoles 431
CNZ_OBSOLETE_MSGFLD_AUTOMATION 431
CNZ_Syscons_Allowcmd 433
CNZ_Syscons_Mscope 434
CNZ_Syscons_PD_Mode 434
CNZ_Syscons_Routcode 435
CNZ_Task_Table 436
ZOSMIGV1R13_CNZ_Cons_Oper_Mode . . . 436

Contents supervision checks (IBMCSV) 437
CSV_APF_EXISTS 437
CSV_LNKLST_NEWEXTENTS 439
CSV_LNKLST_SPACE 440
CSV_LPA_CHANGES 441

DAE checks (IBMDAE) 443

DAE_SHAREDSN 443
DAE_SUPPRESSING 444

Device Manager checks (IBMDMO) 445
DMO_TAPE_LIBRARY_INIT_ERRORS 445
DMO_REFUCB 446

DFSMS OPEN/CLOSE/EOV checks (IBMOCE) . . 447
OCE_XTIOT_CHECK. 447

Global Resource Serialization checks (IBMGRS) . . 448
GRS_AUTHQLVL_SETTING 448
GRS_CONVERT_RESERVES 449
GRS_EXIT_PERFORMANCE 450
GRS_EXIT_PERFORMANCE 451
GRS_GRSQ_SETTING 451
GRS_Mode 452
GRS_RNL_IGNORED_CONV 453
GRS_SYNCHRES 454

HSM checks (IBMHSM) 454
HSM_CDSB_BACKUP_COPIES 454
HSM_CDSB_DASD_BACKUPS 455
HSM_CDSB_VALID_BACKUPS 456

ICSF checks (IBMICSF) 458
ICSF_COPROCESSOR_STATE_NEGCHANGE 458
ICSF_KEY_EXPIRATION 459
ICSF_MASTER_KEY_CONSISTENCY 460
ICSFMIG_DEPRECATED_SERV_WARNINGS 461
ICSFMIG7731_ICSF_RETAINED_RSAKEY . . . 462
ICSFMIG7731_ICSF_PKDS_TO_4096BIT . . . 464
ICSFMIG77A1_COPROCESSOR_ACTIVE . . . 465
ICSFMIG77A1_TKDS_OBJECT. 466
ICSFMIG77A1_UNSUPPORTED_HW 467

Infoprint Server checks (IBMINFOPRINT) 468
INFOPRINT_PRINTWAY_MODE. 468
INFOPRINT_V2DB_CHECK 469
ZOSMIGV1R12_INFOPRINT_INVSIZE 471

IOS checks (IBMIOS) 473
IOS_CAPTUCB_PROTECT 473
IOS_CMRTIME_MONITOR. 474
IOS_DYNAMIC_ROUTING 476
IOS_FABRIC_MONITOR 477
IOS_IORATE_MONITOR 479
IOS_MIDAW 481
IOS_STORAGE_IOSBLKS 482

JES2 checks (IBMJES2) 483
JES2_UPGRADE_CKPT_LEVEL_JES2 483

JES3 checks (IBMJES3) 484
JES3_DATASET_INTEGRITY 484
JES3_DOT_POOL_USAGE 485
JES3_JET_POOL_USAGE 487
JES3_OST_POOL_USAGE 488
JES3_SEE_POOL_USAGE 489

Loadwait/Restart checks (IBMSVA) 490
SVA_AUTOIPL_DEFINED 490
SVA_AUTOIPL_DEV_VALIDATION. 492

PDSE checks (IBMPDSE) 493
PDSE_SMSPDSE1 493

Predictive failure analysis checks (IBMPFA) . . . 493
RACF checks (IBMRACF) 494

Write your own RACF resource checks! . . . 494
RACF_AIM_STAGE 498
RACF_CERTIFICATE_EXPIRATION. 500
RACF_classname_ACTIVE 502

vi IBM Health Checker for z/OS User's Guide

||

||
||
||
||
||
||

||

||

||
||
||
||
||
||

RACF_ENCRYPTION_ALGORITHM 504
RACF_GRS_RNL 505
RACF_IBMUSER_REVOKED 510
RACF_ICHAUTAB_NONLPA 512
RACF_PASSWORD_CONTROLS 513
RACF_RRSF_RESOURCES 516
RACF_SENSITIVE_RESOURCES 518
RACF_UNIX_ID 524
ZOSMIGV1R13_DEFAULT_UNIX_ID 528

Reconfiguration checks (IBMRCF) 532
RCF_PCCA_ABOVE_16M 532
ZOSMIGV1R12_RCF_PCCA_ABOVE_16M . . 533

RMM checks (IBMRMM) 534
ZOSMIGV1R10_RMM_REJECTS_DEFINED . . 534
ZOSMIGV1R10_RMM_VOL_REPLACE_LIM 535
ZOSMIGV1R10_RMM_VRS_DELETED 536
ZOSMIGV1R11_RMM_DUPLICATE_GDG . . . 537
ZOSMIGV1R11_RMM_REXX_STEM 538
ZOSMIGV1R11_RMM_VRSEL_OLD 539

RRS checks (IBMRRS) 541
RRS_ArchiveCFStructure 541
RRS_DUROffloadSize 541
RRS_MUROffloadSize 542
RRS_RMDataLogDuplexMode. 543
RRS_RMDOffloadSize 543
RRS_RSTOffloadSize 544
RRS_Storage_NumLargeLOGBlks. 545
RRS_Storage_NumLargeMSGBlks 546
RRS_Storage_NumServerReqs 547
RRS_Storage_NumTransBlks 548

RSM checks (IBMRSM) 550
RSM_HVSHARE 550
RSM_MEMLIMIT 551
RSM_MAXCADS 551
RSM_AFQ 552
RSM_REAL 553
RSM_RSU 554

RTM checks (IBMRTM) 555
RTM_IEAVTRML 555

SDSF checks (IBMSDSF) 556
SDSF_CLASS_SDSF_ACTIVE 556
SDSF_ISFPARMS_IN_USE 557

SDUMP checks (IBMSDUMP) 558
SDUMP_AVAILABLE. 558
SDUMP_AUTO_ALLOCATION 559

Serviceability checks (IBMSLIP) 559
SLIP_PER 559

SMB checks (IBMSMB) 560
SMB_NO_ZFS_SYSPLEX_AWARE 560
ZOSMIGREC_SMB_RPC. 561

SMS checks (IBMSMS) 562
SMS_CDS_REUSE_OPTION 562
SMS_CDS_SEPARATE_VOLUMES 563

Supervisor checks (IBMSUP) 563
IEA_ASIDS 563
IEA_LXS 565
SUP_HIPERDISPATCH 566
SUP_HiperDispatchCPUConfig 568
SUP_LCCA_ABOVE_16M 569
SUP_SYSTEM_SYMBOL_TABLE_SIZE 570
ZOSMIGV1R12_SUP_LCCA_ABOVE_16M. . . 572

System logger checks (IBMIXGLOGR) 573
IXGLOGR_STAGINGDSFULL 573
IXGLOGR_ENTRYTHRESHOLD 575
IXGLOGR_STRUCTUREFULL 578

System trace checks (IBMSYSTRACE) 581
SYSTRACE_BRANCH 581
SYSTRACE_MODE 582

Timer supervisor checks (IBMTIMER) 583
ZOSMIGREC_SUP_TIMER_INUSE 583

TSO/E (IBMTSOE) 584
TSOE_OPERSEWAIT_SETTING 584
TSOE_PARMLIB_ERROR 585
TSOE_USERLOGS. 586

z/OS UNIX System Services checks (IBMUSS) . . 586
USS_AUTOMOUNT_DELAY 586
USS_CLIENT_MOUNTS. 587
USS_FILESYS_CONFIG 589
USS_HFS_DETECTED 591
USS_KERNEL_PVTSTG_THRESHOLD 592
USS_KERNEL_RESOURCES_THRESHOLD . . 594
USS_KERNEL_STACKS_THRESHOLD 595
USS_MAXSOCKETS_MAXFILEPROC 596
USS_PARMLIB 597
USS_PARMLIB_MOUNTS 600
ZOSMIGREC_ROOT_FS_SIZE 602
ZOSMIGV1R13_RO_SYMLINKS 603

VLF checks (IBMVLF) 604
VLF_MAXVIRT. 604

VSAM checks (IBMVSAM) 606
VSAM_INDEX_TRAP 606

VSAM RLS checks (IBMVSAMRLS) 607
VSAMRLS_CFCACHE_MINIMUM_SIZE . . . 607
VSAMRLS_CFLS_FALSE_CONTENTION . . . 608
VSAMRLS_DIAG_CONTENTION 609
VSAMRLS_QUIESCE_STATUS 610
VSAMRLS_SHCDS_CONSISTENCY 611
VSAMRLS_SHCDS_MINIMUM_SIZE 611
VSAMRLS_SINGLE_POINT_FAILURE 612
VSAMRLS_TVS_ENABLED 613

VSM checks (IBMVSM) 614
VSM_ALLOWUSERKEYCSA 614
VSM_CSA_LARGEST_FREE 615
VSM_CSA_LIMIT 617
VSM_SQA_LIMIT 618
VSM_PVT_LIMIT 619
VSM_CSA_THRESHOLD 619
VSM_SQA_THRESHOLD 622
VSM_CSA_CHANGE. 624

XCF checks (IBMXCF) 625
XCF_CDS_MAXSYSTEM 625
XCF_CDS_SEPARATION 625
XCF_CDS_SPOF 626
XCF_CF_ALLOCATION_PERMITTED 627
XCF_CF_CONNECTIVITY 628
XCF_CF_MEMORY_UTILIZATION 629
XCF_CF_PROCESSORS 630
XCF_CF_SCM_UTILIZATION 631
XCF_CF_STR_AVAILABILITY 632
XCF_CF_STR_DUPLEX 633
XCF_CF_STR_EXCLLIST 634
XCF_CF_STR_MAXSCM. 635

Contents vii

||

||
||

||

||

XCF_CF_STR_MAXSPACE 635
XCF_CF_STR_NONVOLATILE 636
XCF_CF_STR_POLICYSIZE. 637
XCF_CF_STR_PREFLIST. 638
XCF_CF_STR_SCM_AUGMENTED 639
XCF_CF_STR_SCMMAXSIZE 640
XCF_CF_STR_SCM_MINCOUNTS 641
XCF_CF_STR_SCM_UTILIZATION 641
XCF_CF_SYSPLEX_CONNECTIVITY 643
XCF_CFRM_MSGBASED 644
XCF_CLEANUP_VALUE 645
XCF_DEFAULT_MAXMSG 645
XCF_FDI 646
XCF_MAXMSG_NUMBUF_RATIO 647
XCF_SFM_ACTIVE 648
XCF_SFM_CFSTRHANGTIME. 648
XCF_SFM_CONNFAIL 650
XCF_SFM_SSUMLIMIT 650
XCF_SFM_SUM_ACTION 651
XCF_SIG_CONNECTIVITY. 652
XCF_SIG_PATH_SEPARATION 652
XCF_SIG_STR_SIZE 653
XCF_SYSPLEX_CDS_CAPACITY 654
XCF_SYSSTATDET_PARTITIONING. 655
XCF_TCLASS_CLASSLEN 656
XCF_TCLASS_CONNECTIVITY 657

XCF_TCLASS_HAS_UNDESIG 657
z/OS File System checks (IBMZFS) 658

ZFS_CACHE_REMOVALS 658
ZOSMIGV1R11_ZFS_INTERFACELEVEL . . . 659
ZOSMIGV1R11_ZFS_RM_MULTIFS 660
ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE. . . 661
ZFS_VERIFY_CACHESIZE 662

Part 4. Appendixes 665

Appendix. Accessibility 667
Accessibility features 667
Consult assistive technologies 667
Keyboard navigation of the user interface 667
Dotted decimal syntax diagrams 667

Notices 671
Policy for unsupported hardware. 672
Minimum supported hardware 673

Trademarks 675

Index 677

viii IBM Health Checker for z/OS User's Guide

||

Figures

1. IBM Health Checker for z/OS with a local
check 4

2. Using LookAt to find check message
documentation 42

3. Creating a policy in multiple HZSPRMxx
members 55

4. Creating multiple policies in one HZSPRMxx
member 56

5. The parts of a local check 98
6. The parts of a remote check 99
7. The parts of a REXX check 100
8. Example of issuing a message with variables

in an assembler check. 122

9. Example of issuing a message with variables
using MGBFORMAT=1 124

10. Example of issuing a message with variables
in an assembler check. 156

11. Example of issuing a message with variables
using MGBFORMAT=1 158

12. Assembler example: Defining the
HZSADDCHECK exit routine adding checks . 197

13. Inputs and outputs for creating a complete
message table 200

14. Message and variable resolution at runtime 201
15. Example of a setup data set that defines

symbols used in the message table 229

© Copyright IBM Corp. 2006, 2015 ix

x IBM Health Checker for z/OS User's Guide

Tables

1. Access required for printing check output from
the message buffer using HZSPRINT 18

2. Interaction of HZSPRMxx settings specified in
HZSPROC and IEASYSxx 22

3. User controlled states 35
4. States controlled by IBM Health Checker for

z/OS. 36
5. Check state combinations 37
6. When do I use which interface to manage

checks? 44
7. F hzsproc command examples 47
8. Summary of local, remote, and REXX checks 101
9. Correlation between IBM Health Checker for

z/OS mapping macros and Metal C header
files 106

10. Important fields in the HZSPQE data area for
a local check routine 112

11. Summary of function codes for local checks 113
12. Important MGBFORMAT=0 fields in the

HZSMGB data area for check message
variables 123

13. Important MGBFORMAT=1 fields in the
HZSMGB data area for check message
variables 124

14. Correlation between IBM Health Checker for
z/OS mapping macros and Metal C header
files 136

15. Important fields in the HZSPQE data area for
a remote check routine 144

16. Summary of release codes for remote checks 146
17. Important MGBFORMAT=0 fields in the

HZSMGB data area for check message
variables 156

18. Important MGBFORMAT=1 fields in the
HZSMGB data area for check message
variables 158

19. Important HZSPQE information used in a
REXX check from HZSLSTRT variables . . . 172

20. A summary of message types for IBM Health
Checker for z/OS 216

21. Variable input and output lengths and
alignment: 220

22. Which variables allow maxlen? 220
23. Description of <msgitem> classes required for

all message explanations 222
24. How messages are formatted in the message

buffer 226
25. A summary of pre-defined symbols that

resolve when the check runs 227
26. A summary of pre-defined symbols that

resolve when you generate the CSECT for the
message table 228

27. HZSLFMSG input variables 236
28. HZSLFMSG_REQUEST='CHECKMSG' input

variables 237

29. HZSLFMSG_REQUEST='DIRECTMSG'
required input variables 239

30. HZSLFMSG_REQUEST='DIRECTMSG'
optional input variables for
HZSLFMSG_REASON='CHECKEXCEPTION' . 240

31. HZSLFMSG_REQUEST='HZSMSG' input
variables 241

32. HZSLFMSG_REQUEST='STOP' input
variables 246

33. HZSLFMSG output variables 247
34. HZSLPDRD input variables 251
35. HZSLPDRD input variables 251
36. HZSLPDRD optional input variables 251
37. HZSLPDRD output variables 252
38. HZSLPDWR input variables 254
39. HZSLPDWR input variables 255
40. HZSLPDRD output variables 255
41. HZSLSTOP input variable 257
42. HZSLSTOP output variables 258
43. HZSLSTRT input variable 260
44. HZSLSTRT output variables 261
45. Return and Reason Codes for the

HZSADDCK Macro 280
46. Return and Reason Codes for the

HZSCHECK Macro 295
47. Return and Reason Codes for the HZSCPARS

Macro 311
48. Return and Reason Codes for the HZSFMSG

Macro 342
49. Return and Reason Codes for the HZSPREAD

Macro 352
50. Return and Reason Codes for the HZSPWRIT

Macro 361
51. Return and Reason Codes for the HZSQUERY

Macro 382
52. ICSF_KEY_EXPIRATION attributes 459
53. RACF_CERTIFICATE_EXPIRATION report

columns 500
54. RACF_CERTIFICATE_EXPIRED attributes 500
55. Systems Level ENQs that RACF_GRS_RNL

checks 506
56. System Level ENQs that RACF_GRS_RNL

checks 507
57. RACF_PASSWORD_CONTROLS report

columns 515
58. RACF_RRSF_RESOURCES report columns 518
59. Additional “Generic” General Resources for

RACF_SENSITIVE_RESOURCES 519
60. RACF_UNIX_ID check actions based on

whether the BPX.UNIQUE.USER and
BPX.DEFAULT.USER profiles are defined in
the FACILITY class 524

61. ZOSMIGV1R13_DEFAULT_UNIX_ID check
actions and migration actions 528

62. Synonyms of Parameters 616

© Copyright IBM Corp. 2006, 2015 xi

||
||
||
||
||
||
||

|
||
||

xii IBM Health Checker for z/OS User's Guide

About This Information

This document presents the information you need to install, use, and develop
checks for IBM® Health Checker for z/OS®. IBM Health Checker for z/OS is a
component of MVS™ that identifies potential problems before they impact your
availability or, in worst cases, cause outages. It checks the current active z/OS and
sysplex settings and definitions for a system and compares the values to those
suggested by IBM or defined by you. It is not meant to be a diagnostic or
monitoring tool, but rather a continuously running preventative that finds
deviations from best practices. IBM Health Checker for z/OS produces output in
the form of detailed messages to let you know of both potential problems and
suggested actions to take.

IBM Health Checker for z/OS is available for z/OS V1R4 and later users.

Who should use this document
This document is intended for two separate audiences:
v People using IBM Health Checker for z/OS to find potential problems in their

installation. Part 1, “Using IBM Health Checker for z/OS,” on page 1 describes
how to setup IBM Health Checker for z/OS, work with check output and
manage checks. Part 3, “Check Descriptions,” on page 387 also includes
information that an IBM Health Checker for z/OS user will need, including
check descriptions and IBM Health Checker for z/OS framework HZS messages.

v People developing their own IBM Health Checker for z/OS checks. Part 2,
“Developing Checks for IBM Health Checker for z/OS,” on page 93 includes
information on planning checks, developing a check routine, developing
messages for your check, and getting your check into the IBM Health Checker
for z/OS framework. Part 3, “Check Descriptions,” on page 387 also includes
information about IBM Health Checker for z/OS macros for use in developing
checks.

© Copyright IBM Corp. 2006, 2015 xiii

xiv IBM Health Checker for z/OS User's Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

IBM Health Checker for z/OS User's Guide
SC23-6843-03

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 2006, 2015 xv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/

xvi IBM Health Checker for z/OS User's Guide

Summary of changes for z/OS Version 2 Release 2 (V2R2)

The following changes are made for z/OS V2R2

New
v The following functions are new in z/OS V2R2:

– “HZSLPDRD function” on page 250
– “HZSLPDWR function” on page 254

v The following check description sections are new in z/OS V2R2:
– “Component trace checks (IBMCTRACE)” on page 425
– “JES3 checks (IBMJES3)” on page 484

v The following Health Checks are new in z/OS V2R2:
– “CATALOG_ATTRIBUTE_CHECK” on page 400
– “CTRACE_DEFAULT_OR_MIN” on page 425
– “DMO_REFUCB” on page 446
– “ICSF_KEY_EXPIRATION” on page 459 added in ICSF FMID HCR77B0.
– “IOS_DYNAMIC_ROUTING” on page 476
– “JES3_DATASET_INTEGRITY” on page 484
– “JES3_DOT_POOL_USAGE” on page 485
– “JES3_JET_POOL_USAGE” on page 487
– “JES3_OST_POOL_USAGE” on page 488
– “JES3_SEE_POOL_USAGE” on page 489
– “RACF_ENCRYPTION_ALGORITHM” on page 504
– “RACF_PASSWORD_CONTROLS” on page 513
– “RACF_RRSF_RESOURCES” on page 516
– “TSOE_OPERSEWAIT_SETTING” on page 584
– “USS_KERNEL_RESOURCES_THRESHOLD” on page 594
– “ZFS_CACHE_REMOVALS” on page 658
– “ZOSMIGV2R2_Next_CS_SENDMAILCLIEN” on page 419
– “ZOSMIGV2R2_Next_CS_SENDMAILDAEMN” on page 420
– “ZOSMIGV2R2_Next_CS_SENDMAILMSA” on page 421
– “ZOSMIGV2R2_Next_CS_SENDMAILMTA” on page 422
– “ZOSMIGV2R2_Next_CS_SMTPDDAEMON” on page 423
– “ZOSMIGV2R2_Next_CS_SMTPDMTA” on page 424

Changed
v The following macro has been updated in z/OS V2R2:

– “HZSPREAD macro — Read Check Persistent Data” on page 346
v The following Health Checks have been updated in z/OS V2R2:

– “ASM_PLPA_COMMON_SIZE” on page 396
– “ASM_PLPA_COMMON_USAGE” on page 397
– “CNZ_Task_Table” on page 436
– “RACF_SENSITIVE_RESOURCES” on page 518
– “RSM_HVSHARE” on page 550

© Copyright IBM Corp. 2006, 2015 xvii

– “ZOSMIGREC_SUP_TIMER_INUSE” on page 583
– “USS_KERNEL_PVTSTG_THRESHOLD” on page 592
– “XCF_CF_STR_PREFLIST” on page 638
– “ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE” on page 661
– “ZFS_VERIFY_CACHESIZE” on page 662

Deleted
v The following Health Checks were deleted in z/OS V2R2:

– ZOSMIGREC_ZFS_RM_MULTIFS
– ZOSMIGV1R13_ZFS_FILESYS

xviii IBM Health Checker for z/OS User's Guide

Summary of changes for z/OS Version 2 Release 1 (V2R1) as
updated September 2014

The following changes are made to z/OS Version 2 Release 1 (V2R1) as updated
September 2014.

Changes

The following Health Checks have been updated in z/OS V2R1:
v “ASM_LOCAL_SLOT_USAGE” on page 398
v “ASM_PLPA_COMMON_SIZE” on page 396
v “ASM_PLPA_COMMON_USAGE” on page 397
v “RACF_classname_ACTIVE” on page 502
v “RACF_SENSITIVE_RESOURCES” on page 518
v “VSM_CSA_THRESHOLD” on page 619
v “VSAM_INDEX_TRAP” on page 606
v “VSM_SQA_THRESHOLD” on page 622

© Copyright IBM Corp. 2006, 2015 xix

xx IBM Health Checker for z/OS User's Guide

Summary of changes for z/OS Version 2 Release 1 as updated
March 2014

The following changes are made to z/OS Version 2 Release 1 (V2R1) as updated
March 2014.

New

The following sections are new in z/OS V2R1.
v “Stopping and Starting IBM Health Checker for z/OS Manually” on page 7
v “Sharing critical IBM Health Checker for z/OS information between systems at

different levels” on page 8
v “Customizing the IBM Health Checker for z/OS procedure” on page 10
v “Monitoring and sizing the HZSPDATA data set” on page 11
v “Create HZSPRMxx parmlib members” on page 21
v “Customizing check exceptions with dynamically varying severity” on page 31
v “Specifying the HZSPRMxx members you want the system to use” on page 64
v “Writing a check with dynamic severity levels” on page 124

The following Health Checks are new in z/OS V2R1.
v “CATALOG_RNLS” on page 402
v “ZOSMIGV2R1_CS_GATEWAY” on page 418
v “DFSMS OPEN/CLOSE/EOV checks (IBMOCE)” on page 447
v “IOS_FABRIC_MONITOR” on page 477
v “IOS_IORATE_MONITOR” on page 479
v “RACF_AIM_STAGE” on page 498
v “RACF_CERTIFICATE_EXPIRATION” on page 500
v “RACF_UNIX_ID” on page 524
v “SLIP_PER” on page 559
v “SUP_SYSTEM_SYMBOL_TABLE_SIZE” on page 570
v “SYSTRACE_BRANCH” on page 581
v “SYSTRACE_MODE” on page 582
v “VLF_MAXVIRT” on page 604
v “VSM_ALLOWUSERKEYCSA” on page 614
v “VSM_CSA_LARGEST_FREE” on page 615
v “XCF_CF_SCM_UTILIZATION” on page 631
v “XCF_CF_STR_MAXSCM” on page 635
v “XCF_CF_STR_MAXSPACE” on page 635
v “XCF_CF_STR_SCM_AUGMENTED” on page 639
v “XCF_CF_STR_SCMMAXSIZE” on page 640
v “XCF_CF_STR_SCM_MINCOUNTS” on page 641
v “XCF_CF_STR_SCM_UTILIZATION” on page 641

© Copyright IBM Corp. 2006, 2015 xxi

Changes

The following sections have been updated in z/OS V2R1:
v “Steps for optimizing IBM Health Checker for z/OS” on page 9
v “Allocate the HZSPDATA data set to save check data between restarts” on page

11
v “Setting up security for the IBM Health Checker for z/OS started task” on page

15
v “Understanding system data issued with the check messages” on page 27
v “Using the HZSPRINT utility” on page 37
v “Using SDSF to manage checks” on page 45
v “Making persistent changes to checks” on page 52
v “How IBM Health Checker for z/OS builds policies from policy statements” on

page 54
v “Syntax and parameters for HZSPRMxx and MODIFY hzsproc” on page 69
v “Examples of DISPLAY output” on page 90

The following Health Checks have been updated in z/OS V2R1:
v “ASM_PLPA_COMMON_SIZE” on page 396
v “ASM_PLPA_COMMON_USAGE” on page 397
v “ASM_LOCAL_SLOT_USAGE” on page 398
v “CATALOG_IMBED_REPLICATE” on page 401
v “CSV_APF_EXISTS” on page 437
v “DAE_SUPPRESSING” on page 444
v “RACF_SENSITIVE_RESOURCES” on page 518
v “USS_PARMLIB” on page 597
v “VSAMRLS_CFLS_FALSE_CONTENTION” on page 608
v “VSM_CSA_THRESHOLD” on page 619
v “VSM_SQA_THRESHOLD” on page 622
v “XCF_CF_PROCESSORS” on page 630

xxii IBM Health Checker for z/OS User's Guide

z/OS Version 2 Release 1 summary of changes

See important information about “Exploitation of the Flash Express feature.”

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS V2R2 Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS V2R2 Introduction and Release Guide

Exploitation of the Flash Express feature
IBM intends to provide exploitation of the Flash Express® feature on IBM
zEnterprise® EC12 (zEC12) and zBC12 servers with CFLEVEL 19 for certain
coupling facility list structures in the first half of 2014. This new function is
designed to allow list structure data to migrate to Flash Express memory as
needed, when the consumers of data do not keep pace with its creators for some
reason, and migrate it back to real memory to be processed. When your installation
uses WebSphere® MQ for z/OS Version 7 (5655-R36), this new capability is
expected to provide significant buffering against enterprise messaging workload
spikes and provide support for storing large amounts of data in shared queue
structures, potentially allowing several hours' data to be stored without causing
interruptions in processing. In addition, z/OS V2R1 Resource Measurement
Facility™ (RMF™) is planned to provide measurement data and reporting
capabilities for Flash Express when it is used with coupling facilities. Information
about externals and interfaces that are related to this planned capability are being
made available in z/OS V2R1 for early planning and development purposes only.

© Copyright IBM Corp. 2006, 2015 xxiii

xxiv IBM Health Checker for z/OS User's Guide

Part 1. Using IBM Health Checker for z/OS

© Copyright IBM Corp. 2006, 2015 1

2 IBM Health Checker for z/OS User's Guide

Chapter 1. Introduction

The objective of IBM Health Checker for z/OS is to identify potential problems
before they impact your availability or, in worst cases, cause outages. It checks the
current active z/OS and sysplex settings and definitions for a system and
compares the values to those suggested by IBM or defined by you. It is not meant
to be a diagnostic or monitoring tool, but rather a continuously running
preventative that finds potential problems. IBM Health Checker for z/OS produces
output in the form of detailed messages to let you know of both potential
problems and suggested actions to take. Note that these messages do not mean
that IBM Health Checker for z/OS has found problems that you need to report to
IBM! IBM Health Checker for z/OS output messages simply inform you of
potential problems so that you can take action on your installation.

There are several parts to IBM Health Checker for z/OS:
v The framework of the IBM Health Checker for z/OS is the interface that allows

you to run and manage checks. The framework is a common and open
architecture, supporting check development by IBM, independent software
vendors (ISVs), and users.

v Individual checks look for component, element, or product specific z/OS
settings and definitions, checking for potential problems. The specific component
or element owns, delivers, and supports the checks.
Checks can be either local, and run in the IBM Health Checker for z/OS address
space, or remote, and run in the caller's address space. So far, most IBM checks
are local.

Figure 1 on page 4 shows the various parts of IBM Health Checker for z/OS:
v The IBM Health Checker for z/OS address space, where the framework,

currently running local check routines, and other elements reside.
v The HZSPQE data area which contains all the information a check routine needs,

including the defaults defined for the check and any installation overrides to
those defaults.

v Installation overrides, which are changes the installation can make to check
default values, such as interval, parameters, or other values.

v The message table, which contains message data for the check output messages
that convey check results.

© Copyright IBM Corp. 2006, 2015 3

What is a check?
A check is actually a program or routine that identifies potential problems before
they impact your availability or, in worst cases, cause outages. A check is owned,
delivered, and supported by the component, element, or product that writes it.
Checks are separate from the IBM Health Checker for z/OS framework. A check
might analyze a configuration in the following ways:
v Changes in settings or configuration values that occur dynamically over the life

of an IPL. Checks that look for changes in these values should run periodically
to keep the installation aware of changes.

v Threshold levels approaching the upper limits, especially those that might occur
gradually or insidiously.

v Single points of failure in a configuration.
v Unhealthy combinations of configurations or values that an installation might

not think to check.

This document discusses the following IBM Health Checker for z/OS concepts:

Check owner and check name: Each check has a check owner and check name.
v The check owner is the owning element or component. For IBM checks, checks,

these will all start with IBM. For example, IBMASM and IBMUSS are two IBM
check owners.

v The check name is the name of the check itself, such as
ASM_NUMBER_LOCAL_DATASETS.

Check values: Each check includes a set of pre-defined values, such as:
v Interval, or how often the check will run
v Severity of the check, which influences how check output is issued
v Routing and descriptor codes for the check

You can update or override some check values using either SDSF or statements in
the HZSPRMxx parmlib member or the MODIFY command. These are called
installation updates. You might do this if some check values are not suitable for
your environment or configuration.

IBM Health Checker
for z/OS address space

Framework Component, element,
or product checks

Local
check
routine

Check
routine

Check
routine

Check
routine

Check
routine

Check
routine

Installation overrides
Check loaded

Check output:
- SDSF
- HZSPRINT
- Log stream

Figure 1. IBM Health Checker for z/OS with a local check

4 IBM Health Checker for z/OS User's Guide

Check output: A check issues its output as messages, which you can view using
SDSF, the HZSPRINT utility, or a log stream that collects a history of check output.
If a check finds a potential problem, it issues a WTO message. We will call these
messages exceptions. The check exception messages are issued both as WTOs and
also to the message buffer. The WTO version contains only the message text, while
the exception message in the message buffer includes both the text and explanation
of the potential problem found, including the severity, as well as information on
what to do to fix the potential problem.

Resolving check exceptions: To get the best results from IBM Health Checker for
z/OS, you should let it run continuously on your system so that you will know
when your system has changed. When you get an exception, you should resolve it
using the information in the check exception message or overriding check values,
so that you do not receive the same exceptions over and over.

Managing checks: You can use either SDSF, the HZSPRMxx parmlib member, or
the IBM Health Checker for z/OS MODIFY (F hzsproc) command to manage
checks. Managing checks includes:
v Printing check output from either SDSF, or using the HZSPRINT utility - see

Chapter 3, “Working with check output,” on page 25.
v Displaying check information
v Taking one time actions against checks, such as:

– Activating or deactivating checks
– Add new checks
– Refresh checks - Refresh processing first deletes a check from the IBM Health

Checker for z/OS and then adds it back to the system.
– Run checks

See “Cheat sheet: examples of MODIFY hzsproc commands” on page 47.
v Updating check values temporarily using SDSF or the MODIFY hzsproc

command. See “Making dynamic, temporary changes to checks” on page 44.
v Updating check values permanently using HZSPRMxx. See “Making persistent

changes to checks” on page 52.

For more information, see our fabulous Redpaper!
For lots of details and experience based information about using and writing
checks for IBM Health Checker for z/OS, see Exploiting the Health Checker for z/OS
infrastructure (REDP-4590).

Background for IBM's checks
IBM Health Checker for z/OS check routines look at an installation's configuration
or environment to look for potential problems. The values used by checks come
from a variety of sources including product documentation and web sites, such as:
v z/OS system test
v z/OS Service
v Parallel Sysplex® Availability Checklist at: http://www.ibm.com/servers/

eserver/zseries/pso/
v ITSO Redbooks® at: http://www.redbooks.ibm.com/
v Washington System Center Flashes at: http://www.ibm.com/support/techdocs/.

Chapter 1. Introduction 5

http://www.ibm.com/servers/eserver/zseries/pso/
http://www.ibm.com/servers/eserver/zseries/pso/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/techdocs/

For migration to a 64–bit environment, see whitepaper WP100269 “z/OS
Performance: Managing Processor Storage in a 64–bit environment”, and the
Washington System Center Flash 10086, “Software Capacity Planning: Migration
to 64 bit Mode”.

v Parallel Sysplex and z/OS publications:
– z/OS MVS Initialization and Tuning Reference

– z/OS MVS Planning: Global Resource Serialization

– z/OS MVS Planning: Operations

– z/OS MVS Setting Up a Sysplex

– z/OS Security Server RACF Command Language Reference

– z/OS Security Server RACF Security Administrator's Guide

– z/OS UNIX System Services Planning

The description of each individual check contains the rationale behind the values
used by the check for comparison against your installation settings. See Chapter 13,
“IBM Health Checker for z/OS checks,” on page 389.

You might find that the values that the check uses for comparison are not
appropriate for your installation or for a particular system. If that is the case, you
can either specify overrides to default values or suppress individual checks. See
Chapter 4, “Managing checks,” on page 43.

6 IBM Health Checker for z/OS User's Guide

Chapter 2. Setting up IBM Health Checker for z/OS

The IBM Health Checker for z/OS framework provides a structure for checks to
gather system information and mechanisms to report their findings. The checks
compare the system environment and parameters to established settings to uncover
potential problems. When z/OS IPLs, it automatically starts IBM Health Checker
for z/OS, but for optimal use, you'll want to do the set-up steps described in this
chapter.

Checks are provided separately from the IBM Health Checker for z/OS framework
(see “Obtain checks for IBM Health Checker for z/OS” on page 23 for more
information on obtaining checks) and individual checks should be assessed for
their relevance to your installation. You can override parameters for some checks,
and you can override values or deactivate any individual check. See Chapter 4,
“Managing checks,” on page 43.

This chapter covers the following topics:
v “Stopping and Starting IBM Health Checker for z/OS Manually”
v “Sharing critical IBM Health Checker for z/OS information between systems at

different levels” on page 8
v “Steps for optimizing IBM Health Checker for z/OS” on page 9

Note that all the setup steps in “Steps for optimizing IBM Health Checker for
z/OS” on page 9 for IBM Health Checker for z/OS are the same no matter what
types of checks you run, whether local, remote, or REXX. This includes security
definitions. Any check-specific setup steps required are documented with the check
description in Chapter 13, “IBM Health Checker for z/OS checks,” on page 389.

Stopping and Starting IBM Health Checker for z/OS Manually
Although IBM Health Checker for z/OS starts automatically when you start z/OS,
you can still stop and start IBM Health Checker for z/OS manually, to apply
service, for example. To stop and start IBM Health Checker for z/OS, use the
HZSPROC started procedure in the following commands:
STOP hzsproc

START hzsproc,HZSPRM=PREV

Specifying HZSPRM=PREV, which is the default in the HZSPROC procedure,
ensures that you use the same set of HZSPRMxx parmlib members that were in
effect in the previous instance of IBM Health Checker for z/OS.

Note: You can prevent an automatic start of Health Checker at IPL time. You do
this by assigning a special value of *NONE to the system parameter HZSPROC in
for example the IEASYSxx parmlib member: HZSPROC=*NONE. Installations
might choose to use this feature to have better control on when certain address
spaces, in this case Health Checker, start and use an automation product to issue
an explicit START HZSPROC command at a desired time.

© Copyright IBM Corp. 2006, 2015 7

Sharing critical IBM Health Checker for z/OS information between
systems at different levels

You can share critical IBM Health Checker for z/OS information between systems
at different levels, as follows:
v “Sharing IEASYSxx”
v “Sharing the HZSPROC procedure”
v “Sharing HZSPRMxx”

Sharing IEASYSxx
Prior to z/OS V2R1, there were no IBM Health Checker for z/OS related system
parameters in IEASYSxx. Now, with z/OS V2R1, for example, there are two system
parameters, HZS and HZSPROC. You'll encounter these as you do the “Steps for
optimizing IBM Health Checker for z/OS” on page 9.

So, what happens if you share IEASYSxx parmlib members in a sysplex with
systems that are at different levels? You can make this work using the WARNUND
system parameter, which tells the system to issue message IEA660I when it
encounters unsupported IEASYSxx statements are encountered, rather than
stopping an IPL to prompt for a correct statement. That means that a system can
use an IEASYSxx member that includes statements that are not supported on the
system's release level, simply ignoring the ones the system does not support. The
system issues message IEA660I for IEASYSxx statements that the system does not
support.

To use the WARNUND statement in IEASYSxx see the Overview of IEASYSxx
parameters in z/OS MVS Initialization and Tuning Reference.

Sharing the HZSPROC procedure
You can share the IBM Health Checker for z/OS startup procedure, HZSPROC,
between systems as long as you make specific parameters specific to the system. A
typical system specific parameter is the HZSPDATA dataset. If an HZSPDATA DD
statement is specified in the HZSPROC procedure, it should use unique system
symbols for the system since the HZSPDATA dataset can not be shared between
systems. If HZSPDATA is referenced in one of the HZSPRM proc parm specified
HZSPRMxx suffixes, that HZSPRMxx parmlib member should use system symbols
in the HZSPDATA statement.

You can share HZSPROC between systems at different release levels. In particular,
after V2R1 and later, assuming you use the HZSPDATA DD to specify the
HZSPDATA dataset. Prior to V2R1 systems only support the DD, not the
HZSPRMxx HZSPDATA statement.

Sharing HZSPRMxx
Often a new release of z/OS includes new statements or parameters for the
HZSPRMxx parmlib member. For example, the HZSPDATA statement in
HZSPRMxx is new for z/OS V2R1. How does this work if you share HZSPRMxx
between systems at different levels? The answer is, it should work fine. Even if
you exploit all the new parameters and statements that come down the pike, IBM
Health Checker for z/OS simply issues a syntax error message for unsupported
statements but processes all the other statements in the HZSPRMxx member.

8 IBM Health Checker for z/OS User's Guide

See “Tell the system which HZSPRMxx members you want to use” on page 21 for
more information.

Steps for optimizing IBM Health Checker for z/OS
To optimize your IBM Health Checker for z/OS set-up, you'll want to do the
following set-up steps before IPLing z/OS:
v If you want to get IBM Health Checker for z/OS started quickly, see “In a rush?

Use these basic steps.”
v Otherwise, use the following steps to set up and start IBM Health Checker for

z/OS:
1. “Customizing the IBM Health Checker for z/OS procedure” on page 10
2. “Software requirements” on page 10
3. “Allocate the HZSPDATA data set to save check data between restarts” on

page 11
4. “Optionally set up the HZSPRINT utility” on page 12
5. “Optionally define log streams to keep a record of the check output” on

page 12
6. “Create security definitions” on page 14
7. Optionally set up SDSF for IBM Health Checker for z/OS support using the

IBM Health Checker for z/OS Small Programming Enhancement sections in
z/OS SDSF Operation and Customization.

8. “Create multilevel security definitions” on page 20
9. “Create HZSPRMxx parmlib members” on page 21 and “Tell the system

which HZSPRMxx members you want to use” on page 21
10. “Assign IBM Health Checker for z/OS to a WLM service class” on page 23
11. “Obtain checks for IBM Health Checker for z/OS” on page 23

In a rush? Use these basic steps
If you're looking to optimize IBM Health Checker for z/OS quickly and without
frills, you can follow the map below for minimum steps. These steps do not
include the optional steps for defining log streams to record check output, creating
multilevel security definitions, or creating your own HZSPRMxx parmlib member
from our sample.
1. “Allocate the HZSPDATA data set to save check data between restarts” on page

11
2. “Create security definitions” on page 14
3. “Obtain checks for IBM Health Checker for z/OS” on page 23

Once you've optimized IBM Health Checker for z/OS, use the HZSPRINT utility,
SDSF, or operator commands to view and work with check output. See the
following for information:
v “Using the HZSPRINT utility” on page 37
v To set up and use SDSF, see the following:

– Set up security and customization for SDSF support for IBM Health Checker
for z/OS using information in IBM Health Checker for z/OS Small
Programming Enhancement in z/OS SDSF Operation and Customization.

– “Using SDSF to manage checks” on page 45

Chapter 2. Setting up IBM Health Checker for z/OS 9

Software requirements
IBM Health Checker for z/OS is shipped as part of z/OS .

IBM Health Checker for z/OS can run on a parallel sysplex, monoplex, or XCF
local mode environment running z/OS V1R4 or later. Note that different checks
have different system level requirements - see Chapter 13, “IBM Health Checker for
z/OS checks,” on page 389 for check specific information.

Software requirement for running REXX checks
More and more checks are being developed in System REXX. Because check
providers use both REXX and compiled REXX for checks, you must ensure that
either the SEAGALT or SEAGLPA library is available in the system search order.
v SEAGALT is provided in z/OS V1R9 and higher
v SEAGLPA is provided in the IBM Library for REXX on IBM z Systems product

REXX execs that are not compiled do not require the SEAGALT or SEAGLPA
libraries. For more information, see:
v IBM Compiler and Library for REXX on System z: User's Guide and Reference for

information about SEAGALT and SEAGLPA and writing compiled REXX code
v z/OS MVS Programming: Authorized Assembler Services Guide for information on

z/OS System REXX.

.

Customizing the IBM Health Checker for z/OS procedure
IBM Health Checker for z/OS starts automatically when you start z/OS. The
system uses the following HZSPROC started procedure to start IBM Health
Checker for z/OS:
//HZSPROC JOB JESLOG=SUPPRESS
//HZSPROC PROC HZSPRM=’PREV’
//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,
// PARM=’SET PARMLIB=&HZSPRM’
//*HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD
// PEND
// EXEC HZSPROC

Note that although this looks like a batch job it is a started task. IBM Health
Checker for z/OS is set up this way in order to suppress messages to the JESLOG,
which might otherwise overflow your JESLOG data set.

If you rename the HZSPROC procedure, make sure the system knows the new
name: By default, the system uses the name HZSPROC for the IBM Health
Checker for z/OS procedure. If you rename the procedure, you must specify the
name of your hzsproc procedure in the HZSPROC system parameter of the
IEASYSxx parmlib member.

Optionally customize the HZSPROC procedure: Later during this set-up
procedure, you will come back to the HZSPROC procedure to:
v Optionally update the procedure to include the name of the HZSPDATA data set

defined in “Allocate the HZSPDATA data set to save check data between
restarts” on page 11.

v “Tell the system which HZSPRMxx members you want to use” on page 21.

10 IBM Health Checker for z/OS User's Guide

Allocate the HZSPDATA data set to save check data between restarts
Some checks use the HZSPDATA data set to save data required as part of their
processing between restarts of the system or IBM Health Checker for z/OS. To
allocate this data set, do the following:
1. Get the HZSALLCP sample JCL from SYS1.SAMPLIB.
2. Update the HZSALLCP JCL for the HZSPDATA data set. The data set must:

v Be fixed block
v Be sequential
v Have a logical record length of 4096

You must also specify a high level qualifier for the data set. In the following
example, we're using the system name as part of the HZSPDATA data set
name:
//HZSALLCP JOB
//*
//HZSALLCP EXEC PGM=HZSAIEOF,REGION=4096K,TIME=1440
//HZSPDATA DD DSN=SYS1.sysname.HZSPDATA,DISP=(NEW,CATLG),
// SPACE=(4096,(100,400)),UNIT=SYSDA,
// DCB=(DSORG=PS,RECFM=FB,LRECL=4096)
//SYSPRINT DD DUMMY

Within the HZSPDATA DD statement, you can use any UNIT and VOLSER
values supported on your system to indicate where you want the system to
allocate the data set.

3. Retain the name of the HZSPDATA data set so you can specify it in either:
v The HZSPDATA statement in the HZSPRMxx parmlib member. See “Create

HZSPRMxx parmlib members” on page 21.
v The IBM Health Checker for z/OS start up procedure, HZSPROC, as follows:

//HZSPROC PROC HZSPRM=’PREV’
//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,
// PARM=’SET PARMLIB=&HZSPRM’
//HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD
// PEND
// EXEC HZSPROC

The very first time IBM Health Checker for z/OS starts, you might see a message
such as the following:
HZS0010I THE HZSPDATA DATA SET CONTAINS NO RECORDS

In this case, the message can be ignored since we know the dataset is empty.

Monitoring and sizing the HZSPDATA data set
The default HZSPDATA data set sizes defined in the HZSALLCP JCL should work
well, even if you run lots of checks. (Not all checks use persistent data, so the
number of checks is not a great way to predict how much space you need for
persistent data.) If you write your own checks or obtain non-IBM checks, you
should be able to get information about HZSPDATA data set space requirements
from the check writers.

If you are concerned about persistent data usage, rather than blindly experiment
with larger HZSPDATA data set sizes, IBM recommends that you monitor
persistent data set usage with the F HZSPROC,DISPLAY command. The display
command output looks as follows:

Chapter 2. Setting up IBM Health Checker for z/OS 11

HZS0203I 11.27.40 HZS INFORMATION FRAME LAST F E SYS=SY39
...
HZSPDATA DSN: dsname VOL: volser
HZSPDATA RECORDS: 18

For your data set calculations, note that 1 HZSPDATA record equals 4K of storage.
In this example, the DISPLAY command output shows that the system is using 18
records of HZSPDATA space, or 72K, which is well within the default sizes of
SPACE=(4096,(100,400)).

If the HZSPDATA data set actually becomes full, IBM Health Checker for z/OS
does the following:
v Continues to collect persistent data in memory until a new persistent dataset is

available.
v Issues system message HZS0012E to indicate that the data set is full and

recommend the size needed to hold your persistent data:
HZS0012E HZSPDATA DATA SET IS FULL. DATA SET NEEDS ROOM FOR n 4096-BYTE RECORDS

v When a new persistent dataset is provided, IBM Health Checker for z/OS writes
the current relevant persistent data into the new persistent dataset.

Optionally set up the HZSPRINT utility
The HZSPRINT utility allows you to see check output in the message buffer or a
IBM Health Checker for z/OS log stream. HZSPRINT writes the current message
buffer for the target checks to SYSOUT. If you wish to use the HZSPRINT utility,
do the following set up steps:
1. Get the JCL for the HZSPRINT utility from member HZSPRINT in

SYS1.SAMPLIB .
2. “Setting up security for the HZSPRINT utility” on page 16.
3. See “Using the HZSPRINT utility” on page 37.

Optionally define log streams to keep a record of the check output
IBM Health Checker for z/OS retains only the check results from the last iteration
of a check in the message buffer. If you want to retain a historical record of check
results, which is optional, but a good idea, you can define and connect to a log
stream. When you have a log stream connected, the system writes check results to
the log stream every time a check completes.

Note that most of our instructions are for coupling facility log streams, which are
suggested. For information about setting up a DASD-only logstream, see the
"Planning for system logger applications" section of z/OS MVS Setting Up a Sysplex

Do the following to define log streams:
1. Plan for setting up log streams, including allocation of coupling facility and

DASD space. Careful planning of DASD and coupling facility space is
important because if the log stream fills up, no additional data will be written
to it and data will be lost. See the "Planning for system logger applications"
section of z/OS MVS Setting Up a Sysplex. Keep in mind the following:
v Define either:

– One log stream for each system.
– One log stream for multiple systems to use.

12 IBM Health Checker for z/OS User's Guide

v HZS must be the first letters of log stream names and structures you define.
For example, you might define a log stream name of HZSLOG1.

v System logger requires at least a base sysplex configuration in your
installation.

v System logger requires SMS to be active, in at least a null configuration, even
if you do not use SMS to manage your volumes and data sets. See the "Plan
DASD space for system logger" section of z/OS MVS Setting Up a Sysplex.

2. Set up security for log streams:
a. You will accomplish most of the security set up needed for the log stream

when you set up security for the IBM Health Checker for z/OS super User
ID in “Setting up security for the IBM Health Checker for z/OS started
task” on page 15.

b. The user who will be setting up log stream and structure definitions for the
IBM Health Checker for z/OS log stream using the IXCMIAPU
Administrative Data Utility program must have authorization to a number
of resources. See the Define Authorization for system logger resources
section of z/OS MVS Setting Up a Sysplex.

c. See “Security for printing check output from a log stream” on page 19 to set
up security access for users to the HZSPRINT output, if you will be using
HZSPRINT to print log stream data.

3. Enable log streams in one of the following ways:
v Use the MODIFY command:

f hzsproc,logger=on,logstreamname=logstreamname

v Use the LOGGER parameter in the HZSPRMxx parmlib member:
LOGGER(ON) LOGSTREAMNAME(logstreamname)

To disable a log stream, issue the following MODIFY command:
f hzsproc,logger=off

4. To display check output from a log stream, use either:
v The HZSPRINT utility - See “Optionally set up the HZSPRINT utility” on

page 12.
v SDSF - See “Using SDSF to manage checks” on page 45.

The following examples show our log stream definitions:
v CFRM policy definition: The following example shows a log stream and

structure definition defined in the CFRM policy using the administrative data
utility, IXCMIAPU:
STRUCTURE NAME(HZS_HEALTHCHKLOG) SIZE(9000)

PREFLIST(CF25, CF01C, CF1)

The value defined for SIZE should be no less than 8000 to ensure adequate space
for check data. For more information, see:
– "Define the coupling facility structures attributes in the CFRM policy couple

data set" inz/OS MVS Setting Up a Sysplex

– IBM recommends that you use the following web-based CFSizer tool to
estimate an appropriate structure size
http://www.ibm.com/systems/support/z/cfsizer/

.
v LOGR policy definitions:

Chapter 2. Setting up IBM Health Checker for z/OS 13

http://www.ibm.com/systems/support/z/cfsizer/

– The following example shows a coupling facility and log stream structure
definition in the LOGR policy using the administrative data utility,
IXCMIAPU:
DEFINE STRUCTURE NAME(HZS_HEALTHCHKLOG)

LOGSNUM(1)
MAXBUFSIZE(65532)
AVGBUFSIZE(1024)

DEFINE LOGSTREAM NAME(HZS.HEALTH.CHECKER.HISTORY)
DESCRIPTION(HEALTH_CHECK_RPT)
STRUCTNAME(HZS_HEALTHCHKLOG)
STG_DUPLEX(NO)
LS_DATACLAS(NO_LS_DATACLAS)
LS_MGMTCLAS(NO_LS_MGMTCLAS)
LS_STORCLAS(NO_LS_STORCLAS)
LS_SIZE(4096)
AUTODELETE(YES)
RETPD(14)
HIGHOFFLOAD(80)
LOWOFFLOAD(0)
DIAG(NO)

Note that the IBM Health Checker for z/OS structure and log stream names
must begin with HZS.

– The following example shows a DASD-only log stream definition in the
CFRM policy using the administrative data utility, IXCMIAPU. Note that the
values you define for a DASD-only log stream in your installation may be
different.
DEFINE LOGSTREAM NAME (HZS.HEALTH.CHECKER.HISTORY)

DASDONLY(YES)
MAXBUFSIZE(65532)
HIGHOFFLOAD(80)
LOWOFFLOAD(20)
STG_SIZE(2000)
LS_SIZE(1000)
LS_DATACLAS(lsdataclas)
LS_STORCLAS(lsstorclas)
STG_DATACLAS(stgdataclas)
STG_STORCLAS(stgstorclas)

For more information on the LOGR couple data set, see "Add information about
log streams and coupling facility structures to the LOGR policy" section of z/OS
MVS Setting Up a Sysplex.

Create security definitions
Both IBM Health Checker for z/OS and users looking at check output need access
to resources. You must create security definitions to control access and maintain
security for these resources.

You must do the following types of security setup:
v “Setting up security for the IBM Health Checker for z/OS started task” on page

15
v “Setting up security for the HZSPRINT utility” on page 16
v “Setting up security for IBM Health Checker for SDSF support” on page 19

14 IBM Health Checker for z/OS User's Guide

Setting up security for the IBM Health Checker for z/OS
started task

You must set up security for IBM Health Checker for z/OS the same way you
would for any other started task. To do this task with RACF®, do the following
steps:
1. Create a user ID for IBM Health Checker for z/OS and connect the superuser

user ID to a group. Define the user ID with:
v Superuser authority using either:

– UID(0) explicitly assigned to the user ID.
– Access to the BPX.SUPERUSER resource. The advantage of this method is

that it might be more audit friendly, because you avoid having a user
profile with UID(0) explicitly assigned to it.
At runtime, IBM Health Checker for z/OS dynamically switches to (and
stays in) an effective UID(0) superuser authority using the defined
BPX.SUPERUSER access.

v A home directory of HOME('/')
v A program of PROGRAM('/bin/sh')

Examples:

v Using UID(0), you might use the following commands to define the user ID
as follows:
ADDUSER hcsuperid

OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

ADDGROUP OMVSGRP OMVS(GID(xx))
CONNECT hcsuperid GROUP(OMVSGRP)

v Using access to the BPX.SUPERUSER resource, you might use the following
commands to define the user ID as follows:
ADDUSER hcsuperid OMVS(UID(yy) HOME('/') PROGRAM('/bin/sh')) NOPASSWORD
ADDGROUP OMVSGRP OMVS(GID(xx))
CONNECT hcsuperid GROUP(OMVSGRP)
RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(hcsuperid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

For more information, see:
v Assigning superuser attributes in z/OS UNIX System Services Planning

v z/OS Security Server RACF Security Administrator's Guide

v The ADDGROUP and ADDUSER sections of z/OS Security Server RACF
Command Language Reference

Note: Once you start IBM Health Checker for z/OS with its associated User
ID, changes you make to the UID for the User ID won't usually take effect until
the IBM Health Checker for z/OS address space is stopped and restarted.

2. Associate the superuser User ID, hcsuperid, with the IBM Health Checker for
z/OS started task, HZSPROC. For example:
SETROPTS GENERIC(STARTED)
RDEFINE STARTED HZSPROC.* STDATA(USER(hcsuperid) GROUP(OMVSGRP))
SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)

If you had already RACLISTed the STARTED class, the last statement would
have to be SETROPTS RACLIST(STARTED) REFRESH. For more information, see:

Chapter 2. Setting up IBM Health Checker for z/OS 15

v z/OS Security Server RACF Security Administrator's Guide and z/OS UNIX
System Services Planning.

v The RDEFINE and SETROPTS sections of z/OS Security Server RACF
Command Language Reference.

3. Give the IBM Health Checker for z/OS started task super User ID access to
the HZSPDATA data set on each system where you'll run IBM Health Checker
for z/OS. For example, you might specify the following:
ADDSD ’SYS1.PRODSYS.HZSPDATA’ UACC(NONE)
PERMIT SYS1.PRODSYS.HZSPDATA CLASS(DATASET) ID(hcsuperid) ACCESS(UPDATE)

4. Give IBM Health Checker for z/OS started task super User ID READ access to
the HZSPRMxx parmlib member(s). For example, you might specify the
following:
ADDSD ’SYS1.PARMLIB’ UACC(NONE)
PERMIT ’SYS1.PARMLIB’ CLASS(DATASET) ID(hcsuperid) ACCESS(READ)

5. If you will be using a log stream, you must define UPDATE access for the IBM
Health Checker for z/OS started task super User ID to each
RESOURCE(logstreamname) CLASS(LOGSTRM). IBM Health Checker for z/OS
connects directly to the defined log stream or streams. For example, you might
specify the following:
RDEFINE LOGSTRM logstreamname UACC(NONE)
PERMIT logstreamname CLASS(LOGSTRM) ID(hcsuperid) ACCESS(UPDATE)
SETROPTS CLASSACT(LOGSTRM) RACLIST(LOGSTRM)
SETROPTS RACLIST(LOGSTRM)

If you had already RACLISTed the LOGSTRM class, the last statement would
have to be SETROPTS RACLIST(LOGSTRM) REFRESH.
See the "LOGR parameters for administrative data utility section of z/OS MVS
Setting Up a Sysplex.

6. REXX health checks support input and output datasets and the checks have a
REXXHLQ (REXX dataset high level qualifier) attribute. Be prepared to grant
the appropriate access rights for REXX datasets to the user ID that is associated
with the Health Checker address space.

7. If the SERVAUTH class is activated and a profile is defined for the
EZB.STACKACCESS.sysname.tcpprocname resource, you must grant the user ID
that is associated with the Health Checker address space READ access to the
profile.
PERMIT EZB.STACKACCESS.sysname.tcpprocname CLASS(SERVAUTH) ID(hcsuperid) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

8. To let health check (IBMUSS,ZOSMIGREC_ROOT_FS_SIZE) run successfully,
give the Health Checker user ID READ access to the OPERCMDS
MVS.DISPLAY.OMVS resource.

9. To let health check (IBMRACF,RACF_RRSF_Resources) run successfully, give
the Health Checker user ID READ access to:
v the IRR.RADMIN.EXTRACT.RRSF profile in the FACILITY class (required to

use r-Admin to extract RRSF information)
v <subsystem>.TARGET.LIST in the OPERCMDS class, if this resource is

protected.

Setting up security for the HZSPRINT utility
IBM Health Checker for z/OS users can view check output in the message buffer
or log stream using HZSPRINT. HZSPRINT writes the check output for the target
checks to SYSOUT. If users in your installation will be using HZSPRINT to print
check output, you must authorize HZSPRINT users to the following resources:

16 IBM Health Checker for z/OS User's Guide

|
|

|
|

|
|

v To access check output from the message buffer, you must authorize users to
the following service resources:
– QUERY, which returns a list of checks and check status from the message

buffer.
– MESSAGES, which returns the output messages for a check or checks from

the message buffer.

See “Security for printing check output from the message buffer.”
v To access check output in IBM Health Checker for z/OS log stream or streams,

you must authorize users to the log stream names. See “Security for printing
check output from a log stream” on page 19.

To authorize HZSPRINT users to these service resources with RACF, you must
define profiles for them, as shown in the topics below.

Security for printing check output from the message buffer
Users accessing check output from the message buffer, must have authorization to
the QUERY and MESSAGES service resources using RACF profiles. The way you
define RACF profiles depends on:
v The way users specify the check name and check owner in the HZSPRINT EXEC

PARM= statement.
v The level of access you wish to give to the user.

Specifying check name and owner in the HZSPRINT EXEC PARM= statement:
Depending on what access level they have and what check output they want, users
can specify the exact check name and check owner in the EXEC statement to get
output from one check or they can use wildcard characters to get output for
multiple checks.

The syntax for the HZSPRINT EXEC statement for printing check output from the
message buffer is as follows:
// EXEC PGM=HZSPRNT,PARM=’CHECK(check_owner,check_name)’

See “What is a check?” on page 4 for how to find the check owner and check name
for checks.

The following HZSPRINT EXEC statement examples show different ways users can
specify the check name and the check owner to get different output:
v To get check output for all active checks, use the following EXEC statement:

// EXEC PGM=HZSPRNT,PARM=’CHECK(*,*)’

v To get check output for all the checks owned by IBMGRS, use the following
EXEC statement:
// EXEC PGM=HZSPRNT,PARM=’CHECK(IBMGRS,*)’

v To get check output for just one check, IBMGRS check GRS_Mode, use the
following EXEC statement:
// EXEC PGM=HZSPRNT,PARM=’CHECK(IBMGRS,GRS_Mode)’

v To get check output for all the checks named TRY_ME by any check owner, use
the following EXEC statement:
// EXEC PGM=HZSPRNT,PARM=’CHECK(*,TRY_ME)’

See Chapter 3, “Working with check output,” on page 25 for complete information
about using HZPRINT.

Determining the access level required for check name and owner specification
on the HZSPRINT EXEC statement: The table below shows the access required for

Chapter 2. Setting up IBM Health Checker for z/OS 17

different user specifications of the check name and owner in the HZSPRINT EXEC
PARM= statement, including the resource name or names that must be defined in
the XFACILIT class for that particular specification. You must also RACLIST the
XFACILIT class in order for HZSPRINT to work, as shown in the examples below
the table.

Where we show two possible resource names you can define for a service resource,
the system accepts a match on either.

Table 1. Access required for printing check output from the message buffer using HZSPRINT

Check specification
Access required for service
resource Resource names

CHECK(*,checkname)
CHECK(*,*)

QUERY: Read access to all
checks

v HZS.sysname.QUERY

MESSAGES: Read access to
individual check

v HZS.sysname.check_owner.MESSAGES

v HZS.sysname.check_owner.check_name.MESSAGES

CHECK(checkowner,*) QUERY: Read access to all
checks for a specific owner

v HZS.sysname.check_owner.QUERY

MESSAGES: Read access to
individual check

v HZS.sysname.check_owner.MESSAGES

v HZS.sysname.check_owner.check_name.MESSAGES

CHECK(checkowner,
checkname)

QUERY: Read access to
individual check

v HZS.sysname.check_owner.QUERY

v HZS.sysname.check_owner.check_name.QUERY

MESSAGES: Read access to
individual check

v HZS.sysname.check_owner.MESSAGES

v HZS.sysname.check_owner.check_name.MESSAGES

Defining RACF profiles for QUERY and MESSAGE service resources: For each
resource name identified in the first table, issue:
RDEFINE XFACILIT resourcename UACC(NONE)
PERMIT resourcename CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

Then, issue the following for the XFACILIT class:
SETROPTS CLASSACT(XFACILIT)
SETROPTS RACLIST(XFACILIT)

If you already RACLISTed the XFACILIT or FACILITY class, the very last
statement in the example above would have to be:
SETROPTS RACLIST(XFACILIT) REFRESH

Profile definition examples:

The following table shows examples of defining access profiles for the QUERY and
MESSAGES service resources in the XFACILIT class to allow a user ID to access
check output in HZSPRINT.

In these examples, hcprintid is the user ID of either a user or group you're giving
access to.
v Access to output from all checks:

18 IBM Health Checker for z/OS User's Guide

RDEFINE XFACILIT HZS.sysname.QUERY UACC(NONE)
PERMIT HZS.sysname.QUERY CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)
RDEFINE XFACILIT HZS.sysname.check_owner.MESSAGES UACC(NONE)
PERMIT HZS.sysname.check_owner.MESSAGES CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)
SETROPTS CLASSACT(XFACILIT)
SETROPTS RACLIST(XFACILIT)

v Access to output from a specified check owner:
RDEFINE XFACILIT HZS.sysname.check_owner.QUERY UACC(NONE)
PERMIT HZS.sysname.check_owner.QUERY CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)
RDEFINE XFACILIT HZS.sysname.check_owner.check_name.MESSAGES UACC(NONE)
PERMIT HZS.sysname.check_owner.check_name.MESSAGES CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)
SETROPTS CLASSACT(XFACILIT)
SETROPTS RACLIST(XFACILIT)

v Access to output from a particular check:
RDEFINE XFACILIT HZS.sysname.check_owner.check_name.QUERY UACC(NONE)
PERMIT HZS.sysname.check_owner.check_name.QUERY CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)
RDEFINE XFACILIT HZS.sysname.check_owner.check_name.MESSAGES UACC(NONE)
PERMIT HZS.sysname.check_owner.check_name.MESSAGES CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)
SETROPTS CLASSACT(XFACILIT)
SETROPTS RACLIST(XFACILIT)

For more information, see:
v z/OS Security Server RACF Security Administrator's Guide and z/OS UNIX System

Services Planning .
v The PERMIT, RDEFINE and SETROPTS sections of z/OS Security Server RACF

Command Language Reference.
v “Using the HZSPRINT utility” on page 37 for information on using HZSPRINT.

Security for printing check output from a log stream
If you use an IBM Health Checker for z/OS log stream to collect check output, you
can use HZSPRINT to print the log stream data using one of the following
HZSPRINT EXEC statement examples:
// EXEC PGM=HZSPRINT,PARM=’LOGSTREAM(logstreamname)’

OR
// EXEC PGM=HZSPRINT,PARM=’LOGSTREAM(logstreamname),CHECK(owner,name)’

OR
// EXEC PGM=HZSPRINT,PARM=’LOGSTREAM(logstreamname),CHECK(owner,name),EXCEPTIONS’

To authorize HZSPRINT users to log stream check output, you must define a
profile in the LOGSTRM class for the log stream and assign READ access to users.
When you assign access to the log stream for an HZSPRINT user, you give the
user access to all check output in the log stream. HZSPRINT access to log streams
is all or nothing - you cannot restrict HZSPRINT access to particular check owners
or checks in log streams, as you can for check output in the message buffer.

The following profile example shows how you might define HZSPRINT access for
a user ID to check output in a log stream:
RDEFINE FACILITY log_stream_data_set_name UACC(NONE)
PERMIT log_stream_data_set_name CLASS(LOGSTRM) ID(hcprint) ACCESS(READ)
SETROPTS CLASSACT(LOGSTRM)
SETROPTS RACLIST(LOGSTRM) REFRESH

Setting up security for IBM Health Checker for SDSF support
If your installation uses SDSF, set up customization and security for SDSF support
for IBM Health Checker for z/OS using Protecting checks in z/OS SDSF Operation
and Customization.

Chapter 2. Setting up IBM Health Checker for z/OS 19

Create multilevel security definitions
If your system is a multilevel system environment and you are using multilevel
security labels to control access to resources, you must assign SECLABELs to the
IBM Health Checker for z/OS superuser User ID (hcsuperid), to each profile
protecting a check, and to the IBM Health Checker for z/OS log stream RACF
profile. For complete information on multilevel security, see z/OS Planning for
Multilevel Security and the Common Criteria and z/OS Security Server RACF Security
Administrator's Guide.

Do the following:
v Assign a multilevel security label to the IBM Health Checker for z/OS superuser

User ID, hcsuperid, which you defined in“Setting up security for the IBM Health
Checker for z/OS started task” on page 15. Use the following to decide on a
SECLABEL setting for the log stream:
– If all your checks are assigned a SECLABEL of SYSLOW, assign a SECLABEL

of SYSLOW to the IBM Health Checker for z/OS superuser User ID, hcsuperid.
Assigning a SECLABEL of SYSLOW to the hcsuperid means that any data
object that the check touches must have a SECLABEL that would pass the
mandatory access check for the type of operation that is being performed.

– If all the checks are above SYSLOW, you must assign a SECLABEL that will
dominate all the check SECLABELs to the hcsuperid.

– You can also assign a SECLABEL of SYSHIGH to the hcsuperid, which will
dominate all the check SECLABELs.

The following example enables the SECLABEL class and assigns a multilevel
security label of SYSLOW:
SETROPTS CLASSACT(SECLABEL) RACLIST(SECLABEL)
ALTUSER hcsuperid SECLABEL(SYSLOW)

v Assign a SECLABEL to each profile that protects a check. See Chapter 13, “IBM
Health Checker for z/OS checks,” on page 389 for the SECLABEL recommended
for each check. You'll need to define access to one of the following set of
resources:

v HZS.sysname.check_owner.QUERY
HZS.sysname.check_owner.MESSAGES
or

v HZS.sysname.check_owner.check_name.QUERY
HZS.sysname.check_owner.check_name.MESSAGES

For example, you might define the following:
RALTER XFACILIT HZS.SYS1.IBMRACF.RACF_GRS_RNL.QUERY UACC(NONE) SECLABEL(SYSLOW)
RALTER XFACILIT HZS.SYS1.IBMRACF.RACF_GRS_RNL.MESSAGES UACC(NONE) SECLABEL(SYSLOW)

v Assign a SECLABEL to the IBM Health Checker for z/OS log stream RACF
profile. Use the following to decide on a SECLABEL setting for the log stream:
– If all your checks writing to the log stream are SYSLOW, assign a SECLABEL

of SYSLOW to the log stream RACF profile.
– If all the checks are above SYSLOW, you must assign a SECLABEL that will

dominate all the check SECLABELs to the log stream RACF profile.
– You can also assign a SECLABEL of SYSHIGH to the log stream RACF

profile, a SECLABEL which will dominate all the check SECLABELs.

For example, you might define the following:
RALTER FACILITY HZS.HEALTH.CHECKER.HISTORY UACC(NONE) SECLABEL(SYSLOW)

20 IBM Health Checker for z/OS User's Guide

Create HZSPRMxx parmlib members
You do not have to set up an HZSPRMxx parmlib member to get IBM Health
Checker up and running. And at first, you might want to run IBM Health Checker
for z/OS without modifying the HZSPRMxx member to see what check output
you get on your installation. Later, as you evaluate your check output, you can use
it to make permanent updates in policy statements.

The HZSPRMxx parmlib member lets you make permanent updates in policy
statements to check values and parameters or to keep a check from running
(deactivating the check). Your HZSPRMxx parmlib member should include only:
v Policy statements, to make changes that are applied to checks that are added or

refreshed.
v The LOGGER parameter, if you want to use a log stream:

LOGGER(ON) LOGSTREAMNAME(logstreamname)

v An HZSPDATA parameter identifying the HZSPDATA data set used to save data
required as part of their processing between restarts of the system or IBM Health
Checker for z/OS.

Including other non-policy statements in your HZSPRMxx member is ineffective,
because the system processes the parmlib member specified in the hzsproc
procedure or IEASYSxx parmlib member before any checks are added or begin
running.

You can use sample parmlib member HZSPRM00 to create your own HZSPRMxx
parmlib member. To create the policy statements for your HZSPRMxx parmlib
member, you can also use input from:
v The Parameters accepted portion of each check description in Chapter 13, “IBM

Health Checker for z/OS checks,” on page 389.
v “Making persistent changes to checks” on page 52

Then, specify the HZSPRMxx parmlib member or members you want the system
to use on the HZS parameter of IEASYSxx, as described in “Tell the system which
HZSPRMxx members you want to use.”

Tell the system which HZSPRMxx members you want to use
Once you have created one or more HZSPRMxx members, IBM recommends that
you define them for use by IBM Health Checker for z/OS when it starts
automatically at IPL time by doing the following:
1. Specify the desired HZSPRMxx suffixes on the HZS system parameter in the

IEASYSxx parmlib member as follows:
HZS={xx|(xx,...,zz)}

2. In your hzsproc procedure, default to or define HZSPRM=PREV to specify that IBM
Health Checker for z/OS use the same HZSPRMxx parmlib members as it did
for the previous instance of IBM Health Checker for z/OS:
//HZSPROC PROC HZSPRM=’PREV’
//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,
// PARM=’SET PARMLIB=&HZSPRM’
//*HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD
// PEND
// EXEC HZSPROC

IBM recommends specifying ’HZSPRM=PREV’ to make occasional manual restarts
(after applying service, for example) easy and consistent.

Chapter 2. Setting up IBM Health Checker for z/OS 21

Having explained the recommendation, we show the full list of possible HZSPRM
parameter values for your hzsproc procedure below:

HZSPRM='PREV'
Specifies that your hzsproc procedure use the HZSPRMxx suffixes, if any, used
by the previous instance of IBM Health Checker for z/OS within the current
IPL. HZSPRM='PREV' is used as the default in the standard HZSPROC
procedure.

HZSPRM='PREV'behaves like HZPRM='SYSPARM'when the system encounters
it at initial IPL time (the first use of the hzsproc), because there is no previous
instance of IBM Health Checker for z/OS to use at that time.

HZSPRM='SYSPARM'
Specifies that your hzsproc procedure use the HZSPRMxx suffixes specified on
the HZS system parameter in IEASYSxx.

HZSPRM='NONE'
Specifies that the hzsproc use no HZSPRMxx parmlib members

HZSPRM={'xx|(xx,...,zz)'}
Specify the specific suffixes for the HZSPRMxx parmlib member or members
that you wish the hzsproc procedure to use.

Note: The HZSPRMxx suffixes you specify, explicitly or implicitly, in the HZSPRM
parameter of your hzsproc procedure override any suffixes defined in the HZS
system parameter in IEASYSxx.

If you should happen to leave a manual START HZSPROC,HZSPRM= command (in
COMMNDxx, for example), the HZSPRMxx parmlib members activated by the
IBM Health Checker for z/OS automatic startup will still win out. Any subsequent
manual START HZSPROC is ignored and rejected, as long as the current Health
Instance has not been stopped.

How do the HZSPRMxx settings specified in HZSPROC and
IEASYSxx interact?
As mentioned above, we recommend that you specify the HZSPRMxx suffixes you
want to use on the HZS system parameter of IEASYSxx and then specify or default
to HZSPRM=PREV in your hzsproc procedure. However, for those of you who like
either to live creatively or to see the fine details of how this all works, we include
the following table of how the HZSPRMxx suffixes specified on the HZS system
parameter of IEASYSxx and in your hzsproc procedure interact when IBM Health
Checker for z/OS starts automatically or is manually restarted:

Table 2. Interaction of HZSPRMxx settings specified in HZSPROC and IEASYSxx

IEASYSxx setting HZSPROC procedure setting HZSPRMxx parmlib members used

HZS - no suffixes specified HZSPRM=PREV No HZSPRMxx parmlib members
used

HZSPRM=SYSPARM No HZSPRMxx parmlib members
used

HZSPRM=NONE No HZSPRMxx parmlib members
used

HZSPRM={xx|(xx,...,zz)} HZSPRMxx parmlib members
specified in HZSPROC used

22 IBM Health Checker for z/OS User's Guide

Table 2. Interaction of HZSPRMxx settings specified in HZSPROC and IEASYSxx (continued)

IEASYSxx setting HZSPROC procedure setting HZSPRMxx parmlib members used

HZS={xx|(xx,...,zz)} HZSPRM=PREV Either the HZSPRMxx parmlib
members used in the last instance of
IBM Health Checker for z/OS, or the
ones specified on system parameter
HZS=, when IBM Health Checker for
z/OS starts at IPL time.

HZSPRM=SYSPARM HZSPRMxx parmlib members
specified in IEASYSxx used

HZSPRM=NONE No HZSPRMxx parmlib members
used

HZSPRM={xx|(xx,...,zz)} HZSPRMxx parmlib members
specified in HZSPROC used

See also “Sharing critical IBM Health Checker for z/OS information between
systems at different levels” on page 8.

Assign IBM Health Checker for z/OS to a WLM service class
Assign IBM Health Checker for z/OS to a WLM service class and make sure that it
has a priority no lower than the one your installation uses for performance
monitoring products like RMF. See the section on defining service classes and
performance goals in z/OS MVS Planning: Workload Management.

Obtain checks for IBM Health Checker for z/OS
For information on how to find such PTFs and for a list of current checks at the
time this document was published see Chapter 13, “IBM Health Checker for z/OS
checks,” on page 389.

Chapter 2. Setting up IBM Health Checker for z/OS 23

24 IBM Health Checker for z/OS User's Guide

Chapter 3. Working with check output

Once you've set up IBM Health Checker for z/OS, started it, and obtained some
checks, you'll want to look at your check output. Output from checks is in the
form of messages issued by check routines, as either:
v Exception messages issued when a check detects a potential problem or a

deviation from a suggested setting. See “Understanding exception messages” on
page 28.

v Information messages issued to the message buffer to indicate either a clean
check run (no exceptions found) or that a check is inappropriate in the current
environment and will not run.

v Reports issued to the message buffer, often as supplementary information for an
exception message.

You can view complete check output messages in the message buffer using the
following:
v The HZSPRINT utility to write the current message buffer for the target checks

to the specified SYSOUT data set. See “Optionally set up the HZSPRINT utility”
on page 12 and “Using the HZSPRINT utility” on page 37.

v SDSF - see “Using SDSF to manage checks” on page 45
v A log stream - see “Optionally define log streams to keep a record of the check

output” on page 12

A check can issue a number of different messages, usually issuing at least one:
v When a check runs without finding an exception, it should issue an

informational message with that information to the message buffer. The
following example shows a clean check run case, viewed in the message buffer:
CHECK(IBMRSM,RSM_MAXCADS)
START TIME: 06/07/2005 10:55:38.139127
CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM
CHECK PARM: THRESHOLD(80%)

IARH108I The current number of in use CADS entries is 17, which
represents 34% of the total allowed CADS entries of 50. The highest
usage of CADS entries during this IPL is 34%, or 17 total entries. This
is below the current IBMRSM supplied threshold of 80%.

END TIME: 06/07/2005 10:55:38.139653 STATUS: SUCCESSFUL

Note that the status of the check - STATUS: SUCCESSFUL.
v When a check is not appropriate for the current environment, it should issue

an informational message with that information to the message buffer:
CHECK(IBMCNZ,CNZ_SYSCONS_MSCOPE)
START TIME: 02/07/2008 11:27:08.812840
CHECK DATE: 20040816 CHECK SEVERITY: MEDIUM

HZS1003E CHECK(IBMCNZ,CNZ_SYSCONS_MSCOPE):
THE CHECK IS NOT APPLICABLE IN THE CURRENT SYSTEM ENVIRONMENT.

CNZHF1004I The system console is not present. The check is not
applicable in this environment.

END TIME: 02/07/2008 11:27:08.813496 STATUS: ENV N/A

© Copyright IBM Corp. 2006, 2015 25

v When a check finds an exception to a suggested value, or another potential
problem, the check issues an exception message. The exception message might
be accompanied by supporting information in report format. For an exception
message, the system issues a WTO with just the message text by default. The
system issues both the message text and details buffer. The example below
shows an exception message in the message buffer:
CHECK(IBMCNZ,CNZ_CONSOLE_MSCOPE_AND_ROUTCODE)
START TIME: 01/31/2008 08:57:01.163404
CHECK DATE: 20040816 CHECK SEVERITY: LOW

* Low Severity Exception *

CNZHF0003I One or more consoles are configured with a combination of
message scope and routing code values that are not reasonable.

Explanation: One or more consoles have been configured to have a
multi-system message scope and either all routing codes or all
routing codes except routing code 11. Note: For MCS and SMCS
consoles, only the consoles which are defined on this system are
checked. All EMCS consoles are checked.

System Action: The system continues processing.

Operator Response: Report this problem to the system programmer.

System Programmer Response: To view the attributes of all consoles,
issue the following commands:

DISPLAY CONSOLES,L,FULL
DISPLAY EMCS,FULL,STATUS=L

Update the MSCOPE or ROUTCODE parameters of MCS and SMCS consoles on
the CONSOLE statement in the CONSOLxx parmlib member before the next
IPL. For EMCS consoles (or to have the updates to MCS/SMCS consoles
in effect immediately), you may update the message scope and routing
code parameters by issuing the VARY CN system command with either
the MSCOPE, DMSCOPE, ROUT or DROUT parameters. Note: The VARY CN
system command can only be used to set the attributes of an active
console. If an EMCS console is not active, find out which product
activated it and contact the product owner. Effective with z/OS
V1R7, you can use the EMCS console removal service (IEARELEC in
SYS1.SAMPLIB) to remove any EMCS console definition that is no
longer needed.

Problem Determination: n/a

Source: Consoles (SC1CK)

Reference Documentation:
z/OS MVS Initialization and Tuning Reference
z/OS MVS System Commands
z/OS MVS Planning: Operations

Automation: n/a

Check Reason: Reduces the number of messages sent to a console in the
sysplex

END TIME: 01/31/2008 08:57:01.197807 STATUS: EXCEPTION-LOW

In this section, we'll cover the following:
v “Hey! My system has been configured like this for years, and now I'm receiving

exceptions!” on page 27
v “Understanding system data issued with the check messages” on page 27
v “Understanding exception messages” on page 28

26 IBM Health Checker for z/OS User's Guide

v “Evaluating check output and resolving exceptions” on page 30
v “Approaches to automation with IBM Health Checker for z/OS” on page 32
v “Understanding check state and status” on page 34
v “Using the HZSPRINT utility” on page 37
v “Finding check message documentation with LookAt” on page 41

Hey! My system has been configured like this for years, and now I'm
receiving exceptions!

Some customers may be startled by the exception messages that IBM Health
Checker for z/OS issues on systems that have been running just fine the way they
were. But it's really worth your time and attention to look over the exceptions and
evaluate your system, because IBM Health Checker for z/OS reflects suggestions to
improve your system's availability and avoid problems. The checks reflect
generally accepted recommendations, but you will need to evaluate whether each
suggestion is appropriate for your system.

One important thing to note is that an exception does not imply that there is a
problem to report to IBM. Exceptions are a means for you to evaluate potential
availability impacts and take action. See “Evaluating check output and resolving
exceptions” on page 30 for how to resolve check exceptions.

Understanding system data issued with the check messages
In the examples of check messages in other topics, you probably noticed data
above and below the check messages - IBM Health Checker for z/OS issues this
system data to accompany each check message. Fields such as START TIME:, CHECK
DATE:, and END TIME: are not part of the message input specified by the check
developer. The system issues this data automatically, as appropriate.

The example below shows a subset of some system data you might see with a
check message. The system data is highlighted in bold:
CHECK(IBMRSM,RSM_MAXCADS)
SYSPLEX: PLEX1 SYSTEM: SY39
START TIME: 05/15/2013 13:23:58.867122
CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM
CHECK PARM: THRESHOLD(80%)

IARH108I The current number of in use CADS entries is 17, which
represents 34% of the total allowed CADS entries of 50. The highest
usage of CADS entries during this IPL is 34%, or 17 total entries. This
is below the current IBMRSM supplied threshold of 80%.

END TIME: 05/15/2013 13:23:58.867225 STATUS: SUCCESSFUL

Most of the system data fields you might see, such as START TIME: and END TIME:
are self-explanatory. However, the list below includes fields that might need a little
explanation:

CHECK(check_owner,check_name)
The CHECK field displays the owning component or product for the check, as
well as the check name. In this example, IBMRSM or RSM is the owner of the
check that issued this message. The SYSPLEX and SYSTEM fields further
qualify the check name and indicate where exactly this check ran. This can be
helpful for example when viewing the message buffer via the SDSF CK panel
while it shows checks from multiple systems in one panel.

Chapter 3. Working with check output 27

CHECK SEVERITY: severity
This field displays the severity defined for the check that issued the message.

CHECK PARM: parameter
This field displays the parameters that are passed to the check routine when it
runs.

STATUS: status
The STATUS field shows the status of the check when it completed running.
There are many status values possible for a check, as shown in display output
or the message buffer. See the status field in message HZS0200I in z/OS MVS
System Messages, Vol 6 (GOS-IEA) for a list of all the possible values for the
check status.

ABENDED. TIME: time DIAG: sdwaabcc_sdwacrc
In the event that a check abends, the system will issue this line along with the
check message. In this line of data:

TIME: time
The time the check abended.

DIAG: sdwaabcc_sdwacrc
sdwaabcc is the abend code, and sdwacrc is the abend reason code. sdwacrc
will display zeros if there is no abend reason code for the abend. See z/OS
MVS System Codes for information on abends.

Understanding exception messages
Exception messages are the most important check output, because they identify
potential problems and suggest a solution.
v The complete explanation and details for exception messages are issued to the

message buffer, where you can view it with either SDSF, HZSPRINT, or in the
log stream.

v By default, the exception message text is also issued as a WTO, prefaced by an
HZS WTO message. The HZS message issued reflects the “SEVERITY={HIGH |
MEDIUM | LOW | NONE}” on page 80 and
“WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}”
on page 81 parameters defined for the check. (You can update these parameters

to control the severity and descriptor code for the check.)

The following examples show how exception messages and exception message
WTOs will look on a system:

Exception message example 1 - An exception message as it appears in the
message buffer: The following example shows an exception message in the
message buffer. Note that IBM Health Checker for z/OS issues information both
before and after the exception message with data including the check owner and
name, the severity of the check, and the check parameter in use.
CHECK(IBMGRS,GRS_MODE)
START TIME: 06/12/2007 18:44:00.421390
CHECK DATE: 20050105 CHECK SEVERITY: LOW
CHECK PARM: STAR

ISGH0301E Global Resource Serialization is in RING mode. Global Resource
Serialization STAR mode was expected.

Explanation: The check found an unexpected mode when global resource serialization
star mode was expected. Use star mode for best performance in a parallel sysplex.

System Action: The system might perform significantly worse than if it was in star mode.

Operator Response: Contact your system programmer.

28 IBM Health Checker for z/OS User's Guide

System Programmer Response: See z/OS MVS Planning: Global Resource Serialization for
more information on converting to global resource serialization star mode.

Problem Determination: N/A

Source: Global resource serialization

Reference Documentation: z/OS MVS Planning: Global Resource Serialization

Automation: N/A

Detecting Module: ISGHCGRS, ISGHCMSG

END TIME: 06/12/2007 18:44:02.003761 STATUS: EXCEPTION-LOW

CHECK(IBMXCF,XCF_SFM_ACTIVE)
START TIME: 06/07/2005 10:40:38.132396
CHECK DATE: 20050130 CHECK SEVERITY: MEDIUM
CHECK PARM: ACTIVE

* Medium Severity Exception *

IXCH0514E The state of Sysplex Failure Management is NOT consistent
with the IBMXCF recommendation.

Explanation: Sysplex Failure Management (SFM) is INACTIVE on this
system. The IBMXCF specification requires that SFM be ACTIVE.

System Action: The system continues processing normally.

Operator Response: Report the problem to the system programmer.

System Programmer Response: Define an SFM policy with the
administrative data utility IXCMIAPU.

Start an SFM policy by issuing ’SETXCF
START,POLICY,TYPE=SFM,POLNAME=xx’ at the operating system console.

Stop an active SFM policy by issuing ’SETXCF STOP,POLICY,TYPE=SFM’
at the operating system console.

IBM suggests that SFM should be ACTIVE.

Problem Determination: N/A

Source: Parallel Sysplex (XCF)

Reference Documentation:
z/OS MVS Setting Up a Sysplex

Automation: N/A
Check Reason: An SFM policy provides better failure management.

END TIME: 06/07/2005 10:40:39.091924 STATUS: EXCEPTION-MED

Exception message example 2 - An exception WTO message on the system
console: The example below shows how the same check exception message WTO
looks on the system console. Note that IBM Health Checker for z/OS issues an
HZS message, HZS0002E, and then the check exception WTO appears as part of
that message:
B7VBID47 HZS0002E CHECK(IBMXCF,XCF_SFM_ACTIVE):
IXCH0514E The state of Sysplex Failure Management is NOT consistent
with the IBMXCF recommendation.

Exception message example 3 - An exception WTO message in the system log:
The example below shows the same check exception message WTO again, this time

Chapter 3. Working with check output 29

on the system console. Note that IBM Health Checker for z/OS issues an HZS
message, HZS0002E, and then the check exception WTO appears as part of that
message:
031 01000000 HZS0002E CHECK(IBMXCF,XCF_SFM_ACTIVE): 882
882 01000000 IXCH0514E The state of Sysplex Failure Management is NOT consistent
882 01000000 with the IBMXCF recommendation.

Evaluating check output and resolving exceptions
The best way to use IBM Health Checker for z/OS is to run it continuously on
your system. But you must also evaluate check output, and resolve check
exceptions. The check exceptions will give you both the reason for the exception
and the steps to take to correct it. In the course of evaluating exceptions, you may
need to review the exception with a number of different people in your installation
with the expertise in the appropriate field. Resolving check exceptions will be an
installation-specific process, and you'll need to develop efficient ways to respond.
See also “Approaches to automation with IBM Health Checker for z/OS” on page
32.

Once you have evaluated a check exception, you can resolve it in one of the
following ways:
v Update your system as suggested by the check exception message, which is the

recommended approach. Then you will no longer receive the exception message
when the check runs again. You can verify that you have resolved the exception
by running the check again (R action character in SDSF or F
hzsproc,RUN,CHECK=(checkowner, checkname) and then looking at the output in
the message buffer. The check exception message will be gone from the output if
you have resolved the exception.

v Evaluate the parameters specifying the value or values that the check is looking
for. If a parameter is not appropriate for your system, update it so that you will
no longer receive an inappropriate exception message when the check runs. You
will also want to evaluate and possibly update the severity of the check to make
sure it is appropriate for your installation. See Chapter 4, “Managing checks,” on
page 43.

v Ensure that the check will not run and produce exceptions by either:
– Putting the check into the Inactive state
– Deleting the check

See “Understanding check state and status” on page 34

It is very important that you resolve exception messages, so that when checks run
at their specified intervals, they will report only exceptions that require attention.
Otherwise, your IBM Health Checker for z/OS output may contain a mixture of
messages that you regularly ignore and those reflecting a new potential problem.
This might make it more likely that you could miss a key exception message.

Messages for individual checks will be documented in the component or product
owning the message. For information about checks, including the name of the
document where a check's messages are documented, see Chapter 13, “IBM Health
Checker for z/OS checks,” on page 389.

30 IBM Health Checker for z/OS User's Guide

Customizing check exceptions with dynamically varying severity
Some checks provide the capability of issuing check exception messages with a
dynamically varying severity level, which gives you more control over how
exception messages are issued and handled. For example, you might use the
dynamic severity function for checks that inspect a system setting value and
compare it against a threshold. As the value approaches the high threshold, the
check can vary the severity of the exception, depending on how close to the
threshold the value is. Some checks that support dynamic severity are:
v CHECK(IBMASM,ASM_PLPA_COMMON_SIZE)
v CHECK(IBMASM,ASM_LOCAL_SLOT_USAGE)
v CHECK(IBMASM,ASM_PLPA_COMMON_USAGE)
v CHECK(IBMVSM,VSM_CSA_THRESHOLD)
v CHECK(IBMVSM,VSM_SQA_THRESHOLD)

Example of using dynamic severity for a check: In this example, check
VSM_CSA_THRESHOLD looks at the systems's level of common service area
(CSA) storage level. If the ultimate emergency high level threshold for CSA usage
is 95%, you might establish criteria for low, medium and high severity check
exceptions based on CSA usage as follows:
v CSA usage at 60% is LOW severity
v CSA usage at 80% is MED severity
v CSA usage at 95% is HI severity

The advantage of staging the severity like this is that you get a little more
flexibility and react-time than simply having one threshold established at CSA
usage of 95%.

How does the check know what severity exception to issue when using dynamic
severity? The check knows what severity exception to issue because you'll tell it
ahead of time, using the check parameters. For example, using our example above,
we might define the following check parameters for the VSM_CSA_THRESHOLD
check:
v CSA_LOW(60%) - to send a low severity exception message for a CSA usage

between 60% and 79%
v CSA_MED(80%) - to send a medium severity exception message for a CSA usage

between 80% to 94%
v CSA_HIGH(95%) - to send a high severity exception message for CSA usage of

95% and above.

The check looks at the CSA usage on the system, and then uses the check
parameters defined to determine what check severity to use when issuing an
exception message.

It can be confusing to figure out whether a larger/higher parameter value
corresponds to a higher severity or not. To make things even more confusing,
checks such as the VSM_CSA_THRESHOLD check have it both ways! If you
specify the parameter as a percent, then a bigger percentage corresponds to a
higher severity. If you specify the parameter as a number, this applies to the
amount of storage remaining and a lower number corresponds to a higher
percentage. Read the parameter descriptions carefully.

For information about writing a check that exploits dynamic severity, see “Writing
a check with dynamic severity levels” on page 124.

Chapter 3. Working with check output 31

Approaches to automation with IBM Health Checker for z/OS
Why automate with IBM Health Checker for z/OS? Because even with all our
planning and coding efforts, IBM Health Checker for z/OS is really only as good
as the quality and speed of the installation's response to the check exceptions it
finds. So what really matters is how quickly exception information gets routed to
the right person to resolve the exception. In most cases, the person who manages
IBM Health Checker for z/OS and sees check output first hand is not going to be
the right person to resolve all the exceptions that pop up. And since checks are
spread across components and products, you'll be routing the information to many
different people (no one person can handle the whole variety of check exceptions
effectively). In other words, you'll need an effective exception resolution process to
go with IBM Health Checker for z/OS, and automation can be an integral part of
that process.

There are numerous ways you can automate IBM Health Checker for z/OS and its
exception messages, depending on the products installed in your shop and a
million other variables. Here we'll describe our initial, simple approach to
automating responses to check messages on our test systems. See also “More
automation ideas.”

Our approach to automation on a test sysplex:
1. Automate HZSPRINT to keep a record of check messages on each system:

We use System Automation running under NetView® to automate HZSPRINT.
We code the HZSPRINT JCL so that it automatically prints the messages from
checks that found an exception. You can code the JCL for HZSPRINT so that it
prints the message buffer to a sequential data set or simply to SYSOUT. Our
JCL prints the message buffer data to a sequential data set for any check that
finds an exception, as shown in the following example:
//HZSPRINT JOB ’ACCOUNTING INFORMATION’,’HZSPRINT JOB’,
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//HZSPRINT EXEC PGM=HZSPRNT,TIME=1440,REGION=0M,
// PARM=(’CHECK(*,*)’,
// ’EXCEPTIONS’)
//SYSOUT DD DSN=HCHECKER.PET.CHKEXCPT.SEQ.REPORT,DISP=MOD

2. Automate HZSPRINT on each system to send e-mail messages: You can add a
step to the HZSPRINT JCL for each system that uses the Simple Mail Transfer
Protocol (SMTP) FTP command to send e-mail messages. To do this, you must
have SMTP set up - see z/OS V2R2.0 Communications Server: IP User's Guide and
Commands. We're using SMTP to send an e-mail alert whenever a check finds
an exception. To do this, we key off of the HZS exception messages - see
“Using HZS exception messages for automation” on page 34. This is only one
simple approach to automating responses to check exceptions - see also “More
automation ideas.”

More automation ideas
There are many ways to use IBM and vendor products to automate responses to
check output, including sending e-mail messages or setting off beepers. You've
seen one approach we're using on a test sysplex. But there are a lot of ways to
approach automation to help make sure you get the exception information to the
people who can quickly resolve exceptions. Here are some automation ideas to
kick around:
v Key automation off check severity: You can key your automation off check

severity, tailoring the response to different severities. Because checks are
classified as HIGH, MEDIUM, or LOW severity, you can tailor check response

32 IBM Health Checker for z/OS User's Guide

based on the severity. For example, for HIGH severity check exceptions, you
might want to set off a beeper call, while for LOW and MEDIUM severity check
exceptions an email message would suffice.
Tailoring exception response depending on severity also means that each
installation will need to evaluate the severity setting of each check, to see if that
setting is appropriate for their environment. You can update the severity for a
check using either the MODIFY command, HZSPRMxx parmlib member, or
SDSF.

v Route exception alerts to either a generic on-call address or a product expert:
When you set up your automation to make beeper calls or send emails, you can
route the alerts either to a generic on-call address or to the expert for the specific
product or component getting the check exception.
– Routing to a generic on-call address makes automation setup faster, but could

perhaps slow down response, since the person on call might have to re-route
the information to an expert. To make responding easier, you can supply the
person on call with a list of product / component experts. To make this
approach work even better, you could create a run book for IBM Health
Checker for z/OS, with the procedures for responding to check exceptions.

– Routing alerts to specific product experts might make for faster responses to
check exceptions, but could make the automaton set up more time
consuming.

Each installation will have to carefully calculate the trade-offs in this equation to
make a decision about routing exception alerts.

v Automate by message using MPF exits: You can use an MPF installation exit to
key off message identifiers and do message-specific processing. For example,
using MPF exits you can:
– Modify the presentation of messages, such as color and intensity.
– Modify message routing, such as updating routing codes, changing the

console that messages are routed to, or redirecting message traffic.
– Suppress or automate message responses, such as filtering messages,

performing error thresholding, or deleting messages.

See IEAVMXIT -- Installation-Specified MPF Exits in z/OS MVS Installation Exits.
v Automate on a check basis using routing codes: You can update the routing

codes assigned for all the messages for a particular check to to modify message
routing. To update the routing codes, specify the ROUTCODE parameter on
either the MODIFY hzsproc command or in the HZSPRMxx parmlib member. See
Routing Codes in z/OS MVS System Messages, Vol 1 (ABA-AOM).

v Put check output in a central place for responders: Whether they're routing
check output to the lucky on-call person or a product / component expert,
installations have to get the right information to the responder in order to take
the appropriate action. Emailing the check output is problematic because the
volume of check output can be very high. Instead, we're using HZSPRINT to
write the data to a data set. That way we'll be able to email the name of the data
set to the responder.

v Keep it simple: The goal of whatever automation method you pick is to get the
right information to the right person so that the exception can be corrected as
quickly as possible. To that end, keeping automation simple will make it easier
to set up, maintain, and respond to exceptions quickly.

Chapter 3. Working with check output 33

Using HZS exception messages for automation
A check exception message WTO consists of an HZS header message, followed by
the check-specific exception message text, as shown in the system console example
below:
HZS0001I CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)
BPXH033E MAXSOCKETS value for AF_INET is too low.

The HZS header messages issued with exceptions are:
v HZS0001I: Exception information message: low severity or

WTOTYPE(INFORMATIONAL). Indicates that the check found a problem that
will not impact the system immediately, but that should be investigated.

v HZS0002E: Exception eventual action message: medium severity or
WTOTYPE(EVENTUAL). Indicates that the check found a medium severity
problem in an installation.

v HZS0003E: Exception critical eventual action message: high severity or
WTOTYPE(CRITICAL). Indicates that the check routine found a high-severity
problem in an installation.

v HZS0004I: Exception hardcopy message: hardcopy only informational severity
or WTOTYPE(HARDCOPY).

See z/OS MVS System Messages, Vol 6 (GOS-IEA) for a complete list of IBM Health
Checker for z/OS HZS messages.

To find the documentation for the check-specific messages (which are on the
second line of the WTO), such as BPXH033E shown above, look in either:
v Using LookAt - see “Finding check message documentation with LookAt” on

page 41.
v The check owner product or element documentation. For a list of documents

where you can find the messages documented for each check, see Chapter 13,
“IBM Health Checker for z/OS checks,” on page 389.

Understanding check state and status
Part of managing checks is understanding the check state and status shown for
checks in the check messages in the message buffer, SDSF or the
MODIFYhzsproc,DISPLAY output:
v State: Indicates whether a check will run at the next specified interval.
v Status: Describes the output of the check when it last ran.

For example:
v In the message buffer, system information displayed with the check message

includes check status:
CHECK(IBMCNZ,CNZ_CONSOLE_MSCOPE_AND_ROUTCODE)
START TIME: 06/08/2005 09:49:17.410704
CHECK DATE: 20040816 CHECK SEVERITY: LOW

* Low Severity Exception *

CNZHF0003I One or more consoles are configured with a combination of
message scope and routing code values that are not reasonable.

.

.

.
Check Reason: Reduces the number of messages sent to a console in

the sysplex
END TIME: 06/08/2005 09:49:17.451937 STATUS: EXCEPTION-LOW

34 IBM Health Checker for z/OS User's Guide

v In SDSF, information displayed about checks includes state and status:
NAME CheckOwner State Status
CNZ_AMRF_EVENTUAL_ACTION_MSGS IBMCNZ ACTIVE(ENABLED) SUCCESSFUL
CNZ_CONSOLE_MSCOPE_AND_ROUTCODE IBMCNZ INACTIVE(ENABLED) INACTIVE
CNZ_SYSCONS_ROUTCODE IBMCNZ ACTIVE(ENABLED) EXCEPTION-LOW
GRS_CONVERT_RESERVES IBMGRS ACTIVE(DISABLED) GLOBAL

v If you enter the f hzsproc,display,checks command to display check
information, you'll receive output like the following. (Note that the check states
are explained at the bottom of the output.)
HZS0200I 10.56.19 CHECK SUMMARY 134
CHECK OWNER CHECK NAME STATE STATUS
IBMVSM VSM_CSA_CHANGE AE SUCCESSFUL
IBMRRS RRS_RSTOFFLOADSIZE AE SUCCESSFUL
IBMRRS RRS_DUROFFLOADSIZE AE SUCCESSFUL
IBMRRS RRS_MUROFFLOADSIZE AE SUCCESSFUL
IBMRRS RRS_RMDOFFLOADSIZE AE SUCCESSFUL
IBMRRS RRS_RMDATALOGDUPLEXMODE AE SUCCESSFUL
IBMCNZ CNZ_SYSCONS_PD_MODE AE SUCCESSFUL
IBMCNZ CNZ_EMCS_INACTIVE_CONSOLES ADG SYS=J80
IBMCNZ CNZ_SYSCONS_ROUTCODE AE EXCEPTION-LOW
IBMCNZ CNZ_SYSCONS_MSCOPE AE SUCCESSFUL
IBMCNZ CNZ_EMCS_HARDCOPY_MSCOPE AE EXCEPTION-MED

.

.

.
A - ACTIVE I - INACTIVE
E - ENABLED D - DISABLED
G - GLOBAL CHECK + - ADDITIONAL WARNING MESSAGES ISSUED

Both of these examples show that the state and status for the highlighted check,
CNZ_SYSCONS_ROUTECODE, are as follows:
v The check state is AE or ACTIVE(ENABLED), which means that it will run at

its next scheduled interval.
v The check status is EXCEPTION-LOW, indicating that the check found a low

severity exception.

Check states: Each check state has two parts:
1. “User controlled states”
2. “IBM Health Checker for z/OS controlled states” on page 36

Check status: For check status, see “Check status” on page 37.

User controlled states
Table 3. User controlled states

Check state Description

Active or A An active check is one that has been added to IBM Health Checker for
z/OS. An active check will run at whatever interval was specified for the
check in the HZSADDCHECK exit routine or HZSPRMxx parmlib member,
unless the system disables it. The life of an active check lasts until it gets
refreshed or deleted.

A check becomes active when:

v It has been added to IBM Health Checker for z/OS in the active state.

v You specify ACTIVATE or UPDATE ACTIVE on the HZSPRMxx parmlib
member or the MODIFY command (F hzsproc).

Chapter 3. Working with check output 35

Table 3. User controlled states (continued)

Check state Description

Inactive or I An inactive check is not eligible to run. The check becomes inactive when
either:

v It has been added to IBM Health Checker for z/OS in the inactive state.

v You specify DEACTIVATE or UPDATE INACTIVE on the HZSPRMxx
parmlib member for the MODIFY command (F hzsproc).

IBM Health Checker for z/OS controlled states
Table 4. States controlled by IBM Health Checker for z/OS

Check state Description

Enabled or E All checks are added to the system as enabled, and checks stay enabled
unless IBM Health Checker for z/OS. An enabled check can be either active
or inactive. An check will run if it is both enabled and active, or eligible.

Disabled or D A disabled check is one that IBM Health Checker for z/OS has disabled
because of check routine or environmental problems such as:

v The check routine encounters multiple errors, such as 3 consecutive
abends.

v The Init function processing does not complete successfully.

v The installation environment is not appropriate for the check. For
example, the check might be looking for sysplex values when the
installation is not a sysplex environment or the check may require UNIX
System Services at a time when UNIX System Services is down.

v The parameters passed to the check are not valid.

v The check is a global one running on a different system.

A disabled check is not eligible to run.

You can get IBM Health Checker for z/OS to enable your check by fixing
the error causing the check to be disabled and then refreshing the check. If
you update the parameters passed to a check, you do not need to refresh
the check, because the system will re-enable the check automatically in
order to let it see if the parameters are now correct.

Some conditions causing a disabled check may resolve themselves. For
example, if a check is disabled because it is a global check that is already
running on a system in the sysplex, it will show up as disabled on other
systems. Then, when it is no longer running on the original system, the
system will enable the check on another system in the sysplex. Or, if a check
requires UNIX System Services to run, but UNIX System Services is down,
that check will be disabled until UNIX System Services comes up again. At
that point, the system will enable the check.

Global or G A global check is one which runs on one system but reports on
sysplex-wide values and practices. A global check shows up as disabled for
all systems in the sysplex, except for the one where it is actually running.

ACTIVE(DISABLED) and INACTIVE(ENABLED) - understanding
check state combinations

Checks have a two part state, which can sometimes seem contradictory. Basically,
however, it all boils down to whether a check is eligible to run or not. If a check is
eligible, it is both active and enabled, and running at its established interval. An
ineligible check will not run because it was either:

36 IBM Health Checker for z/OS User's Guide

v Disabled by IBM Health Checker for z/OS because of errors or environmental
problems

v Deactivated by a user
v Both disabled and deactivated

Table 5. Check state combinations

Eligibility State

Eligible
states

v ACTIVE(ENABLED) or AE: Check is ready and able to run.

Ineligible
states

v ACTIVE(DISABLED) or AD: Check has been defined to IBM Health
Checker for z/OS and was running, but IBM Health Checker for z/OS
found errors and disabled the check (see “IBM Health Checker for z/OS
controlled states” on page 36). The check will not run.

v INACTIVE(ENABLED) or IE: A user has deactivated the check (see “User
controlled states” on page 35). From IBM Health Checker for z/OS's point
of view, this check is in good standing and can run whenever the user
re-activates it. However, the check will not run.

v INACTIVE(DISABLED) or ID: The system disabled the check because of
system or environment errors and a user deactivated it (see “IBM Health
Checker for z/OS controlled states” on page 36). The check will not run.

Check status
There are many status values possible for a check, as shown in display output or
the message buffer. See the status field in message HZS0200I in HZS messages in
z/OS MVS System Messages, Vol 6 (GOS-IEA)

Using the HZSPRINT utility
The HZSPRINT utility allows you to look at check output. HZSPRINT writes the
message buffer for the target checks to SYSOUT for one check, multiple checks, or
all checks.

The following information assumes that you have already set up security for
HZSPRINT - see “Setting up security for the HZSPRINT utility” on page 16.

The SYS1.SAMPLIB JCL for the HZSPRINT utility is as follows:
//HZSPRINT JOB
//*... */
//HZSPRINT EXEC PGM=HZSPRNT,TIME=1440,REGION=0M,PARMDD=SYSIN
//SYSIN DD *,DLM=’@@’
CHECK(*,*)
,EXCEPTIONS
@@
//SYSOUT DD SYSOUT=A,DCB=(LRECL=256)

HZSPRINT parameters can be passed:

v via the JCL PARM string which is limited to 100 characters, or
v via a JCL PARMDD, which is limited to 256 "effective" characters, for

HZSPRINT, at this time. Trailing blanks per line do not count though. Do not
include any other extra blanks, in particular at the beginning of any line.

Parameters should be separated from each other by a comma. The following
parameters are supported by HZSPRINT:

Chapter 3. Working with check output 37

CHECK(check_owner,check_name)
check_owner must be between 1-16 characters and check_name must be between
1-32 characters. To find the check owner and check name, use either the SDSF
CK option or use the following MODIFY command:
F hzsproc,DISPLAY,CHECKS

You can also use wildcard characters '*' and '?' in both the check owner and
check name fields to get output from multiple checks. For example, to see the
output of all the checks on the system, you could use the following:
// PARM=’CHECK(*,*)’

An asterisk (*) represents any string having a length of zero or more
characters. A question mark (?) represents a position which contains any single
character. The system converts any lowercase letters to uppercase.

CHECK(*,*) is the default setting for HZSPRINT. If you do not specify CHECK,
you will get CHECK(*,*) to see the output of all checks. Note that using
CHECK(*,*) will only work if you have access to all the checks. See “Setting up
security for the HZSPRINT utility” on page 16.

EXCEPTIONS
Optional parameter EXCEPTIONS lets you limit the output in SYSOUT to
messages from checks that wrote at least one check exception message. For
example, to see the output of all checks that found exceptions, use the
following:
// PARM=’CHECK(*,*),EXCEPTIONS’

Deleted checks will not be reported on.

LOGSTREAM(log_stream_name)
Optional parameter LOGSTREAM specifies that you want to print the specified
log stream, instead of querying the current Health Checker instance. The
log_stream_name has to start with HZS.

SYSNAME(system_name)
Optional parameter SYSNAME lets you limit the output in SYSOUT to
output from checks running on the specified system, sysname. You can
specify the SYSNAME parameter only with LOGSTREAM.

You can use wildcard characters '*' and '?' in the system_name field to
specify that you want check output from multiple systems.

The default for SYSNAME is SYSNAME(*), which will give you output for
specified checks from all the systems in the sysplex.

TIMERANGE(12-char-start,12-char-stop)
Optional parameter TIMERANGE lets you limit the data in SYSOUT to entries
in the specified time range. Data will only reported for check iterations with a
start time within the TIMERANGE. Specifying TIMERANGE will let
HZSPRINT look beyond the most current iteration of a check as far as data for
previous check iterations is available. While this is the default behavior for
when LOGSTREAM is specified, without TIMERANGE and without
LOGSTREAM, only the most current check iteration will be reported on for a
check. Specify the 12-char-start and 12-char-stop as YYYYMMDDHHMM. All
12 characters must be valid decimal digits and must represent a valid year,
month (01-12), day (01-31 depending on the month), hour (00-23), and minute
(00-59) specification.

38 IBM Health Checker for z/OS User's Guide

When TIMERANGE is specified with a LOGSTREAM, the time range applies
to entries in the logstream.

When TIMERANGE is specified without a LOGSTREAM, it applies to entries
available in the currently running instance of IBM Health Checker for z/OS.

If you want to allocate a data set for HZSPRINT output:
v The data set must be:

– Fixed length, blocked records. For example, RECFM=FBA or RECFM=FBM
– Logical record length of 256

v Add the name of the output data set allocated above to the HZSPRINT JCL. For
example:
//SYSOUT DD DISP=SHR,DSNAME=D10.HCHECKER.REPORT.FEB2505,DCB=(LRECL=256)

v Note that the first character of each line of HZSPRINT output is a carriage
control character.

Example of HZSPRINT output
The following shows a portion of the HZSPRINT output for a request that includes
output for all checks with exceptions:
**
* *
* HZSU001I IBM Health Checker for z/OS Check Messages *
* Filter: CHECK(*,*) *
* Filter: Only checks with exception(s) *
* *
**

**
* *
* Start: CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC) *
* *
**

CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)
START TIME: 03/30/2005 11:31:06.593289
CHECK DATE: 20040808 CHECK SEVERITY: LOW
CHECK PARM: 64000,64000

BPXH003I z/OS UNIX System Services is configured using OMVS=(00) which
correspond to the BPXPRMxx suffixes. The IBMUSS specification for IBM
Health Checker for z/OS USS_MAXSOCKETS_MAXFILEPROC is 64000,64000.

.

.

.
END TIME: 03/30/2005 11:31:08.457023 STATUS: EXCEPTION-LOW

**
* *
* End: CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC) *
* *
**

HZSPRINT utility completion codes
The following list shows the completion codes returned by the HZSPRINT utility
in system message IEF142I:

Completion code
Description

Chapter 3. Working with check output 39

0 Success

400
No matches - the HZSPRINT utility could not match your request with checks.

401
HZSPRINT could not retrieve all messages from requested checks.

402
Some records were missing.

403
HZSPRINT could not write all the message buffers.

404
The log stream specified was empty.

801
An unknown keyword was encountered in the HZSPRINT parameter string.

802
Incorrect check owner specified. checkowner must be between 1-16 characters.

803
Incorrect check name specified. checkname must be between 1-32 characters.

804
Comma missing between checkowner and checkname in the HZSPRINT JCL.

805
Missing the closing parenthesis in CHECK(checkowner,checkname).

806
Incorrect log stream name specified.

811
No log stream was specified in the JCL.

812
The log stream specified was incorrect.

813
The check specified was bad.

814
No system name was specified in the SYSNAME parameter.

815
The system name specified in the SYSNAME parameter was incorrect.

816
The SYSNAME parameter is not allowed as specified - you can only specify
SYSNAME with the LOGSTREAM parameter.

817
The syntax of the TIMERANGE value is invalid.

818
The TIMERANGE value is empty.

899
The HZSPRINT parameter string is too long.

1200
The HZSPRINT utility was not authorized to retrieve the requested

40 IBM Health Checker for z/OS User's Guide

information. For example, the XFACILIT class may not have been RACLISTed.
Check the security definitions described in “Setting up security for the
HZSPRINT utility” on page 16.

1201
The system could not open the specified SYSOUT data set. Check the SYSOUT
data set requirements in “Optionally set up the HZSPRINT utility” on page 12.

1202
Unexpected logical record length on the specified SYSOUT data set.

1203
IBM Health Checker for z/OS is not active.

1204
HZSPRINT encountered an error with the log stream.

1205
The SYSOUT data set specified is not allocated.

1206
The specified SYSOUT data set is partitioned.

1601 -1604
Internal error. Contact the IBM Support Center.

Finding check message documentation with LookAt
LookAt is being sunset with the announcement of the new version of z/OS (V2R1).
Knowledge Centers (https://www.ibm.com/support/knowledgecenter/) will
gradually take over the function of all search in technical documentation.

You can continue to access older releases (prior to V2R1) of messages here as-is.
Neither the site nor the content will continue to be updated.

To find check message documentation on messages prior to V2R1, use component
message documents or use message explanations directly from the LookAt Web
site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/. Because checks,
along with their output messages, might be added by PTFs between releases of
component message documents, LookAt will contain the most up to date message
information. The check message ID is on the second line of the WTO for a check
message, as shown for check message BPXH033E below:
HZS0001I CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)
BPXH033E MAXSOCKETS value for AF_INET is too low.

From the LookAt Web site, specify the check message ID and select the appropriate
z/OS release. (Only releases z/OS V1R7 and higher will contain check message
documentation.)

The example below shows how we have selected z/OS V1R7 to search for SDUMP
check exception message IEAH701I. LookAt will take directly into the message
documentation for IEAH701I.

Chapter 3. Working with check output 41

|

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

If you don't find a particular message in a z/OS release, choose the button on the
bottom to search in APARs and ++HOLDs for all releases. You may find the
message there because some checks will be released APARs between releases.

Figure 2. Using LookAt to find check message documentation

42 IBM Health Checker for z/OS User's Guide

Chapter 4. Managing checks

Managing checks includes tasks such as:
v Updating or overriding values defined for checks or check output, such as check

interval, check severity, or check message routing code or WTO type
v Making checks active or inactive
v Requesting that the system process HZSPRMxx parmlib members
v Adding checks
v Deleting checks
v Refreshing checks (deleting then adding) checks
v Displaying check information

You can manage checks with the following interfaces:
v Make dynamic, temporary changes to checks such as deactivating, adding,

running, or temporarily updating check values, using:
SDSF. See “Using SDSF to manage checks” on page 45.
MODIFY command. See “Making dynamic, temporary changes to checks” on
page 44.

v Make persistent changes to checks that persist across check refreshes and restart
of IBM Health Checker for z/OS using policies. You can define policies by
specifying policy statements to be in your HZSPRMxx parmlib member or
members, specifying the parmlib member is in the list of parmlib members
being used at the start IBM Health Checker for z/OS, and activating the policy.
See “Making persistent changes to checks” on page 52.

© Copyright IBM Corp. 2006, 2015 43

Table 6. When do I use which interface to manage checks?

How long will the
change be in effect? Task Recommended interface

Dynamic, temporary
changes

See “Making dynamic,
temporary changes to
checks.”

I want to look at check output SDSF or HZSPRINT

I want to issue one-time actions against checks,
including:

v Adding, and deleting checks

v Refreshing checks (deleting one or more checks,
then adding all eligible checks)

v Displaying checks

v Running checks

SDSF or MODIFY hzsproc

I want to experiment with temporary updates to
check values, such as:

v Interval

v Severity

v Category

v Check message routing codes

These changes will last until the check is refreshed
(deleted and then add all eligible checks).

SDSF or MODIFY
hzsproc,UPDATE

Persistent changes

See “Making persistent
changes to checks” on
page 52.

I want to make changes that will persist across
IBM Health Checker for z/OS restarts, such as
permanent updates to check values on policy
statements, adding local checks from the
HZSPRMxx parmlib member, or turning on log
stream support for IBM Health Checker for z/OS

HZSPRMxx statements, and then
make sure that parmlib member(s)
are in the list of parmlib members
to be applied at IBM Health
Checker for z/OS restart.

Making dynamic, temporary changes to checks
If you want to make dynamic, temporary check updates, use either:
v SDSF- see “Using SDSF to manage checks” on page 45.
v The MODIFY command - See “Cheat sheet: examples of MODIFY hzsproc

commands” on page 47.

You can :
v Take one time only actions against checks, such as:

– Adding and deleting checks
– Refreshing checks (deleting one or more checks and then adding all eligible

checks)
– Displaying checks and check history
– Running checks

v Update check values with changes that last until the next refresh (add) of the
check or checks, including:
– Activating and deactivating checks
– Updating check values. For example, using SDSF and the MODIFY

commands, you can update check values, such as interval, severity, category,
or check message routing codes.

Check values changed this way will last just until the check is refreshed (deleted
and added again). The system will not apply the changed values to any new
checks that you add later. SDSF or MODIFY commands are great for testing
check value updates, but to make permanent changes you should create a policy

44 IBM Health Checker for z/OS User's Guide

statement to apply the changes to all refreshed and added checks and persist
across IBM Health Checker for z/OS restarts. See “Creating and maintaining
IBM Health Checker for z/OS policies” on page 53.

Using SDSF to manage checks
For IBM Health Checker for z/OS, SDSF provides the CK command to display and
manage checks. Using CK, you can issue one-time or temporary actions against
active checks, including:
v Displaying check information - action character D
v Displaying check output - action character S

Shows check status and the message buffer for the check iteration.
v Displaying check history in the IBM Health Checker for z/OS log stream- action

character L
The check history panel (CKH) displays iterations of the check run during the
lifetime of the IBM Health Checker for z/OS address space. Checks that ran
before the last IBM Health Checker for z/OS restart are not accessible to SDSF
and are not displayed, even if they are resident in the log stream.
This panel is only applicable if you have a log stream defined and setup for IBM
Health Checker for z/OS.

v Refreshing checks (deleting one or more checks, then adding all eligible checks) -
action character E

v Deleting checks - action character P
v Running checks - action character R
v Making temporary updates to check values in use, such as check interval,

category, severity, or check message routing code. These updates will last until
the check is refreshed (deleted and added again).- action character U

v Deactivating checks - action character H
v Changing check states

Like all SDSF primary displays CK can also be accessed from a pull-down when
SDSF is running as an ISPF dialog. To display the action characters for the CK
panel, use the SET ACTION SHORT or SET ACTION LONG command.

You can get sysplex-wide information about checks using SDSF's server and
WebSphere MQ. Starting with V1R13, SDSF uses XCF instead of Websphere MQ (if
all systems are at V1R13 or higher) to display sysplex-wide information and no
configuration is required.

You can also do the following with CK:
v See just exceptions, using the CK E command instead of CK.
v Browse a check using the S action character: When you are running SDSF under

ISPF, you can also use the SB or SE action characters to browse the output with
ISPF browse or edit.

v Limit the checks shown with the S command. For example, S ABC* would show
all checks that start with ABC. Reset the checks shown by typing S without
parameters.

v Filter checks shown using the filter option on the left hand side at the top of the
screen. In this example, we filter for checks with names starting with CSV on
system JA0:

Chapter 4. Managing checks 45

You can turn filtering off by using the FILTER OFF command on the command
line.

v Sort the checks. For example, you can sort checks reporting exceptions in
descending order using SDSF command SORT RESULT D.

v Display checks using the D or DL action characters.

For complete information on the SDSF CK and CKH panels, see the following:
v To setup security, see Checks on the CK and CKH panel in z/OS SDSF Operation

and Customization.
v SDSF online help for information about the columns and functions, such as

action characters, overtypeable columns, and commands.

46 IBM Health Checker for z/OS User's Guide

v To customize columns on the CK and CKH panels in ISFPARMS and review
customized field lists for the CK panel for changes related to the new LogStream
column, see Variable field lists (ISFFLD or FLD) in z/OS SDSF Operation and
Customization.

Managing checks with the MODIFY hzsproc command
MODIFY (F hzsproc) commands are useful for making dynamic, temporary changes
to checks. See “Using HZSPRMxx and MODIFY hzsproc command” on page 66 for
complete syntax information. In this section, we'll cover the following:
v “Cheat sheet: examples of MODIFY hzsproc commands”
v “Why you should not add checks using the MODIFY hzsproc command” on page

49
v “Why does my check reappear after I delete it? Understanding delete

processing” on page 49
v “But my check doesn't reappear after ADDNEW - what happened to it?” on

page 50
v “How can I delete checks while IBM Health Checker for z/OS is terminating?”

on page 50
v “Using the category filter to manage checks” on page 51

Cheat sheet: examples of MODIFY hzsproc commands
The following examples of MODIFY (F hzsproc) commands are useful for making
dynamic, temporary changes to checks. See “Using HZSPRMxx and MODIFY
hzsproc command” on page 66 for complete syntax information.

Table 7. F hzsproc command examples

Action Command example

Run checks Run all checks that have an owner that is 6 characters long beginning with IBM:

F hzsproc,RUN,CHECK=(ibm???,*)

This is a one time action issued against the checks involved.

Activate checks Activate checks that belong to any of the categories A or B:

F hzsproc,ACTIVATE,CHECK=(*,*),CATEGORY=(ANY,A,B)

See “Using the category filter to manage checks” on page 51. This is a one time action issued
against the checks involved.

Deactivate checks Deactivate checks that belong both to categories B and C:

F hzsproc,DEACTIVATE,CHECK=(*,*),CATEGORY=(ALL,B,C)

This is a one time action issued against the checks involved.

Disable checks You cannot disable a check, the system will disable a check in response to check routine or
environmental problems. See “IBM Health Checker for z/OS controlled states” on page 36.

Enable checks You cannot enable a check, the system enables a check after you solve whatever problem led
the system to disable it in the first place. See “IBM Health Checker for z/OS controlled states”
on page 36.

Chapter 4. Managing checks 47

Table 7. F hzsproc command examples (continued)

Action Command example

Delete a check Delete a check:

F hzsproc,DELETE,CHECK=(IBMRACF,RACF_GRS_RNL)

This is a one time action issued against the check or checks involved. When you delete a
check using the MODIFY command, your check will come back to run again whenever
ADDNEW processing occurs. (ADDNEW processing refreshes all checks.) If you want a check
to be deleted and stay deleted, use the DELETE parameter on a policy statement. See “Why
does my check reappear after I delete it? Understanding delete processing” on page 49.

Refresh checks Refresh (delete one or more checks and add all eligible checks):

F hzsproc,REFRESH,CHECK=(*,*)

This command deletes specific checks and then adds ALL checks eligible to run.

Undelete a check Undelete a check:

F hzsproc,ADDNEW

This is a one time action issued against all checks that are eligible to run.

Update a check v Update a check to high severity:

F hzsproc,UPDATE,CHECK=(IBMRACF,RACF_GRS_RNL),SEVERITY=HIGH

v Update all checks with a check owner that starts with "a" and a name that starts with "b" to
have:

– WTOTYPE of informational

– INTERVAL of one hour

F hzsproc,UPDATE,CHECK=(a*,b*),WTOTYPE=INFORMATIONAL,INTERVAL=01:00

These updates lasts until the check involved is refreshed.

Clearing a check
parameter error

There are lots of checks that do not accept parameters (see Chapter 13, “IBM Health Checker
for z/OS checks,” on page 389). If you do have a check that you have defined with
parameters when it does not accept parameters, you can clear the parameter error by issuing
the following command to update the check with a null parameter string:

F hzsproc,UPDATE,CHECK=(checkowner,checkname),PARM()

Add HZSPRMxx
parmlib members

v Add HZSPRMxx parmlib members to the list of members that IBM Health Checker for
z/OS is using:

F hzsproc,ADD,PARMLIB=(suffix1,suffix2,...,suffixn)

v Replace the list of parmlib members that IBM Health Checker for z/OS is using:

F hzsproc,REPLACE,PARMLIB=(suffix1,suffix2,...,suffixn)

REPLACE,PARMLIB does the following:

– Sets the list of HZSPRMxx parmlib member suffixes to the list specified on the REPLACE
parameter.

– Wipes out any existing policy statements.

– Processes the statements in the parmlib members in the list, applying them to existing
checks.

– Processes the policy statements and applies the statements to new checks.

Activate a policy or
Switch between
policies

Activate an IBM Health Checker for z/OS:

F hzsproc,ACTIVATE,POLICY=policyname

48 IBM Health Checker for z/OS User's Guide

|

|

Why you should not add checks using the MODIFY hzsproc
command
We recommend against adding checks using the MODIFY command because the
system will not remember changes you made using MODIFY when IBM Health
Checker for z/OS is restarted. In addition, the MODIFY command for your entire
check definition is limited to 126 characters. Use HZSPRMxx instead, see “Using
HZSPRMxx and MODIFY hzsproc command” on page 66.

Why does my check reappear after I delete it? Understanding
delete processing
The F hzsproc,DELETE command is a onetime action issued against a check. That
means that if you issue the F hzsproc,DELETE command to delete a check, it will
probably reappear to run the very next time something kicks off ADDNEW
processing. No matter how it's kicked off, ADDNEW processing tries to refresh all
checks, bringing any temporarily deleted check back in the process. In this section,
we'll explain a bit about how delete processing works. But the bottom line is this:
If you really want to delete a check permanently, do it in a policy statement.

We'll use a scenario to explain why your check keeps coming back. But first, you'll
need to understand that all the relevant facts about a check routine are contained
in a check definition contained in either:
v An HZSADDCHECK exit routine
v An HZSPRMxx parmlib member, created with the ADD | ADDREPLACE

CHECK command

When a command or other request kicks off ADDNEW processing, the system
adds or reactivates the check as defined in the check definition.
1. Okay, let's say that:

v CHECK(A,B) is added to the system by HZSADDCHECK exit routine AEXIT.
v CHECK(C,D) is added to the system in the HZSPRMxx parmlib member

with the ADD | ADDREPLACE CHECK command.
2. Now, let's say that someone issues a MODIFY command or non-policy parmlib

statement that deletes CHECK(A,B). When delete processing completes:
v CHECK(A,B) is in the deleted status
v CHECK(C,D) is eligible to run

3. Now, something kicks off ADDNEW processing, such as a request to refresh
CHECK(C,D). A refresh request consists of a delete of the check, followed by an
ADDNEW request.

4. The ADDNEW command reactivates CHECK(C,D) as defined in the
HZSPRMxx member. But ADDNEW processing also runs the AEXIT
HZSADDCHECK exit routine, and AEXIT adds CHECK(A,B) back to the
system, or undeletes it. Deleted CHECK(A,B) is back! ADDNEW processing
kicked off for one check reactivates all checks as defined in check definitions in
either HZSADDCHECK exit routine’s or HZSPRMxx parmlib members.

So, if you really want to delete a check permanently, use a policy statement in an
HZSPRMxx member, such as:
ADDREPLACE POLICY STMT(DEL1) DELETE Check(A,B)

Then issue F hzsproc,ADD,PARMLIB=xx to add the HZSPRMxx member containing
the new policy statement to the list of members containing the IBM Health
Checker for z/OS policy.

Chapter 4. Managing checks 49

Now, when something kicks off ADDNEW processing, the system will reactivate
all the undeleted check definitions, bringing back CHECK(C,D) but not
CHECK(A,B).

Note that ADDNEW processing is staged, so that the system will first process all
check definitions to add all the checks, bringing back CHECK(A,B). Then however,
the system also applies the policy statements, including the statement that deletes
CHECK(A,B). In the end, CHECK(A,B) stays deleted when you put the delete in
the policy.

But my check doesn't reappear after ADDNEW - what happened
to it?
When ADDNEW processing is kicked off, all checks added by either the
HZSADDCHECK exit routines or in the HZSPRMxx parmlib member are
candidates for being refreshed as part of the ADDNEW processing. Candidates for
refresh are checks that are not deleted by policy statements and that do not already
exist. If ADDNEW does not bring back your check from deletion, the problem is
probably one of the following:
v You have a policy statement in your policy that deletes that check.
v The exit routine that added the check the last time has been updated and no

longer adds your check.
v The exit routine that added the check the last time has been removed from the

HZSADDCHECK exit.

Why can't I re-add my HZSPRMxx parmlib defined check after I
delete it? More understanding of the delete processing...
Here is a possible common mistake: Lets say that you defined a System REXX
check in the HZSPRMxx parmlib member using the F hzsproc,ADD |
ADDREPLACE,CHECK command. Then, you deleted it using the DELETE
command. But now you want to bring it back again, so you issue the
ADD,CHECK command. But the command fails, with a message telling you the
check already exists, even though it will not appear in SDSF or display output.
That is because you deleted the check, but the check definition is still lurking
there in the HZSPRMxx parmlib member, and is still loaded in the system. What
you need to do to get your check to run again is to put an ADDREPLACE,CHECK
statement containing the check definition into a parmlib member, and issue the F
hzsproc,ADD,PARMLIB,CHECKS. Your check will now be ready to run.

How can I delete checks while IBM Health Checker for z/OS is
terminating?
While IBM Health Checker for z/OS is in the process of terminating, you may get
a message that the system is waiting for checks to complete before termination
itself can complete:
HZS0020E WAITING FOR CHECKS TO COMPLETE

The wait might be longer if you have System REXX checks running on the system.
But if you try to speed up the process of IBM Health Checker for z/OS
termination by deleting checks using the F hzsproc,DELETE command, you will
find that neither that command nor most other F hzsproc commands work during
the termination process.

However, you can use the following command to delete all the checks during
termination of IBM Health Checker for z/OS:
F hzsproc,DELETE,CHECK=(*,*),FORCE=YES

50 IBM Health Checker for z/OS User's Guide

Make sure that the FORCE=YES option is what you want:
v FORCE=YES issued against a remote check will result in a non-retriable abend.
v FORCE=YES will delete checks that are still in the process of running.

The only other F hzsproc command that will work during the termination process
is the F hzsproc,DISPLAY,CHECKS command.

Using the category filter to manage checks
When you have many checks, you can use categories to make it easier to manage
or display information.
v Use the ADDCAT, REPCAT, and REMCAT parameters:

– ADDCAT lets you add the specified check to a category
– REPCAT lets you replace a category for a check
– REMCAT lets you remove a check from a category

v Use the CATEGORY filter to filter actions against checks by category.
CATEGORY accepts up to 16 named categories, each represented by a 1-16
character string.

For example, you might put checks into categories such as shift and offshift, global,
or exception. Then you can perform actions such as activate, deactivate or run a
group of checks with one command. All categories are user-defined; IBM does not
define any categories for checks.

The following examples shows how you can use categories in the HZSPRMxx
member and in the MODIFY command to manage checks:
1. First, I add a number of checks to a new category, DEBUG in the HZSPRMxx.

/* add some checks to category debug */
ADD POLICY STMT(POL1) UPDATE CHECK(IBMUSS,USS_FILESYS_CONFIG)

ADDCAT(DEBUGCAT)
ADD POLICY STMT(POL2) UPDATE CHECK(IBMCNZ,CNZ_TASK_TABLE)

ADDCAT(DEBUGCAT)
.
.
.

ADD POLICY STMT(POL17) UPDATE CHECK(IBMGRS,*)
ADDCAT(DEBUGCAT)

This takes some time, but it will save time in step 2.
2. Now I want to put all the checks from category DEBUG into debug mode. I

only want to do this temporarily, so I do this with a MODIFY command. I can
do this without specifying all those long check names by using the category
filter:
F hzsproc,UPDATE,CHECKS=(*,*),CATEGORY=(DEBUGCAT),DEBUG=ON

But there's more you can do with the CATEGORY filter! The syntax of the filter is:
CATEGORY=([{ANY|EVERY|EXCEPT|ONLY},][category1[,...,categoryn]])

I can assign checks to multiple categories, and sort them out on the CATEGORY
filter using ONLY, ANY, EVERY, and EXCEPT:

ANY
Checks that are in any of the specified categories

EVERY
Checks that are in every specified category

Chapter 4. Managing checks 51

EXCEPT
Checks that are not in any of the specified categories

ONLY
Checks that are in every one of the specified categories and that have only as
many categories as are specified. For example, a check assigned to three
categories would not match if the CATEGORY=ONLY statement on this
MODIFY command specified two categories.

ONLY is the default, but for the sake of clarity, we recommend that you
specify the category option that you want.

For example, in the following scenario, I have checks ONE, TWO, THREE, FOUR,
and FIVE in the following categories:

Category SHIFT1 SHIFT2 IMPORTANT RACF GRS CONSOLES

Checks ONE
THREE
FOUR
FIVE

TWO ONE
TWO
FOUR

ONE
TWO

THREE FOUR
FIVE

So if I create a policy statement in my HZSPRMxx member to change existing and
future checks to LOW severity in every category except category IMPORTANT:
ADD POLICY STMT(LOWCAT) UPDATE CHECK(*,*)

CATEGORY(EXCEPT,IMPORTANT)
SEVERITY(LOW)

This will affect only checks that are not in the IMPORTANT category, which will
be checks THREE and FIVE.

Using these categories and checks, the following table shows how a bunch of
category filters map to checks affected in our scenario:

CATEGORY filter checks affected

CATEGORY=(ANY,SHIFT1) ONE, THREE, FOUR, FIVE

CATEGORY=(ANY,IMPORTANT) ONE, TWO, FOUR

CATEGORY=(ANY,SHIFT1,SHIFT2) ONE, TWO, THREE, FOUR, FIVE

CATEGORY=(EVERY,SHIFT1,CONSOLES) FOUR, FIVE

CATEGORY=(EVERY,SHIFT1,IMPORTANT,CONSOLES) FOUR

CATEGORY=(EXCEPT,IMPORTANT) THREE, FIVE

CATEGORY=(ONLY,SHIFT1) None

CATEGORY=(ONLY,SHIFT1,CONSOLES) FIVE

Making persistent changes to checks
You can make changes to checks that persist across check refreshes and restart of
IBM Health Checker for z/OS using statements in the HZSPRMxx parmlib
member. The HZSPRMxx parmlib member should include only the following kinds
of changes:
v Defining policies by specifying policy statements in your HZSPRMxx parmlib

member or members, specifying the parmlib member is in the list of parmlib
members being used at the start IBM Health Checker for z/OS, and activating
the policy. See “Creating and maintaining IBM Health Checker for z/OS
policies” on page 53.

52 IBM Health Checker for z/OS User's Guide

v Defining local installation-written check defaults to the system and adding them
to IBM Health Checker for z/OS using the ADD | ADDREPLACE CHECK
statement in an HZSPRMxx parmlib member. See “Syntax and parameters for
HZSPRMxx and MODIFY hzsproc” on page 69.

v Turning log stream support for IBM Health Checker for z/OS on or off using the
LOGGER parameter in an HXSPRMxx parmlib member. See “LOGGER” on page
75.

v Defining the name of the HZSPDATA persistent data set using the HZSPDATA
parameter in an HZSPRMxx parmlib member. See “HZSPDATA” on page 74.

Note that you can share HZSPRMxx parmlib members across different systems in a
sysplex, even if those systems are at different levels, and even if a system at a
lower level does not support the most current HZSPRMxx parameters you specify.
See “Sharing critical IBM Health Checker for z/OS information between systems at
different levels” on page 8.

Creating and maintaining IBM Health Checker for z/OS policies
An IBM Health Checker for z/OS policy lets you manage checks by applying
persistent changes to checks. A policy is the place to put any check changes you
want to make persistent and to have applied to checks you add in the future.
Starting with z/OS V1R8, you can create multiple policies and switch between
them. (Systems at the z/OS V1R4 through R7 with IBM Health Checker for z/OS
support installed can have only one policy per system.)

An IBM Health Checker for z/OS policy simply consists of a set of policy
statements in an HZSPRMxx member or members currently in use for a system.
The system applies the information in your active IBM Health Checker for z/OS
policy to all existing checks and to any new checks you add. IBM Health Checker
for z/OS processes information from the active policy every time checks are added
or refreshed, every time you activate a new policy, and whenever you restart IBM
Health Checker for z/OS.

When we use the term IBM Health Checker for z/OS restart, we mean either:
v Restarting IBM Health Checker for z/OS after it terminates
v Starting of IBM Health Checker for z/OS on a subsequent IPL

To ensure that a policy is remembered and applied at IBM Health Checker for
z/OS restarts, specify the HZSPRMxx members containing the policy in the IBM
Health Checker for z/OS procedure, hzsproc and use the following command to
activate the policy you wish to make the current policy:
F hzsproc,ACTIVATE,POLICY=policyname

If you have multiple policies, you can switch between them using the same
F hzsproc,ACTIVATE,POLICY=policyname command.

On each policy statement, you update check values for a check or set of checks,
specifying updates that you wish to apply permanently. You can also use policy
statements to permanently delete checks or to remove another policy statement.
v ADD POLICY creates a new policy statement.
v ADDREPLACE POLICY specifies that the system either add or replace the following

policy statement, as appropriate. If the policy statement is new, the system will
add it. If the policy statement exists already, the system will replace it with the
one specified.

Chapter 4. Managing checks 53

v REMOVE POLICY removes an existing policy statement.
v Use the UPDATE option on your policy statement to update check values.

If you do not specify a policy name on your policy statement, the system assigns
the statement to the default policy name, which is DEFAULT.

For complete syntax, see “Syntax and parameters for HZSPRMxx and MODIFY
hzsproc” on page 69.

When you create an IBM Health Checker for z/OS policy and specify that the
system use it, the system applies the values immediately to the existing checks.
Then, when you add new checks that meet the policy statement criteria, the values
will be applied to those checks as well.

Use the following procedure to create an IBM Health Checker for z/OS policy that
persists across restarts:
1. Specify the policy statements in an HZSPRMxx member or members. If you do

not specify a policy name when you define a policy statement, the system
assigns a default policy name of DEFAULT to the statement.

2. To add the HZSPRMxx member(s) immediately to the list of parmlib members
that IBM Health Checker for z/OS processes values from, issue the
F hzsproc,ADD PARMLIB command.

3. Activate the policy that you want as the current active policy using the
F hzsproc,ACTIVATE POLICY=policy command. If you do not activate a policy,
the system uses policy statements assigned to policy DEFAULT, if there are any.
Otherwise, if you do not activate a policy and have no policy statements
assigned to policy DEFAULT, you will not have a policy in effect.
The system applies the values in the active policy to the specified active checks
immediately, and re-applies them every time the checks are added or refreshed
until an IBM Health Checker for z/OS restart.

4. Refresh all the checks, so that only the values for the current active policy are
in use. Use the F hzsproc,REFRESH,CHECK=(*,*). See “Some finer points of how
policy values are applied” on page 56 for why this is necessary.

5. To make sure your policy persists across IBM Health Checker for z/OS restarts,
specify the HZSPRMxx members containing your policy in either:
v The START hzsproc command in the COMMNDxx parmlib member
v The IBM Health Checker for z/OS procedure, hzsproc

See “Specifying the HZSPRMxx members you want the system to use” on page
64.

We'll cover the following policy topics:
v “How IBM Health Checker for z/OS builds policies from policy statements”
v “Can I put non-policy statements in my HZSPRMxx member?” on page 59
v “Policy statement examples” on page 63
v “Can I create policy statements using the MODIFY command?” on page 64
v “Specifying the HZSPRMxx members you want the system to use” on page 64

How IBM Health Checker for z/OS builds policies from policy
statements

Because a policy is really just a collection of policy statements, there is a lot of
flexibility in the way you can define your policy or policies. For example, you can:

54 IBM Health Checker for z/OS User's Guide

v “Define one policy in multiple HZSPRMxx parmlib members”
v “Define multiple policies in one HZSPRMxx parmlib member” on page 56
v Use a combination of both approaches

The system applies policy statements from the active policy to checks in exactly the
order they occur in the HZSPRMxx members, and in the order in which you
specify the HZSPRMxx members you want the system to use.

Define one policy in multiple HZSPRMxx parmlib members
The following picture shows an example of how policy statements for a single
policy (DAY) can be spread between two different parmlib members, HZSPRM01
and HZSPRM02:

Now, if I specify START hzsproc,HZSPRM=(01,02), and activate policy DAY, the
system builds the policy from all the policy statements it finds in HZSPRM01 and
HZSPRM02, preserving the order in which they were found. When the system
applies the policy, it also processes the policy statements in that same order. In this
case, statement 03 in HZSPRM02 contradicts the update to the interval made in
HZSPRM01. Since HZSPRM02 is specified second on the START command, the
second interval update is processed and applied last, and so wins out. The final
value for interval is 02:00, or once every two hours rather than once a minute.

You can display the complete contents of the DAY policy from any HZSPRMxx
parmlib members in use by issuing the following command:
F hzsproc,DISPLAY,POLICY=DAY,DETAIL

The output might look as follows:
HZS202I 11.03.45 POLICY DETAIL 511
POLICY DAY STMT: 01 ORIGIN: HZSPRM01 DATE: 20060501

UPDATE CHECK(IBM,CHECKA)
REASON: Change to verbose mode
VERBOSE: YES

HZSPRM01

Policy DAY

CHECKA

VERBOSE(YES)

INTERVAL(02:00)

DEBUG=ON

HZSPRM01

ADD POLICY(DAY) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) VERBOSE(YES)...

ADD POLICY(DAY) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL=00:01...

HZSPRM01

ADD POLICY(DAY) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) VERBOSE(YES)...

ADD POLICY(DAY) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL=00:01...

HZSPRM02

ADD POLICY(DAY) STATEMENT(03) UPDATE CHECK(IBM,CHECKA) INTERVAL=02:00...

ADD POLICY(DAY) STATEMENT(04) UPDATE CHECK(IBM,CHECKA) DEBUG=ON...

Figure 3. Creating a policy in multiple HZSPRMxx members

Chapter 4. Managing checks 55

POLICY DAY STMT: 02 ORIGIN: HZSPRM01 DATE: 20060501
UPDATE CHECK(IBM,CHECKA)
REASON: Change the interval
INTERVAL: 00:01

POLICY DAY STMT: 03 ORIGIN: HZSPRM02 DATE: 20060501
UPDATE CHECK(IBM,CHECKA)
REASON: Change the interval again
INTERVAL: 02:00

POLICY DAY STMT: 04 ORIGIN: HZSPRM02 DATE: 20060501
UPDATE CHECK(IBM,CHECKA)
REASON: Turn Debug mode on
DEBUG: ON

Note that the output of the detail command display shows the HZSPRMxx parmlib
member that a policy statement comes from.

Define multiple policies in one HZSPRMxx parmlib member
The following picture shows an example of how IBM Health Checker for z/OS
assembles three different policies from policy statements in a single HZSPRMxx
member. Note that the statement that omits a policy name is assigned to policy
DEFAULT:

Some finer points of how policy values are applied
Generally, all you need to know about the way the system applies policy statement
values to checks is that when you activate a policy using the F hzsproc ACTIVATE
POLICY=policy command, the system applies the values in the active policy to the
specified active checks immediately, and re-applies them every time the checks are
added or refreshed until IBM Health Checker for z/OS restart. However, there are
some nuances to how this works:

REPLACE PARMLIB command nuances: When you issue the following
REPLACE PARMLIB commands to replace the existing policy statements, the

HZSPRM01

Policy DAY

CHECKA

VERBOSE(YES)

INTERVAL(00:01)

Policy NIGHT

CHECKA

DEBUG(ON)

INTERVAL(00:02)

Policy DEFAULT

CHECKA

SEVERITY(HIGH)

ADD POLICY(DAY) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) VERBOSE(YES)...

ADD POLICY(DAY) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL=00:01...

ADD POLICY(NIGHT) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) DEBUG(ON)...

ADD POLICY(NIGHT) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL(00:02)...

ADD POLICY STATEMENT(01) UPDATE CHECK(IBM,CHECKA) SEVERITY(HIGH)...

Figure 4. Creating multiple policies in one HZSPRMxx member

56 IBM Health Checker for z/OS User's Guide

system starts replace processing by deleting all existing policy statements, and then
adding the policy statements in the parmlib members specified in the REPLACE
command:
v REPLACE PARMLIB=xx

v REPLACE PARMLIB=xx,POLICY

v REPLACE PARMLIB=xx,ALL

These commands will not reset the active policy, but even the active policy will be
affected by this processing.

ACTIVATE POLICY command nuances: Let's look at an example using the
policy statements shown in Figure 4 on page 56.
1. After I've created HZSPRM01 as it appears in Figure 4 on page 56, I issue the

F hzsproc,ADD PARMLIB command to add HZSPRM01 to the list of parmlib
members I want IBM Health Checker to use.

2. Here's where things get interesting. By default, the active IBM Health Checker
for z/OS policy is DEFAULT, unless I specify otherwise. That means that if I
want the DEFAULT policy to be the active one, I can now either issue the
F hzsproc,ACTIVATE,POLICY=DEFAULT command or do nothing - I get DEFAULT
as the active policy either way. The system applies the values for policy
DEFAULT to check CHECKA immediately, upgrading its default severity to
HIGH. The system reapplies this values every time CHECKA is refreshed.

3. Now I want to switch to my DAY policy, so I issue the
F hzsproc,ACTIVATE,POLICY=DAY command. When I do the activate, the system
immediately applies the DAY policy values to policy CHECKA. But until I
refresh CHECKA, values applied to CHECKA include both DAY values and
any DEFAULT values that policy DAY does not contradict. This means that the
pre-refresh values currently in use for CHECKA after I activate policy DAY
include:
v SEVERITY(HIGH) from DEFAULT
v VERBOSE(YES) from DAY
v INTERVAL(00:01) from DAY

4. But I wanted only the DAY values applied to CHECKA! What do I do? I
refresh CHECKA using command F hzsproc,REFRESH,CHECK=(IBM,CHECKA).
After refresh, my values for CHECKA include only DAY values:
v VERBOSE(YES) from DAY
v INTERVAL(00:01) from DAY

Refreshing CHECKA resets all the values to their default setting except for the
active DAY policy values.

5. Wait, there's more. Now I want to switch to policy NIGHT, so I issue my
F hzsproc ACTIVATE POLICY=NIGHT command. Until I refresh CHECKA, values
applied to CHECKA will also include some DAY and some NIGHT values:
v VERBOSE(YES) from DAY
v DEBUG(ON) from NIGHT
v INTERVAL(00:02) from NIGHT

Notice that NIGHT value INTERVAL(00:02) overrides the DAY interval of 00:01.
6. When I refresh CHECKA, I get just the NIGHT values:

v DEBUG(ON) from NIGHT
v INTERVAL(00:02) from NIGHT

Chapter 4. Managing checks 57

START HZSPROC policy nuances: Some of the accumulating effects of applying
and activating two policies in a row, without refreshing checks in between, show a
different behavior at Health Checker start-up time.

For example consider having one or more HZSPRMxx parmlib members with
essentially the following policy related statements and no ADD CHECK
statements:
1. ADDREPLACE POLICY(FIRSTPOLICY) STATEMENT(somestmt11) ...
2. ACTIVATE POLICY(FIRSTPOLICY)
3. ADDREPLACE POLICY(SECONDPOLICY) STATEMENT(somestmt21) ...
4. ACTIVATE POLICY(SECONDPOLICY)

What you might expect is that all checks will have the settings from both
FIRSTPOLICY and SECONDPOLICY applied, cumulatively, when Health Checker
has completed its start phase. But, no, only settings from the SECONDPOLICY will
be applied. This is because the system will read those parmlib members before
adding any checks (from the HZSADDCHECK exit...), and therefore the
FIRSTPOLICY will only be applied to the still empty set of health checks that the
systems knows about at that point. At the point when checks actually get added to
Health Checker only the SECONDPOLICY is active anymore and only its settings
will be applied to those checks.

Compare this to the situation where you use a MODIFY
HZSPROC,ADD,PARMLIB=xx command to apply those policy statements not at
start-up time, but after Health Checker is already up and running. Then you get
the accumulated effect as described in the previous sections.

Therefore, it is not a good idea to have multiple ACTIVATE POLICY statements,
for different policies, in your initial set of HZSPRMxx parmlib members.

How IBM Health Checker for z/OS uses the dates on policy
statements
When you specify a policy statement, you must include a date. The system checks
this date against the date that the check was added to the system, the add-check
date. If the policy statement date is older than the add-check date, then it means
that the policy statement might have been written against an older version of the
check and thus might no longer be appropriate. For that reason, the system will
not apply a policy statement whose date is older than the check date. We call this a
policy date exception.

You can display the checks to which an outdated policy statement would apply
using the following MODIFY command:
F hzsproc,DISPLAY,CHECK(*,*),POLICYEXCEPTIONS

You can display the outdated policy statements using the following MODIFY
command:
F hzsproc,DISPLAY,POLICY=policyname,OUTDATED

The system will also issue message HZS0420E if it finds a policy with a date older
than a check it applies to:

58 IBM Health Checker for z/OS User's Guide

HZS0420E nnn CHECKS HAVE BEEN FOUND FOR WHICH AT LEAST ONE MATCHING
POLICY STATEMENT HAD A DATE OLDER HAN THE CHECK DATE.
THE POLICY STATEMENTS WERE NOT APPLIED TO THOSE CHECKS.
THE FIRST CASE IS
CHECK(checkowner,checkname)
MATCHED BY POLICY STATEMENT stmt.

This message tells the installation to reevaluate the policy statement for the
updated check.

To display the add-check date, issue the following command for the check or
checks identified by the F hzsproc,DISPLAY,CHECK=(*,*),POLICYEXCEPTIONS
command and find the default date in the output:
F hzsproc,DISPLAY,CHECK=(check_owner,check_name),DETAIL

If you want to bypass the comparison of dates between the policy statement and
the check, use the DATE(yyyymmdd,NOCHECK) parameter on the policy statement
in HZSPRMxx. You might use the NOCHECK parameter, for example, to bypass
verification so that you do not have to update the policy statement date for minor
changes to a check. The following example shows the use of NOCHECK on a
policy statement:
ADDREPLACE POLICY(policyname) STMT(GLOBAL)

UPDATE CHECK(IBMGRS,GRS_CONVERT_RESERVES)
ADDCAT (GLOBAL) REASON(’GRS_CONVERT_RESERVES in global category’)
DATE(20050901,NOCHECK)

v NOCHECK is ignored for:
– POLICY UPDATE with PARM, ACTIVE, INACTIVE, SEVERITY, and/or

INTERVAL
– POLICY DELETE

v When NOCHECK is processed, the policy statement is applied to the matching
check or checks.

v When NOCHECK is not processed , and the date for the matching check is
equal to or older than the specified policy statement date, the system applies the
policy statement. If a matching check date is newer than the policy statement
date, the system does not apply the policy statement.

As an alternative to NOCHECK to indicate "apply this update, no matter what
DATE", you can use system symbols to set the DATE to the "day of last Health
Checker start" via: DATE(&YR4&LMON&LDAY).

Can I put non-policy statements in my HZSPRMxx member?
Your HZSPRMxx member should include only policy statements, the LOGGER
parameter, and ADD | ADDREPLACE CHECK statements. Policy statements are
appropriate because the system applies them every time IBM Health Checker for
z/OS starts up, as well as when checks are added or refreshed. On the other hand,
the system applies non-policy statements, such as UPDATE, ADDNEW, or
DISPLAY, only to currently active checks, and the statements are applied just once.
This means that including non-policy statements in your HZSPRMxx member will
be ineffective. Non-policy statements that are in your HZSPRMxx member will not
be part of your IBM Health Checker for z/OS policy.

Chapter 4. Managing checks 59

Using SYNCVAL in a policy to specify the time of day that a
check runs

You can use the SYNCVAL parameter in a policy to give you more control over
when a check runs, or at least when it is scheduled to run. Because SYNCVAL,
INTERVAL, and EXCEPTINTERVAL all work together, you must coordinate the
values. SYNCVAL lets you specify when a check is scheduled to run, while
INTERVAL and EXCEPTINTERVAL specify how often it runs, synchronized with
the SYNCVAL parameter.

You might find SYNCVAL useful to schedule check workload for a low-stess time
like overnight maintenance windows, to schedule checks for specific times in order
to balance the overall system workload, or maybe you simply have a check that
you want to run very very predictably.

Note that:
v You can only use SYNCVAL in a policy statement - it is valid only on an

ADD|ADDREPLACE, POLICY STMT(statement_name) UPDATE,filters,update_options
statement in the update_options.

v You can use INTERVAL and EXCEPTINTERVAL on either the :
– UPDATE or ADD|ADDREPLACE,POLICY STMT with UPDATE
– ADD/ADDREPLACE ,CHECK statement

The syntax for SYNCVAL is:
SYNCVAL={SYSTEM|hh:mm|*:mm)

For the full syntax, see “Syntax and parameters for HZSPRMxx and MODIFY
hzsproc” on page 69.

The way you specify SYNCVAL changes the way the system measures the
INTERVAL for a check:
v If you specify or default to SYSTEM, nothing changes. The check runs

immediately after being added, and subsequently thereafter at the interval
defined for the check. The specified interval time starts ticking away when a
check finishes running.

v If you specify SYNCVAL=(hh:mm | *:mm, you are specifying the time of day at
which the check is scheduled to run. Then the INTERVAL or EINTERVAL
specify how often. When you specify SYNCVAL=(hh:mm | *:mm), the interval
time starts ticking when the check starts running (not when it finishes).
The INTERVAL | EINTERVAL you specify interacts with SYNCVAL as follows:
– If the INTERVAL is 24 hours, the check is scheduled to run at the SYNCVAL

time of day, every day.
– If the INTERVAL is less than 24 hours, the check is scheduled to run multiple

times per day as specified by the INTERVAL, and one of those times is the
SYNCVAL time of day. Thus you are using the SYNCVAL time to synchronize
the check interval.

– If the INTERVAL is greater than 24 hours, the check does not run every day,
honoring the INTERVAL, but when it is scheduled to run, it will be at the
SYNCVAL time of day.

–

60 IBM Health Checker for z/OS User's Guide

Examples: Making SYNCVAL work for you
SYNCVAL={hh:mm|*:mm) sounds more complex than it is. This section will go into
a bunch of detail about how it works, but don't let all this verbiage scare you - in
the end, SYNCVAL just lets you establish a synchronization point so that you can
predict and control when a check is scheduled to run.

Note that in the examples below, we talk about coordinating with INTERVAL. But
all this information also applies to EXCEPTINTERVAL.

Example 1 - I want exact run times for my check: Lets say we've got a check,
CHECKA. Because we like to do things the best and most efficient way, we set up
a nice policy statement for CHECKA for our HZSPRMxx parmlib member so that
the way we want the check to run is preserved in perpetuity. We need this check
to run at synchronized predictable intervals, so we have the following list of
assumptions for our CHECKA:
v CHECKA has a runtime of 1 minute.
v We want CHECKA to every 30 minutes.
v We want CHECKA to run at predictable, synchronized times, starting at 12:00

noon.

To make this happen, we will specify a policy statement that combines the
INTERVAL we want with the SYNCVAL start point that provides the point of
synchronization for predictable run times:
ADDREPLACE POLICY(policyname) STMT(GLOBAL)

UPDATE CHECK(CHECKOWNERA,CHECKA)
SYNCVAL(12:00) INTERVAL(00:30)
REASON(’Synchronize CHECKA run time’)
DATE(20110112)

Once this policy takes effect, the system schedules the check to run at 12:00 and
every 30 minutes thereafter, at exactly 12:30, 1:00, 1:30 and so on. If you already
have CHECKA defined and running on the system when you set up a policy
statement with SYNCVAL for it, you have to refresh your check in order for the
initial SYNCVAL start time take effect. However, note that if you add CHECKA in
the future, it is synchronized to 15,30,45, and 0 minutes after the hour, even
without a REFRESH.

Now, just for fun, we'll add EXCEPTINTERVAL(HALF) to the ADDREPLACE
policy:
ADDREPLACE POLICY(policyname) STMT(GLOBAL)

UPDATE CHECK(CHECKOWNERA,CHECKA)
SYNCVAL(12:00) INTERVAL(00:15)
EXCEPTINTERVAL(HALF)
REASON(’Synchronize CHECKA run time’)
DATE(20110112)

Once this policy takes effect, if the check finds an exception the interval time is
halved, so that the system schedules the check to run at 12:00 and every 15
minutes thereafter, at exactly 12:15, 12:30, 12:45 and so on.

Example 2 - I want my check to run at a specific time every day: I want to run
CHECKB once a day at midnight (00:00) so it's not interfering with any other
applications (not that a check typically makes much performance impact). Here's a
policy statement that will make that happen:

Chapter 4. Managing checks 61

ADDREPLACE POLICY(policyname) STMT(GLOBAL)
UPDATE CHECK(CHECKOWNERB,CHECKB)
SYNCVAL(00:00) INTERVAL(24:00)
REASON(’Make CHECKB run at midnight’)
DATE(20110112)

Now, when the policy takes effect, the check is scheduled to run once a day exactly
at midnight.

Example 3 - I want my check to run at the same minute of the hour, every time
it does run: I just want to be able to predict that CHECKC will only run at 15
minutes past the hour when it runs (for example, because my system has other
work scheduled every hour) at the top of the hour. I want CHECKB to run every 6
hours, but at 15 minutes past the hour. Here's my statement:
ADDREPLACE POLICY(policyname) STMT(GLOBAL)

UPDATE CHECK(CHECKOWNERC,CHECKC)
SYNCVAL(*:15) INTERVAL(06:00)
REASON(’Make CHECKC run at 15 minutes after the hour’)
DATE(20110112)

That works. But look out for the gotchas; SYNCVAL and INTERVAL have to synch
up, if you will. For example, SYNCVAL(*:15) INTERVAL(06:00) will work. But
SYNCVAL(*:15) INTERVAL(00:18) will not work - you're asking the system to run
CHECKC every 18 minutes at 15 minutes after the hour. See“SYNCVAL
restrictions” on page 63

Fine points of how SYNCVAL works
What happens if I specify SYNCVAL in a policy statement for a check that's
already running? If you specify and activate a policy with a SYNCVAL value for a
check that is already running, the SYNCVAL initial start time value is used only as
a synchronization point for subsequent check iterations until IBM Health Checker
for z/OS is restarted or the check is refreshed.

I want to manually run a check that has a SYNCVAL specified for it. What
happens to my synchronization? Nothing! Your synchronization is intact! If you
issue a MODIFY hzsproc,RUN command against a check that has a SYNCVAL
synchronization point, that manual check run will not interfere with the SYNCVAL
synchronized check run schedule. The check runs when run manually and then at
its next already scheduled run time.

My check missed the initial SYNCVAL time. When will it run? Lets say you
specify SYNCVAL={hh:mm|*:mm) value for a check and activate the policy
statement, but the check run misses the specified first run time for some reason
(for example, if the check is added inactive, gets deactivated, or z/OS UNIX
System Services is down). What happens in this case is that the start time is moved
out to the next possible start time that matches the SYNCVAL setting. Note that
the start time does not simply move to the next SYNCVAL-synchronized interval
instead.

Need an example? Okay, lets say CHECKA needs z/OS UNIX System Services to
run and so is was added with ADD CHECK ... USS(YES). Now you define and
activate a policy for the check, as follows:
ADDREPLACE POLICY(policyname) STMT(GLOBAL)

UPDATE CHECK(CHECKOWNERA,CHECKA)
SYNCVAL(12:00) INTERVAL(00:15)

62 IBM Health Checker for z/OS User's Guide

However, z/OS UNIX System Services is down at 12:00 noon, so CHECKA can't
run, missing the noon start time. CheckA won't run at all until noon of the next
day.

Gotcha - don't make your INTERVAL shorter than the check run time: If you
specify an INTERVAL that is shorter than the check run time, note that you might
miss a SYNCVAL point. In this case, the system schedules the check on the next
possible SYNCVAL point.

If the INTERVAL is too short with respect to the running of the check, you might
miss a SYNCVAL point, in which case the system will schedule the check on the
next SYNCVAL point (this is simlar tothe "start time is moved out" case. So maybe
it doesn't really need saying (it's really a "don't do that").

SYNCVAL restrictions
Make sure that the values for SYNCVAL and INTERVAL / EXCEPTINTERVAL
parameters work validly together. These parameters must be coordinated whether
you specify SYNCVAL and INTERVAL/EXCEPTINTERVAL on the same policy
statement, or just use the currently defined INTERVAL/EXCEPTINTERVAL for the
check.
v For SYNCVAL(hh:mm) and {INTERVAL|EXCEPTINTERVAL}(hhh:mm), the

hhh:mm value in total minutes (hhh*60 + mm) must be a divisor or multiple of
1440 minutes (24 hours).

v For SYNCVAL(*:mm) and {INTERVAL|EXCEPTINTERVAL}(hhh:mm), the hhh:mm
value in total minutes (hhh*60 + mm) must be a divisor or multiple of 60 minutes
(1 hour).

Note that the EXCEPTINTERVAL values of HALF or SYSTEM are valid with any
SYNCVAL value specified.

Policy statement examples
v The basic syntax for a policy statement that updates a check should look

something like this:
ADDREPLACE POLICY STMT(statement_name) UPDATE CHECK(check_owner,
check_name) options REASON('reason_for_change') DATE(yyyymmdd)

The ADDREPLACE POLICY statement is identified by the statement name
defined in the STMT parameter. If you have already defined a policy statement
with the same name, the system replaces it with the new policy statement, as
long as the DATE specified is more current than the existing one. For this
reason, be careful when you specify ADDREPLACE with a policy statement
name that already exists, because you'll most likely be overwriting the old policy
statement with your new one.

v Make all checks low severity except for UNIX System Services checks:
ADDREPLACE POLICY STMT(�LOW�) UPDATE CHECK(*,*)
SEVERITY(LOW) ('Make all checks low severity to start') DATE(20061130)

ADDREPLACE POLICY STMT(�USSMED�) UPDATE CHECK(IBMUSS,*)
SEVERITY(MEDIUM) REASON('Make all USS checks medium severity') DATE(20061130)

– Policy statement �LOW� makes all checks low severity
– Policy statement �USSMED� then makes the UNIX System Services checks

medium severity
v Update the severity value for all IBMGRS checks:

Chapter 4. Managing checks 63

ADDREPLACE POLICY STMT(POL4) UPDATE CHECK(IBMGRS,*)
SEVERITY(HIGH) REASON(’change policy’) DATE(20050901)

The system applies the values to all:
– Existing IBMGRS checks
– New IBMGRS checks added later

These same values will be applied to all IBMGRS checks every time they are
refreshed or added.

v Apply the following changes to all checks:
– Apply a severity of HIGH
– Apply a WTO type of IMMEDIATE
– Use additional descriptor code 16
– Use routing codes 126,127
ADDREPLACE POLICY STMT(POL3) CHECK(*,*) UPDATE SEVERITY(HIGH)

WTOTYPE(IMMEDIATE) DESCCODE(16) ROUTCODE(126,127)
REASON(Updating all my checks) DATE(20050920)

v Delete a check:
ADDREPLACE POLICY STMT(DEL1) DELETE Check(IBMRACF,RACF_GRS_RNL)

We recommend that you delete checks in your policy, see “Why does my check
reappear after I delete it? Understanding delete processing” on page 49 for
details.

Can I create policy statements using the MODIFY command?
We recommend against creating policy statements using the MODIFY command
because the system will not remember changes you made using MODIFY when
IBM Health Checker for z/OS is restarted. The policy is the place to put
permanent check changes that you want to have applied to any checks you add in
the future. Use HZSPRMxx to create a permanent policy for IBM Health Checker
for z/OS.

All the policy statements you create in the HZSPRMxx parmlib member or
members you specify that the system is using add up to the single IBM Health
Checker for z/OS policy.

Specifying the HZSPRMxx members you want the system to
use

v To specify the HZSPRMxx members at startup time, specify the two digit suffix
of an HZSPRMxx member in one of the following commands:

START hzsproc,HZSPRM=xx
or

START hzsproc,HZSPRM=(x1,...,xn)

In this example, hzsproc is the name of the IBM Health Checker for z/OS
procedure. Note that if you issue the START hzsproc without specifying a
parmlib member suffix on the HZSPRM= parameter in either the start command
or the IBM Health Checker for z/OS procedure, the system uses the special
value HZSPRM=PREV, which will let the system use the HZSPRMxx suffixes as
specified on the system parameter HZS (for the first start), or the suffixes which
were in use by a previous instance of Health Checker (for secondary starts).
The IBM Health Checker for z/OS procedure as shipped contains the following:

64 IBM Health Checker for z/OS User's Guide

//HZSPROC JOB JESLOG=SUPPRESS
//HZSPROC PROC HZSPRM='PREV'
//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,
// PARM='SET PARMLIB=&HZSPRM'
//*HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD
// PEND
// EXEC HZSPROC

The value for PARM= must resolve to SET PARMLIB=(suffix1,...,suffixn).
v To specify the HZSPRMxx members you want IBM Health Checker for z/OS to

use each time the system starts it up, see “Tell the system which HZSPRMxx
members you want to use” on page 21.

v To specify HZSPRMxx members dynamically while IBM Health Checker for
z/OS is running, use one of the following modify commands:
F hzsproc,ADD PARMLIB=(suffix1,suffix2,...,suffixn)
F hzsproc,REPLACE PARMLIB=(suffix1,suffix2,...,suffixn)

where suffixn is the two digit suffix of an HZSPRMxx member.

Chapter 4. Managing checks 65

|
|

Using HZSPRMxx and MODIFY hzsproc command
The syntax for both the HZSPRMxx parmlib members and the MODIFY
hzsproc,parameters command (F hzsproc,parameters) follows. You can use the
same parameters and syntax for both the HZSPRMxx parmlib member and the F
hzsproc,parameters command. However, if you want to be consistent with the
way commands and parmlib members are specified:
v Command syntax: Issue the F hzsproc,parameters command as shown in our

syntax diagram.
v HZSPRMxx syntax: To specify parameters in an HZSPRMxx member:

– Use parentheses where we show an equal sign. For example:
- X=Y should be X(Y)
- X=(Y) should be X(Y)

– Separate parameters with blanks instead of commas. For example, command
UPDATE,CHECK=(IBMAAA,CHECKA)

should be as follows in HZSPRMxx:
UPDATE CHECK(IBMAAA,CHECKA)

See “Guidelines for HZSPRMxx parmlib members” on page 67 for more
information.

Parameters take effect for different durations:
v The following parameters are one time actions which are applied immediately.

We recommend that you use the MODIFY command for these:
– ADDNEW
– DELETE
– DISPLAY
– REFRESH
– RUN
– STOP
– ADD, or REPLACE,PARMLIB - Note that you can only specify these

parameters on the MODIFY command. They are not valid in a HZSPRMxx
member.

v The following parameters are applied immediately and remain in effect until the
check is refreshed. For any changes you wish to keep, we recommend that you
use policy statements in an HZSPRMxx parmlib member for these parameters.
– UPDATE
– ACTIVATE
– DEACTIVATE
If you just want to experiment with temporary check changes, you can use
UPDATE, ACTIVATE, and DEACTIVATE in the MODIFY command. However,
if you want to keep the changes you make with UPDATE, ACTIVATE, and
DEACTIVATE past the next refresh, we recommend that you use these
parameters in policy statements in an HZSPRMxx parmlib member so that they
take affect whenever the affected check is added.
Note that if you put these parameters into HZSPRMxx member(s) but not on
policy statements, they act only on checks that have been added at the time that
the parmlib member is processed. Particularly during initialization of IBM
Health Checker for z/OS, no order is guaranteed among adding of checks and
processing of the parmlib member.

66 IBM Health Checker for z/OS User's Guide

v The ADD, ADDREPLACE, or REMOVE POLICY parameters are applied
immediately, and are applied again whenever a check is added or refreshed. We
recommend that you use policy statements in an HZSPRMxx parmlib member
for these parameters. See “Creating and maintaining IBM Health Checker for
z/OS policies” on page 53.

v The ADD and ADDREPLACE CHECK parameters are applied immediately and
remain in effect as long as the parmlib member in which they are defined is in
use. See “Syntax and parameters for HZSPRMxx and MODIFY hzsproc” on page
69.

Using wildcard characters in MODIFY hzsproc and HZSPRMxx: When you have
many checks, you can simplify management by using wildcards. You can use
wildcard characters * and ?. An asterisk (*) represents any string having a length of
zero or more characters. A question mark (?) represents a position which may
contain any single character. For example, the following command specifies that all
checks with an owner that is 6 characters long beginning with IBM be run:
F hzsproc,RUN,CHECK=(ibm???,*)

The following HZSPRMxx POLICY statement specifies that a new policy be added
that will update all IBMUSS owned checks to a severity of HIGH.
ADD POLICY STMT(POL5) UPDATE CHECK(IBMUSS,*) SEVERITY(HIGH)

Guidelines for HZSPRMxx parmlib members
The following sections contain guidance for creating an HZSPRMxx parmlib
member for IBM Health Checker for z/OS:

HZSPRMxx summary
The following summarizes HZSPRMxx characteristics:

Default member supplied by IBM?
Yes. HZSPRM00 (without actual statements, but with comments on general
syntax in its prologue).

Required or optional?
Optional

Directly affects performance?
No

Read at IPL or at command?

v HZS parameter in IEASYSxx.
v Parameter HZSPRM on START HZSPROC command
v MODIFY HZSPROC,[ADD|REPLACE],PARMLIB command.

Allows listing of parameters at IPL or command?
Yes through F hzsproc,DISPLAY command and through DISPLAY IPLINFO,HZS
command

Response to errors:

Syntax error
Error message is issued

Read errors
Error message is issued

Unsupported parameters
Error message is issued

Chapter 4. Managing checks 67

|
|

|
|

Support for system symbols?
Yes. See What are system symbols? in z/OS MVS Initialization and Tuning
Reference.

Support for concatenated parmlib?
Yes

Parameter in IEASYSxx (or supplied by the operator)
Yes. Parameter HZS. See z/OS MVS Initialization and Tuning Reference.

IBM supplied defaults for HZSPRMxx
The checks provide the default information that you can place in HZSPRMxx to
override check defaults. See Chapter 13, “IBM Health Checker for z/OS checks,”
on page 389 for check default information.

Syntax rules for HZSPRMxx
Follow the rules in Description and use of the parmlib concatenation in z/OS MVS
Initialization and Tuning Reference.

The following rules also apply to the creation of HZSPRMxx parmlib members:
v Enter data only in columns 1 through 71. Do not enter data in columns 72

through 80; the system ignores these columns.
v Comments may appear in columns 1-71 and must begin with "/*" and end with

"*/".

68 IBM Health Checker for z/OS User's Guide

Syntax and parameters for HZSPRMxx and MODIFY hzsproc

Syntax and parameters for HZSPRMxx and MODIFY hzsproc

MODIFY hzsproc | HZSPRMxx
ACTIVATE,filters

ADDNEW

DEACTIVATE,filters

DELETE,filters[,FORCE={NO | YES}]

DISPLAY
{
[CHECKS[,filters][,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED]

[,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]
|
[filters[,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED][,POLICYEXCEPTIONS]

[,EXCEPTIONS][,DIAG]]
|
[POLICY[=policyname][,STATEMENT=name][,SUMMARY|,DETAIL]}

[,CHECK=(check_owner,check_name)[,SUMMARY|,DETAIL][,OUTDATED]
|
[STATUS]
|
POLICIES }

HZSPDATA=datasetname[,VOLUME=volser]

SET,OPTION,CHKMSG_NOCONSID=[ON|OFF]

LOGGER=
[OFF|ON|ON,LOGSTREAMNAME=logstreamname]

REFRESH,filters

RUN,filters

STOP

UPDATE,filters
[,ACTIVE|INACTIVE]
[,ADDCAT=(cat1,...,cat16)]
[,DATE={date | (date,NOCHECK)}]
[,DEBUG={OFF|ON}]
[,VERBOSE={NO|YES}]
[,DESCCODE=(desccode1,...,desccoden)]
[,INTERVAL={ONETIME|hhh:mm}]
[,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]
[,SYNCVAL={SYSTEM|hh:mm|*:mm}]
[,PARM=parameter,REASON=reason,DATE={date | (date,NOCHECK)}]
[,REASON=reason]
[,REPCAT=(cat1[,cat2[,...,cat16]])]
[,REMCAT=(cat1[,cat2[,...,cat16]])]
[,REXXTIMELIMIT=timelimit]
[,ROUTCODE=(routcode1,...,routcoden)]
[,SEVERITY={HIGH|MEDIUM|LOW|NONE}]
[,WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}]

Chapter 4. Managing checks 69

Syntax and parameters for HZSPRMxx and MODIFY hzsproc

{ADD | ADDREPLACE},CHECK=(check_owner,check_name)
,{CHECKROUTINE=routinename
| EXEC=execname

,REXXHLQ=hlq
[,REXXTIMELIMIT=timelimitvalue]

{ [,REXXTSO=YES]
| [,REXXTSO=NO

[,REXXIN={NO | YES}
]

}
}
,MESSAGETABLE={msgtablename | *NONE }
,SEVERITY={HIGH|MEDIUM|LOW}
,INTERVAL={ONETIME|hhh:mm}
,DATE=date
,REASON=reason
[,PARM=parameter]
[,GLOBAL}
[,ACTIVE|INACTIVE]
[,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]
[,USS={NO|YES}]
[,VERBOSE={NO|YES}]
[,ENTRYCODE=entrycode | 0]
[,ALLOWDYNSEV={NO|YES}]
[,DOM={SYSTEM|CHECK}]

ADD,PARMLIB=(suffix1,...,suffixn)

REPLACE,PARMLIB=(suffix1,...,suffixn)
[,{CHECKS|POLICY|ALL}]

ACTIVATE,POLICY=policyname

{ADD | ADDREPLACE}
,POLICY[=policyname][,STATEMENT=name],UPDATE,filters[,update_options],REASON= reason,DATE={date|(date,NOCHECK)}
|
,POLICY[=policyname][,STATEMENT=name],DELETE,filters,REASON=reason,DATE= {date|(date,NOCHECK)}

REMOVE,POLICY[=policyname],STATEMENT=name

The parameters are:

filters

Filters specify which check or checks you wish to take an action against. You
can specify wildcard characters * and ? for filters. An asterisk (*) represents any
string having a length of zero or more characters. A question mark (?)
represents a position which may contain any single character.
The syntax of the filters is as follows:
CHECK=(check_owner,check_name)
EXITRTN=exit routine
CATEGORY=([{ANY|EVERY|EXCEPT|ONLY},][category1[,...,categoryn]])

CHECK=(check_owner,check_name)
check_owner specifies the 1-16 character check owner name. check_name
specifies the 1-32 character check name. CHECK is a required filter, except
for the DISPLAY,CHECKS,filters command.

EXITRTN=exit routine
EXITRTN specifies the HZSADDCHECK exit routine that added the
check(s) to IBM Health Checker for z/OS.

CATEGORY=([{ANY|EVERY|EXCEPT|ONLY},][category1[,...,categoryn]])
Filter checks by user defined category, see “Using the category filter to
manage checks” on page 51.

You can specify one of the following category filters:

ANY
Checks that are in any of the specified categories

70 IBM Health Checker for z/OS User's Guide

|

|
|

EVERY
Checks that are in every specified category

EXCEPT
Checks that are not in any of the specified categories

ONLY
Checks that are in every one of the specified categories and that have
only as many categories as are specified. For example, a check assigned
to three categories would not match if the CATEGORY=ONLY
statement on this MODIFY command specified two categories.

ONLY is the default, but for the sake of clarity, we recommend that
you specify the category option that you want.

category1[,...,categoryn]
Specifies the category name or names. You can specify up to 16 named
categories, each represented by a 1-16 character string.

ACTIVATE

ACTIVATE,filters

Sets the specified check or checks to the active state. If the check is eligible to
run, ACTIVATE will cause the check to run immediately, or, if SYNCVAL is in
effect, to re-calculate the start time for its next run based on SYNCVAL and
reset the interval for the check. You must specify filter
CHECK=(check_owner,check_name) with ACTIVATE. Other filters are optional.
See “filters” on page 70.

ACTIVATE, filters is equivalent to the UPDATE,filters,ACTIVE command. See
UPDATE ACTIVE and INACTIVE parameters.

ADDNEW

ADDNEW

ADDNEW adds checks to IBM Health Checker for z/OS.
v For checks defined and added by a HZSADDCHECK exit routine,

ADDNEW calls the HZSADDCHECK exit to add checks to IBM Health
Checker for z/OS

v For checks defined and added in an HZSPRMxx parmlib member (using the
ADD|ADDREPLACE,CHECK parameters), ADDNEW processes the
definitions in parmlib to add checks to IBM Health Checker for z/OS

The system does the following ADDNEW processing for each added check:
v Applies any installation updates in the policy to the default values for the

check.
v Loads the check routine, if this is a local check.
v Loads the message table, if it is a local or a REXX exec check.

All checks that are added to IBM Health Checker for z/OS are scheduled to
run unless they are not eligible to be run. If a check delete is pending when
the ADDNEW parameter is processed, the check will not run until delete
processing is complete.

You can use ADDNEW to undelete a check that has been deleted. See “Why
does my check reappear after I delete it? Understanding delete processing” on
page 49.

DEACTIVATE

DEACTIVATE,filters

Chapter 4. Managing checks 71

|
|
|
|
|
|

DEACTIVATE disables running of the specified check until ACTIVATE is
specified. You must specify filter CHECK=(check_owner,check_name) with
DEACTIVATE. Other filters are optional. See filters.

DEACTIVATE is the same as the UPDATE,filters,INACTIVE command. See
UPDATE ACTIVE and INACTIVE parameters.

DELETE

DELETE,filters[,FORCE={NO | YES}]

Remove the specified check(s) from the IBM Health Checker for z/OS. If
specified check or checks are running when the command is issued, the system
waits until they are finished running before deleting them. You must specify
filter CHECK=(check_owner,check_name) with DELETE. Other filters are
optional. See filter.

You can undelete a deleted check using the ADDNEW parameter. See “Why
does my check reappear after I delete it? Understanding delete processing” on
page 49 for more information about DELETE processing.

FORCE={NO | YES}
Specifies whether or not you want to force deletion of a check even if the
check is running. FORCE=NO is the default.

You should use FORCE=YES only as a last resort after trying the DELETE
parameter with FORCE=NO because:
v FORCE=YES will cause a check to be interrupted in the middle of its

processing:
– FORCE=YES issued against a local check will result in a non-retriable

abend on the third try.
– FORCE=YES issued against a remote or REXX exec check will result

in a non-retriable abend.
v FORCE=YES will delete checks that are still in the process of running.

DISPLAY

DISPLAY issues messages with information specified. The different options
display the information as follows:

DISPLAY
{
[CHECKS[,filters][,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED]

[,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]
|
[filters[,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED]

[,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]
|
[POLICY[=policyname][,STATEMENT=name][,SUMMARY|,DETAIL]}

[,CHECK=(check_owner,check_name)[,SUMMARY|,DETAIL][,OUTDATED]
|
[STATUS]
|
POLICIES }

CHECKS
CHECKS displays information about checks.

filters
You must specify filter CHECK=(check_owner,check_name) with DISPLAY,
unless you specify DISPLAY,CHECKSfilters. Other filters are optional. See
filters.

LOCALE=(HZSPROC | REMOTE | REXX | NOHZSPROC)
Specifies whether you want to display local or remote checks:

72 IBM Health Checker for z/OS User's Guide

v HZSPROC specifies that you want to display only local checks that run
in the hzsproc address space.

v REMOTE specifies that you want to display only remote checks that run
in the caller's address space.

v REXX specifies that you want to display only REXX exec checks running
under System REXX.

v NOTHZSPROC specifies that you want to display both remote and
REXX exec checks, but not local checks.

If you do not specify LOCALE, the system displays both local and remote
checks.

SUMMARY
IBM Health Checker for z/OS issues message HZS200I with summary
information about the specified checks. See the "Example of DISPLAY
SUMMARY message output". For each check matching the specified
criteria, the following information is returned:
v Check owner
v Check name
v The name of any category the check is a member of
v The current status of the check.

SUMMARY is the default.

DETAIL
IBM Health Checker for z/OS issues message HZS0201I (See "Example of
DISPLAY DETAIL message output") with detailed information about the
specified check including:
v Check name
v Check owner
v The name of any category the check is a member of
v The Date and time the check was last executed
v The current status of the check
v The check values, such as severity, routing codes, and descriptor codes.

ANY
Displays information about both deleted and non-deleted checks. ANY is
the default.

NOTDELETED
Displays information about checks that have not been deleted.

DELETED
Displays information about checks that have been deleted.

POLICYEXCEPTIONS
Display information about checks for which a policy statement matching
the check was not applied because the date on the policy statement is
older than the check date.

EXCEPTIONS
Display information about checks that completed with a non-zero return
value.

DIAG
Displays additional diagnostic data such as the check routine address and
message table address. See "Example of DISPLAY DIAG message output".

Chapter 4. Managing checks 73

POLICY
Displays the specified policy statements. You can filter DISPLAY POLICY
by:
v Policy name
v Policy statement name
v Check owner or name

Output is displayed in message HZS0202I for DETAIL ("Example of
DISPLAY POLICY DETAIL message output") or HZS0204I ("Example of
DISPLAY POLICY SUMMARY message output") for SUMMARY.

POLICY=policyname
Specifies the 1-16 character name of the policy whose policy statements
you wish to display. If you do not specify policyname , the system
displays the current active policy statements. If policyname contains
wildcards, the system displays all applicable policies and their
statements, with a blank line separating each policy.

STATEMENT=name
STATEMENT specifies the 1-16 character name of the policy statement
whose policy statements you wish to display.

CHECK=(check_owner,check_name)
check_owner specifies the 1-16 character check owner name . check_name
specifies the 1-32 character check name. The system displays the policy
statements that apply to the specified checks.

STATUS
Displays status information about IBM Health Checker for z/OS and
checks in message HZS0203I (see "Example of DISPLAY STATUS message
output"), including the following information:
v Number of checks that are eligible to run
v Number of active checks that are running
v Number of checks that are not eligible to run
v Number of deleted checks
v ASID of the IBM Health Checker for z/OS address space
v The log stream name and its status
v The current HZSPRMxx parmlib suffix list

POLICIES
Displays the names of all policies defined for IBM Health Checker for
z/OS.

HZSPDATA

HZSPDATA=datasetname[,VOLUME=volser]

Specifies the name and optional volume for the HZSPDATA data set you want
IBM Health Checker for z/OS to use to save data required by checks as part of
their processing between restarts of the system or IBM Health Checker for
z/OS. See “Allocate the HZSPDATA data set to save check data between
restarts” on page 11 for more information.

SET,OPTION

CHKMSG_NOCONSID=[ON|OFF]
When turned ON this option can prevent routing problems for check
exception messages by omitting the console ID parameter on WTOs sent
for health check exception messages.

74 IBM Health Checker for z/OS User's Guide

Once set, the option value only changes when explicitly modified again, until
the next IPL, which resets it to OFF. A restart of Health Checker will not
modify the option. The current option value can be displayed via operator
command
MODIFY HZSPROC,DISPLAY,STATUS

LOGGER

LOGGER=
[OFF|ON|ON,LOGSTREAMNAME=logstreamname]

Use the LOGGER parameter to connect to and use a pre-defined log stream
whenever a check generates output.

LOGGER=ON,LOGSTREAMNAME=logstreamname
The first time you use the LOGGER parameter to connect to the log stream
for IBM Health Checker for z/OS, you must specify a log stream name.
The log stream name must begin with HZS and must follow system logger
naming rules. See z/OS MVS Setting Up a Sysplex for information on setting
up and managing a log stream.

The system rejects this parameter if the log stream is already in use
without any errors. If a log stream is in use with errors when you use the
LOGGER parameter, the system disconnects from the current log stream.

After initially specifying
LOGGER=ON,LOGSTREAMNAME=logstreamname, you can use
LOGGER=ON and LOGGER=OFF to toggle use of the log stream on and
off.

LOGGER=ON
Connects to and begins using the log stream for check routine messages.
v LOGGER=ON is rejected if a log stream has not already been provided.
v LOGGER=ON has no effect if the log stream is already in use without

any errors.

LOGGER=OFF
Stops using the log stream for check routine messages. LOGGER=OFF is
the default.

REFRESH

REFRESH,filters

Refreshes the specified check or checks. Refresh processing first deletes a check
from the IBM Health Checker for z/OS and does the ADDNEW function
(ADDNEW parameter).

When you issue a command with the REFRESH parameter on it, the system
processes the policy statements and applies any changes to check values that
the policy statements contain. See “How IBM Health Checker for z/OS builds
policies from policy statements” on page 54.

You must specify filter CHECK=(check_owner,check_name) with REFRESH. Other
filters are optional. See "filters".

RUN,filters
Run the specified check(s) immediately, one time. Specifying RUN does not
reset the check interval. You must specify filter
CHECK=(check_owner,check_name) with RUN. Other filters are optional. See
"filters".

Chapter 4. Managing checks 75

STOP
Stop IBM Health Checker for z/OS. Do not use STOP unless absolutely
necessary; every time you STOP the IBM Health Checker for z/OS address
space, that address space identifier (ASID) becomes unavailable.

To start IBM Health Checker for z/OS, use one of the following commands:
v START hzsproc
v START hzsproc,HZSPRM=xx

UPDATE

UPDATE,filters
[,ACTIVE|INACTIVE]
[,ADDCAT=(cat1,...,cat16)]
[,DATE={date | (date,NOCHECK)}]
[,DEBUG={OFF|ON}]
[,VERBOSE={NO|YES}]
[,DESCCODE=(desccode1,...,desccoden)]
[,INTERVAL={ONETIME|hhh:mm}]
[,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]
[,SYNCVAL={SYSTEM|hh:mm|*:mm}]
[,PARM=parameter,REASON=reason,DATE={date | (date,NOCHECK)}]
[,REASON=reason]
[,REPCAT=(cat1[,cat2[,...,cat16]])]
[,REMCAT=(cat1[,cat2[,...,cat16]])]
[,REXXTIMELIMIT=timelimit]
[,ROUTCODE=(routcode1,...,routcoden)]
[,SEVERITY={HIGH|MEDIUM|LOW|NONE}]
[,WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}]

UPDATE allows you to temporarily update the current default or override
values for the specified checks. Values updated are in effect until the next
refresh for specified checks. You cannot update checks that are deleted or have
a delete pending against. Note that adding or removing the check from a
category does not effect the current check implementations.

You must specify filter CHECK=(check_owner,check_name) with UPDATE. Other
filters are optional. See "filters".

If an UPDATE request does not actually change anything, the system takes no
action in response to the request. For example, if you use an UPDATE request
to make the severity HIGH for a check whose severity is already HIGH, the
system does not process the request, and nothing is done.

ACTIVE | INACTIVE
Use the ACTIVE and INACTIVE parameters to change the state of the
check. See “Understanding check state and status” on page 34. These
parameters are equivalent to "ACTIVATE parameter" and "DEACTIVATE
parameter".

ADDCAT=(cat1,...,catn)
ADDCAT adds specified checks into each of the listed categories. You can
specify up to 16 categories, each a 1-16 character category name.

DATE={date | (date,NOCHECK)}
DATE specifies when the values for a check were last updated. The date is
specified in the format yyyymmdd. If the date specified on the UPDATE
parameter is earlier than the date for the check, the system does not
process the values specified on the UPDATE parameter because the
UPDATE statement may no longer be appropriate for the check.

NOCHECK
IBM Health Checker for z/OS verifies the date for the UPDATE
statement, making sure that it is equal to or newer than the date for

76 IBM Health Checker for z/OS User's Guide

the check that the statement applies to. Use NOCHECK to bypass date
verification so that you do not have to update the UPDATE statement
date for minor changes to a check.

If you use the NOCHECK parameter, you must use parentheses on the
DATE parameter. For example, you can specify either DATE=date or
DATE=(date,NOCHECK).

If your POLICY UPDATE statement contains any of the following,
NOCHECK is ignored: PARM, ACTIVE, INACTIVE, SEVERITY,
INTERVAL. NOCHECK is also ignored for a POLICY DELETE
statement.

DEBUG={OFF|ON}
DEBUG specifies the debug mode desired:
v OFF specifies that debug mode is off, which is the default.
v ON specifies that you want to run with debug mode on. Turning debug

mode ON lets you see debug messages, if the check produces any, which
are designed to help a product or installation debug a check routine or
to display additional check information. Debug messages are only issued
when the check is in debug mode. See the individual check descriptions
in Chapter 13, “IBM Health Checker for z/OS checks,” on page 389 to
see if a check issues additional information when you specify
DEBUG=ON.
Using SDSF to view check output in the message buffer when the debug
mode is ON allows you to see the message IDs of debug messages.
Debug mode ON will not take effect until you re-run the check or
checks. For example, after you issue a command to turn debug mode
ON, you could issue the command with the RUN parameter, which will
run the check or checks with debug mode ON.
For a REXX exec check, DEBUG must be ON for the check to write data
or error messages to an output data set.

VERBOSE={NO|YES}
VERBOSE specifies the verbose mode desired:
v NO specifies that you do not want to run in verbose mode.
v YES specifies that you want to run in verbose mode. Running in verbose

mode you see additional messages about non-exception conditions, if the
check supports verbose mode. These messages are only issued when the
check is in verbose mode. See the individual check descriptions in
Chapter 13, “IBM Health Checker for z/OS checks,” on page 389 to see
if a check supports issues additional messages if you specify
VERBOSE=YES.
Verbose mode does not take effect until you re-run the check or checks.
For example, after you issue a command to turn verbose mode on, you
could issue the F hzsproc command with the RUN parameter to run the
check or checks with verbose mode on.

DESCCODE=(desccode1[,...,desccoden])
DESCCODE specifies descriptor code(s) in addition to the system default
descriptor code used when an exception message is issued by the specified
check. You can specify a list of up to 13 descriptor codes, each with a value
between 1 and 13

See"WTOTYPE" for a list of the message types and corresponding default
descriptor codes. For example, if you specify DESCODE=(7) for a low

Chapter 4. Managing checks 77

severity check, the system uses descriptor code 7 in addition to the default
descriptor code of 12 for the check. See Descriptor codes in z/OS MVS
System Messages, Vol 1 (ABA-AOM).

If you do not specify DESCCODE or if you specify DESCCODE=0, the
system uses just the system-default descriptor code when the exception
message is issued.

INTERVAL={ONETIME|hhh:mm}
INTERVAL specifies how often the check should run:
v ONETIME specifies that the check should run only once, ONETIME

specifies that the check should run only once, kicked off either by
refresh processing or by the SYNCVAL scheduled run time.

v hhh:mm provides a specific interval for the check to run. The check will
run at refresh time and periodically afterwards at the interval specified
or in alignment with the SYNCVAL parameter.
hhh indicates the number of hours, from 0 to 999. mm indicates the
number of minutes, from 0 to 59.

The system starts processing the interval depending on whether you are
using the SYNCVAL parameter:
v If you are using SYNCVAL={hh:mm|*:mm}, the specified interval time

starts ticking away when the check is scheduled to run, to align it with
the SYNCVAL start time.

v If you are not using SYNCVAL or using SYNCVAL=SYSTEM, the
specified interval time starts ticking away when a check finishes
running.

EXCEPTINTERVAL={SYSTEM | HALF | hhh:mm}
EXCEPTINTERVAL specifies how often the check should run after the
check has found an exception. This parameter allows you to specify a
shorter check interval for checks that have found an exception.
v SYSTEM, which is the default, specifies that the EXCEPTINTERVAL is

the same as the INTERVAL.
v HALF specifies that the exception interval is defined to be half of the

normal interval. For example, the exception interval will be set to 30
seconds, if the normal interval is set to 1 minute.
Note that if you change the INTERVAL parameter for a check, the
system will also recalculate the exception interval.

v hhh:mm provides a specific exception interval for the check. After raising
an exception, the check will run at the exception interval specified. hhh
indicates the number of hours, from 0 to 999. mm indicates the number
of minutes, from 0 to 59.

The system starts processing the interval depending on whether you are
using the SYNCVAL parameter:
v If you are not using SYNCVAL or using SYNCVAL=SYSTEM|HALF, the

specified interval time starts ticking away when a check finishes
running.

v If you are using SYNCVAL={hh:mm|*:mm}, the specified interval time
starts ticking away when the check starts running, to align it with the
SYNCVAL start time.

SYNCVAL={SYSTEM|hh:mm|*:mm}
SYNCVAL specifies a synchronization value you can use to control when a

78 IBM Health Checker for z/OS User's Guide

check is scheduled to run. SYNCVAL works with both the INTERVAL and
EXCEPTINTERVAL parameters, so the values must be coordinated.

You can only use SYNCVAL in a policy statement - it is valid only on an
ADD|ADDREPLACE, POLICY STMT(statement_name)
UPDATE,filters,update_options statement in the update_options.

See “Using SYNCVAL in a policy to specify the time of day that a check
runs” on page 60 for examples and how to coordinate SYNCVAL with
INTERVAL and EXCEPTINTERVAL.

The values for SYNCVAL include:

SYSTEM
Specifies that the check run immediately after being added, if eligible,
and subsequently at the interval defined for the check. The specified
interval time starts ticking away when a check finishes running.
SYSTEM is the default.

hh:mm
Specifies a specific time in hours and minutes in the day to schedule
the check to run for the first time, as well as any subsequent iterations
synchronized with the current INTERVAL or EXCEPTINTERVAL value.

Check run time is scheduled to aligned with the SYNCVAL start time.
The INTERVAL time for the check starts ticking away when the check
starts running.

hh Valid values are 0 through 23.

mm Valid values are 0 through 59.

Make sure that the values for SYNCVAL and INTERVAL/
EXCEPTINTERVAL parameters work validly together. These
parameters must be coordinated whether you specify SYNCVAL and
INTERVAL/EXCEPTINTERVAL on the same policy statement, or just
use the currently defined INTERVAL/EXCEPTINTERVAL for the
check. For SYNCVAL(hh:mm) and INTERVAL(hhh:mm), the hhh:mm
value in total minutes (hhh*60 + mm) must be a divisor or multiple of
1440 minutes (24 hours).

*:mm
Specifies the minute in an hour the check is scheduled to run for the
first time, as well as for subsequent runs, synchronized with the
current INTERVAL or EXCEPTINTERVAL value. If the given minute
has already passed for the current hour, the check is scheduled for the
specified minute in the next hour.

Check run time is scheduled to aligned with the SYNCVAL start time.
The INTERVAL time for the check starts ticking away when the check
starts running.

Make sure that the values for SYNCVAL and INTERVAL/
EXCEPTINTERVAL parameters work validly together. These
parameters must be coordinated whether you specify SYNCVAL and
INTERVAL/EXCEPTINTERVAL on the same policy statement, or just
use the currently defined INTERVAL/EXCEPTINTERVAL for the
check. For SYNCVAL(*:mm) and INTERVAL(hhh:mm), the hhh:mm value
in total minutes (hhh*60 + mm) must be a divisor or multiple of 60
minutes (1 hour).

Valid values for mm are 0 to 59.

Chapter 4. Managing checks 79

PARM=parameter
PARM specifies the check specific parameters being passed to the check.
The value for parameter can be 1-256 text characters. You can specify these
characters as:
v A single value enclosed in single quotes.
v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will separate
these values from each other by a comma. For example, both
PARM='p1,p2,p3' and PARM=('p1','p2','p3') will both resolve to a
parameter value of p1,p2,p3.

You can also specify PARM with a null parameter string, PARM=(), to
remove all parameters and clear a parameter error for a check that does
not accept parameters.You must specify the REASON and DATE
parameters when you specify PARM.

When you issue a command with the PARM parameter, the check runs
immediately.

REASON=reason
REASON specifies the unique reason the check specific parameters are
being overridden. The value for reason can be 1-126 text characters. You can
specify these characters as:
v A single value enclosed in single quotes.
v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will separate
these values from each other by a blank. For example, both REASON='r1
r2 r3' and REASON=('r1','r2','r3') will both resolve to a reason of
r1 r2 r3.

REMCAT=(cat1,...,catn)
REMCAT removes the specified checks from the categories listed. You can
specify up to 16 categories, each a 1-16 character category name.

REPCAT=(cat1,...,catn)
REPCAT removes the specified checks from any existing categories they
belong to and adds them to the categories listed.

REXXTIMELIMIT=timelimit
REXXTIMELIMIT specifies an optional input parameter that is the number
of seconds to which the execution of an iteration of the exec is to be
limited. You can specify a value between 0 and 21474536 for
REXXTIMELIMIT.

A value of 0 is treated the same as no time limit. The default is that there
is no time limit.

ROUTCODE=(routcode1,...,routcoden)
ROUTCODE specifies the routing codes to be used when an exception
message is issued by the specified check. You can specify a list of up to 128
routing codes, each with a value between 1 and 128.

If ROUTCODE is not specified, or if ROUTCODE=0 is specified, the
system uses the system-default routing codes for exception messages.

SEVERITY={HIGH | MEDIUM | LOW | NONE}
SEVERITY overrides the default check severity. The severity you pick
determines how the exception messages the check routine issues with the
HZSFMSG service are written.

80 IBM Health Checker for z/OS User's Guide

v HIGH indicates that the check routine is checking for high-severity
problems. All exception messages that the check issues with the
HZSFMSG service will be issued to the console as critical eventual action
messages. HZS0003E is issued, which includes message text defined by
the check owner.

v MEDIUM indicates that the check routine is looking for medium-severity
problems. All exception messages the check issues with HZSFMSG will
be issued to the console as eventual action messages. HZS0002E is
issued which includes message text defined by the check owner.

v LOW indicates that the check is looking for low-severity problems. All
exception messages the check issues with HZSFMSG will be issued to
the console as informational messages. HZS0001I is issued which
includes message text defined by the check owner.

v NONE indicates that you're assigning no severity to this check.
Exception messages issued by the check with HZSFMSG are issued to
the hardcopy log, rather than the console. HZS0004I is issued which
includes message text defined by the check owner.

Note that there are a couple of things that can override the SEVERITY
specifications and implicit behaviors derived from SEVERITY:
v The WTOTYPE parameter overrides the implicit WTO type derived from

the SEVERITY defined for a check - see"WTOTYPE".
v A check using the dynamic check severity function can override the

SEVERITY you define for a check - see “Writing a check with dynamic
severity levels” on page 124.

WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}
WTOTYPE specifies the type of WTO you want the system to issue when
the check finds an exception. This parameter includes all WTOs issued by
a check.

The WTOTYPE specified on the UPDATE CHECK statement overrides the
implicit WTO type derived from either:
v The SEVERITY specified for the check on either the ADD or UPDATE

CHECK statement.
v The dynamic severity specified by the check. See “Writing a check with

dynamic severity levels” on page 124.

Note that the WTOTYPE only determines what type of action is associated
with a check exception WTO. Check status (such as EXCEPTION,
MEDIUM, or SUCCESSFUL), remains unaffected by WTOTYPE because it
is derived solely from the current severity specified in either the check
definition or dynamically by the check itself.

CRITICAL
Specifies that the system issue an critical eventual action message (with
a descriptor code of 11) when the check finds an exception. This is the
default if SEVERITY(HIGH) is specified or defaulted to.

EVENTUAL
Specifies that the system issue an eventual action message (with a
descriptor code of 3) when the check finds an exception. This is the
default if SEVERITY(MEDIUM) is specified or defaulted to.

INFORMATIONAL
Specifies that an informational message with a descriptor code of 12
should be issued when an exception is found. This is the default if
SEVERITY(LOW) is specified or defaulted.

Chapter 4. Managing checks 81

HARDCOPY
Specifies that the system issue the message to the hardcopy log. This is
the default if SEVERITY(NONE) is specified.

NONE
Specifies that no WTO be issued when the check finds an exception.

{ADD | ADDREPLACE},CHECK

{ADD | ADDREPLACE},CHECK=(check_owner,check_name)
,{CHECKROUTINE=routinename
| EXEC=execname

,REXXHLQ=hlq
[,REXXTIMELIMIT=timelimitvalue]

{ [,REXXTSO=YES]
| [,REXXTSO=NO

[,REXXIN={NO | YES}
]

}
}
,MESSAGETABLE={msgtablename | *NONE }
,SEVERITY={HIGH|MEDIUM|LOW}
,INTERVAL={ONETIME|hhh:mm}
,DATE=date
,REASON=reason
[,PARM=parameter]
[,GLOBAL}
[,ACTIVE|INACTIVE]
[,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]
[,USS={NO|YES}]
[,VERBOSE={NO|YES}]
[,ENTRYCODE=entrycode | 0]
[,ALLOWDYNSEV={NO|YES}]
[,DOM={SYSTEM|CHECK}]

Allows you to add or replace a check definition in an HZSPRMxx parmlib
member. The parameters correspond to the parameters in the HZSADDCK
macro.

ADD
Allows you to add a check definition to an HZSPRMxx parmlib member. If
you use ADD,CHECK to add a check that has already been defined, the
request is rejected. When a check that was added in this way is
subsequently deleted, the check definition still remains. ADDNEW or
REFRESH command processing will bring the check back exactly as it was
defined.

ADDREPLACE
Specifies that the system either add or replace the check definition, as
appropriate. If the check defiinition is new, the system will add it. If the
check definition exists already, the system will replace it with the one
specified.

CHECKROUTINE=routinename | EXEC=execname
Use CHECKROUTINE or EXEC to specify the type of check you are
adding or replacing.
v CHECKROUTINE=routinename specifies that you are defining a local or

remote assembler check. Required parameter specifies a module name
for the check you are adding or replacing. The system gives control to
the entry point of this module to run the check. The check routine
module must be in an APF-authorized library and the system must be
able to locate the check routine within the joblib or steplib of the IBM
Health Checker for z/OS address space, the LPA, or the LNKLST.

82 IBM Health Checker for z/OS User's Guide

v EXEC=execname specifies that you are defining a REXX exec check.
Required parameter specifies an exec name for the check you are adding
or replacing. The exec does not have to be in an APF-authorized library.

REXXHLQ=hlq
When EXEC=execname is specified, REXXHLQ is a required input
parameter specifying the high level qualifier for data sets(s) to be made
available to the REXX exec. See “Using REXXOUT data sets” on page 175
for information on how the system determines the name of your input or
output data set.

REXXTIMELIMIT=timelimit
When EXEC is specified, REXXTIMELIMIT specifies an optional input
parameter that is the number of seconds to which the execution of an
iteration of the exec is to be limited. You can specify a value between 0 and
21474536 for REXXTIMELIMIT.

A value of 0 is treated the same as no time limit. The default is that there
is no time limit.

REXXTSO=YES
Specifies that you are adding or replacing a TSO REXX exec check. A TSO
check runs in a TSO environment and can use TSO services. See Chapter 8,
“Writing REXX checks,” on page 169 for more information.

REXXTSO=YES is the default.

REXXTSO=NO
Specifies that you are adding or replacing a non-TSO REXX exec check. A
non-TSO check does not run in a TSO environment, and cannot use TSO
services. See Chapter 8, “Writing REXX checks,” on page 169 for more
information.

REXXIN={NO | YES}
Specifies whether or not a non-TSO check requires a sequential input
data set.

You can specify REXXIN(YES) only for a non-TSO REXX exec check
defined with REXXTSO(NO). See “Using REXXOUT data sets” on page
175 for information on how the system determines the name of your
input set for information for a non-TSO check.

REXXIN=NO is the default.

MESSAGETABLE=msgtablename | *NONE
Required parameter specifies the module name of the message table that
will be used when generating messages for the check you are adding or
replacing:
v msgtablename specifies a name for the message table. The message table

must be built using HZSMSGEN. The message table module must be in
an APF-authorized library and the system must be able to locate the
check routine within the joblib or steplib of the IBM Health Checker for
z/OS address space, the LPA, or the LNKLST.

v *NONE indicates that you are adding or replacing a check that has no
associated message table, using instead HZSFMSG
REQUEST=DIRECTMSG or HZSLFMSG_REQUEST='DIRECTMSG' to
issue messages directly from the check routine. See “Issuing messages
for your check - message table checks versus DIRECTMSG checks” on
page 102.

Chapter 4. Managing checks 83

SEVERITY={HIGH | MEDIUM | LOW}
Required parameter SEVERITY defines default check severity for the
check you are adding or replacing. The severity you pick determines how
the exception messages the check routine issues with the HZSFMSG service
are written.
v HIGH indicates that the check routine is checking for high-severity

problems. All exception messages that the check issues with the
HZSFMSG service will be issued to the console as critical eventual action
messages. HZS0003E is issued, which includes message text defined by
the check owner.

v MEDIUM indicates that the check routine is looking for medium-severity
problems. All exception messages the check issues with HZSFMSG will
be issued to the console as eventual action messages. HZS0002E is
issued which includes message text defined by the check owner.

v LOW indicates that the check is looking for low-severity problems. All
exception messages the check issues with HZSFMSG will be issued to
the console as informational messages. HZS0001I is issued which
includes message text defined by the check owner.

Note that there are a couple of things that can override the SEVERITY
specifications and implicit behaviors derived from SEVERITY:
v The WTOTYPE parameter overrides the implicit WTO type derived from

the SEVERITY defined for a check - see"WTOTYPE".
v A check using the dynamic check severity function can override the

SEVERITY you define for a check - see “Writing a check with dynamic
severity levels” on page 124.

INTERVAL={ONETIME|hhh:mm}
Required parameter INTERVAL specifies how often the check should run:
v ONETIME specifies that the check should run only once, kicked off by

refresh processing or in alignment to a SYNCVAL value for the check.
v hhh:mm provides a specific interval for the check to run. The check will

run at refresh time and periodically afterwards at the interval specified.
hhh indicates the number of hours, from 0 to 999. mm indicates the
number of minutes, from 0 to 59.

The system starts processing the interval depending on whether you are
using the SYNCVAL parameter:
v If you are not using SYNCVAL or using SYNCVAL=SYSTEM, the

specified interval time starts ticking away when a check finishes
running.

v If you are using SYNCVAL={hh:mm|*:mm}, the specified interval time
starts ticking away when the check starts running, to align it with the
SYNCVAL start time.

DATE=date
Required parameter DATE specifies when you define the check you are
adding or replacing. The date is specified in the format yyyymmdd. If the
date specified on the ADDREPLACE parameter is earlier than the original
date for the check, the system does not process the values specified on the
ADDREPLACE parameter because it may no longer be appropriate for the
check. When the date provided on a matching UPDATE, POLICY UPDATE
or POLICY DELETE statement is older than this date, that policy statement
is not applied to this check.

84 IBM Health Checker for z/OS User's Guide

REASON=reason
Required parameter REASON specifies what the check routine validates.
The value for reason can be 1-126 text characters. You can specify these
characters as:
v A single value enclosed in single quotes.
v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will separate
these values from each other by a blank. For example, both REASON='r1
r2 r3' and REASON=('r1','r2','r3') will both resolve to a reason of
r1 r2 r3.

PARM=parameter
PARM specifies the check specific parameters being passed to the check
you are adding or replacing. The value for parameter can be 1-256 text
characters. You can specify these characters as:
v A single value enclosed in single quotes.
v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will separate
these values from each other by a comma. For example, both
PARM='p1,p2,p3' and PARM=('p1','p2','p3') will both resolve to a
parameter value of p1,p2,p3.

GLOBAL
Specifies that the check you are adding or replacing is global, which means
that it runs on one system but reports on sysplex-wide values and
practices. If you do not specify GLOBAL, the systems assumes that the
check is local, which means that it will run on each system in the sysplex
where it is active and enabled.

ACTIVE | INACTIVE
Use the ACTIVE and INACTIVE parameters to specify the state of the
check you are adding or replacing. See “Understanding check state and
status” on page 34. These parameters are equivalent to "ACTIVATE
parameter" and "DEACTIVATE parameter".

EXCEPTINTERVAL={SYSTEM | HALF | hhh:mm}
EXCEPTINTERVAL specifies how often the check you are adding or
replacing should run after the check has found an exception. This
parameter allows you to specify a shorter check interval for checks that
have found an exception.
v SYSTEM, which is the default, specifies that the EXCEPTINTERVAL is

the same as the INTERVAL.
v HALF specifies that the exception interval is defined to be half of the

normal interval. For example, the exception interval will be set 30
seconds, if the normal interval is set to 1 minute.
Note that if you change the INTERVAL parameter for a check, the
system will also recalculate the exception interval.

v hhh:mm provides a specific exception interval for the check. After raising
an exception, the check will run at the exception interval specified. hhh
indicates the number of hours, from 0 to 999. mm indicates the number
of minutes, from 0 to 59.

The system starts processing the interval depending on whether you are
using the SYNCVAL parameter:

Chapter 4. Managing checks 85

v If you are not using SYNCVAL or using SYNCVAL=SYSTEM, the
specified interval time starts ticking away when a check finishes
running.

v If you are using SYNCVAL={hh:mm|*:mm}, the specified interval time
starts ticking away when the check starts running, to align it with the
SYNCVAL start time.

USS={NO | YES}
USS specifies whether the check uses z/OS UNIX System Services.
v NO, which is the default, specifies that your check does not require

z/OS UNIX System Services.
v YES specifies that your check requires z/OS UNIX System Services. If

you specify USS=YES, the following occurs:
– IBM Health Checker for z/OS will wait for this check to complete

before shutting down z/OS UNIX System Services
– This check will not run if z/OS UNIX System Services is down.

To avoid the delay of waiting for z/OS UNIX System Services to shut
down and your check not running if z/OS UNIX System Services is not
up, do not specify USS=YES unless your check really needs z/OS UNIX
System Services.

VERBOSE={NO|YES}
VERBOSE specifies the verbose mode desired for the check you are
adding or replacing:
v NO specifies that you do not want to run in verbose mode.
v YES specifies that you want to run in verbose mode. Running in verbose

mode you see additional messages about non-exception conditions.
These messages are only issued when the check is in verbose mode.
Verbose mode does not take effect until you re-run the check or checks.
For example, after you issue a command to turn verbose mode on, you
could issue the F hzsproc command with the RUN parameter to run the
check or checks with verbose mode on.

ENTRYCODE=entrycode
ENTRYCODE specifies an optional unique check entry value needed when
a check routine contains multiple checks. This value is passed to the check
routine in the field Pqe_EntryCode in mapping macro HZSPQE.

ALLOWDYNSEV={NO|YES}
Optional parameter ALLOWDYNSEV specifies whether this check can
issue check exception messages with a dynamically varying severity level.
v ALLOWDYNSEV=NO, which is the default, specifies that the check is

not allowed to specify a dynamic severity. The system uses the
SEVERITY defined for the check in either the HZSADDCK service or the
ADD|ADDREPLACE,CHECK parameter of HZSPRMxx/MODIFY
hzsproc.

v ALLOWDYNSEV=YES specifies that the check can specify the severity
dynamically. A check defined with ALLOWDYNSEV=YES can use the
SEVERITY parameter on the HZSFMSG service (or
HZSLFMSG_SEVERITY for REXX service HZSLFMSG) to send check
exception messages with a dynamic severity.
The severity specified dynamically on HZSFMSG or HZSLFMSG
overrides the severity defined for the check in either the HZSADDCK
service or the UPPDATE and ADD|ADDREPLACE,CHECK parameter
of HZSPRMxx/MODIFY hzsproc.

86 IBM Health Checker for z/OS User's Guide

See “Writing a check with dynamic severity levels” on page 124.

DOM={SYSTEM|CHECK}
Optional parameter DOM specifies whether the check or the system delete
the write to operator (WTO) messages from previous check iterations using
delete operator message (DOM) requests.
v DOM=SYSTEM, which is the default, indicates that the system issues

DOM requests to delete any WTOs from previous check iterations just
before the start of a new check iteration.

v DOM=CHECK indicates that the check is expected to issue its own
DOM requests to delete previous check exception WTOs using
HZSFMSG REQUEST=DOM or HZSLFMSG_REQUEST=DOM, except in
the following cases, where the system will still take care of the DOMs:
– When a health check gets deactivated, deleted, or refreshed
– When IBM Health Checker for z/OS ends
– When a WTO was not related to a check exception. For example

certain HZSFMSG REQUEST=HZSMSG WTO messages are not sent
as check exceptions and will be DOMed by the system.

Do not add a check with DOM=CHECK unless it is for a check written
to DOM its own exception WTO messages using HZSFMSG
REQUEST=DOM or HZSLFMSG_REQUEST=DOM. Note that you cannot
change the setting of DOM on the UPDATE parameter of
HZSPRMxx/MODIFY hzsproc interfaces.

For information on how DOM=CHECK and HZSFMSG REQUEST=DOM/
HZSLFMSG_REQUEST=DOM works, see “Controlling check exception
message WTOs and their automation consequences” on page 126.

ADD,PARMLIB

ADD,PARMLIB=(suffix1,...,suffixn)

Adds one or more HZSPRMxx parmlib member suffixes to the list of suffixes
the system uses to obtain check values. The system immediately processes the
statements in the added parmlib members. You can specify a list of up to 124
suffixes.

REPLACE,PARMLIB

REPLACE,PARMLIB=(suffix1,...,suffixn)
[,{CHECKS|POLICY|ALL}]

Replaces the list of HZSPRMxx parmlib members with the specified parmlib
member suffixes. You can specify a list of up to 124 suffixes.

REPLACE,PARMLIB first deletes applicable statements that had been
processed from the current HZSPRMxx parmlib members and then replaces
and processes the statements in the parmlib members specified in the list of
suffixes. The system then applies the statements to any new checks.

You can use SET,PARMLIB as a synonym for REPLACE,PARMLIB.

CHECKS
Specifies that you want to delete check definitions added with ADD or
ADDREPLACE CHECK statements when you issue this command to
replace the list of HZSPRMxx parmlib members.

Chapter 4. Managing checks 87

|

|
|

POLICY
Specifies that you want to delete existing POLICY statements and then add
those in the parmlib members specified in the REPLACE,PARMLIB
command. POLICY is the default.

ALL
Specifies that you want to replace both checks added with ADD |
ADDREPLACE,CHECK and existing policy statements with those specified
in the REPLACE,PARMLIB command. The system begins by deleting the
checks added with ADD|ADDREPLACE CHECK and existing policy
statements before replacing them.

ACTIVATE,POLICY

ACTIVATE,POLICY=policyname

Specifies the 1-16 character name of the policy that you want to activate to
make it the current, active policy. The policy stays in effect as the current
active policy until you issue another ACTIVATE,POLICY=policyname command to
activate a different policy.

After you activate a policy, if you want to ensure that only the values from the
new policy will be applied to checks, you must refresh all the relevant checks.
Until you refresh the checks, the values being applied to checks will still
include any values from the previous policy that are not contradicted by the
new policy. See “Some finer points of how policy values are applied” on page
56.

{ADD | ADDREPLACE} ,POLICY
{ADD | ADDREPLACE}

,POLICY[=policyname][,STATEMENT=name],UPDATE,filters[,update_options],REASON=reason,DATE={date|(date,NOCHECK)}
|
,POLICY[=policyname][,STATEMENT=name],DELETE,filters,REASON=reason,DATE={date|(date,NOCHECK)}

Add or replace a policy statement in a policy. The check values in the policy or
policy statement are applied whenever a check is added or refreshed. The
check values on a new or replaced policy statement are applied when that
policy statement is added or replaced.

You must specify the "REASON parameter" and "DATE parameter" when you
specify ADD, ADDREPLACE, or REMOVE,POLICY.

We recommend that you use the ADD | ADDREPLACE POLICY statements in
the HZSPRMxx parmlib member rather than in the MODIFY command,
because:
v It is easy to exceed the number of characters allowed for a command with

the POLICY statements.
v Changes made in the parmlib member will be applied at each restart of IBM

Health Checker for z/OS.

ADD
Add the new policy statement that follows.

ADDREPLACE
Specifies that the system either add or replace the following policy
statement, as appropriate. If the policy statement is new, the system will
add it. If the policy statement exists already, the system will replace it with
the one specified.

88 IBM Health Checker for z/OS User's Guide

POLICY=policyname
The 1-16 character name of the policy in which you are adding or
replacing policy statements. The policy name can be up to 16 characters
long.

If you do not specify a policy name, the system assigns a default name of
DEFAULT for your policy. Use the DISPLAY POLICY command to find the
name of a policy.

STATEMENTNAME | STATEMENT | STMT =stmtname
STATEMENTNAME specifies the name of the policy statement. The
statement name can be up to 16 characters long.

If you do not specify the STATEMENTNAME parameter, the system
creates a decimal number name for your statement. For example, the
system might create a statement name such as 1 or 2 for a statement. The
number can be more than one digit.

UPDATE
Create a policy statement that will update the specified check or checks.
You must specify the REASON and DATE parameters. See the "UPDATE
parameter".

DELETE
Create a policy statement that will delete the specified check or checks. You
must specify the REASON and DATE parameters.

filters
You must specify filter CHECK=(check_owner,check_name) with ADD |
ADDREPLACE POLICY. Other filters are optional. See "filters".

REASON=reason
See the "REASON parameter".

DATE={date | (date,NOCHECK)}
DATE specifies when the policy statement was created. The date is
specified in the format yyyymmdd. If the date specified on the policy
statement is earlier than the date for the check, the system does not process
the values specified on the policy statement because the policy statement
may no longer be appropriate for the updated check.

NOCHECK
By default, IBM Health Checker for z/OS verifies the date for the
policy statement, making sure that it is equal to or newer than the date
for the check that the statement applies to. Use NOCHECK to bypass
date verification so that you do not have to update the policy
statement date for minor changes to a check.

REMOVE ,POLICY

REMOVE,POLICY[=policyname],STATEMENT=name

Remove a policy statement. The check values on the policy statements are
applied whenever a check is added or refreshed. The check values on a new or
replaced policy or policy statement are applied when that policy statement is
added or replaced.

REMOVE
Remove the named policy statement.

POLICY=policyname
Specifies the 1-16 character name of the policy for which you are removing
a policy statement. The policy name can be up to 16 characters long.

Chapter 4. Managing checks 89

If you do not specify a policy name, the system assigns a default name of
DEFAULT for your policy. Use the DISPLAY POLICY command to find the
name of a policy.

STATEMENTNAME | STATEMENT | STMT =stmtname
STATEMENTNAME specifies the name of the policy statement. The
statement name can be up to 16 characters long.

You can use wildcard characters in POLICY and STATEMENTNAME. The
command is applied to all matching policies and policy statements. For
example:
v POLICY=*,STMT=01 would remove all 01 statements from all policies.
v POLICY=POL1,STMT=S* would remove from policy POL1 all statements

with names beginning with S.
v POLICY=*,STMT=S* would remove all policy statements starting with S

from all policies.

Examples of DISPLAY output
Example of DISPLAY SUMMARY message output: The following output is
displayed in response to the f hzsproc,display,checks command:
HZS0200I 10.31.08 CHECK SUMMARY FRAME LAST F E SYS=SY1
CHECK OWNER CHECK NAME STATE STATUS
IBMUSS USS_MAXSOCKETS_MAXFILEPROC AE EXCEPTION-LOW
IBMUSS USS_AUTOMOUNT_DELAY AD ENV N/A
IBMUSS USS_FILESYS_CONFIG AE SUCCESSFUL
IBMRACF RACF_SENSITIVE_RESOURCES AE + EXCEPTION-HIGH
IBMRACF RACF_GRS_RNL AE + SUCCESSFUL
IBMCNZ CNZ_SYSCONS_PD_MODE AE SUCCESSFUL
IBMCNZ CNZ_EMCS_INACTIVE_CONSOLES AEG SUCCESSFUL
IBMCNZ CNZ_SYSCONS_ROUTCODE AE EXCEPTION-LOW
IBMCNZ CNZ_SYSCONS_MSCOPE AE EXCEPTION-MED
IBMCNZ CNZ_EMCS_HARDCOPY_MSCOPE AE SUCCESSFUL
IBMCNZ CNZ_CONSOLE_ROUTCODE_11 AE EXCEPTION-LOW
IBMCNZ CNZ_AMRF_EVENTUAL_ACTION_MSGS AE EXCEPTION-LOW
IBMCNZ CNZ_CONSOLE_MSCOPE_AND_ROUTCODE AE EXCEPTION-LOW
IBMCNZ CNZ_CONSOLE_MASTERAUTH_CMDSYS AE SUCCESSFUL
IBMCNZ CNZ_TASK_TABLE AE SUCCESSFUL
IBMGRS GRS_EXIT_PERFORMANCE AE SUCCESSFUL
IBMGRS GRS_CONVERT_RESERVES AEG EXCEPTION-LOW
IBMGRS GRS_SYNCHRES AE SUCCESSFUL
IBMGRS GRS_MODE AEG SUCCESSFUL
IBMSDUMP SDUMP_AUTO_ALLOCATION AE EXCEPTION-MED
IBMSDUMP SDUMP_AVAILABLE AE SUCCESSFUL
IBMVSM VSM_SQA_THRESHOLD AE SUCCESSFUL
IBMVSM VSM_CSA_LIMIT AE SUCCESSFUL
IBMVSM VSM_PVT_LIMIT AE SUCCESSFUL
IBMVSM VSM_SQA_LIMIT AE SUCCESSFUL
IBMVSM VSM_CSA_THRESHOLD AE SUCCESSFUL
IBMVSM VSM_CSA_CHANGE AE SUCCESSFUL
IBMRSM RSM_HVSHARE AE SUCCESSFUL
IBMRSM RSM_MEMLIMIT AE EXCEPTION-LOW
IBMRSM RSM_MAXCADS AE SUCCESSFUL
IBMRSM RSM_RSU AE SUCCESSFUL
IBMRSM RSM_REAL AE EXCEPTION-LOW
IBMRSM RSM_AFQ AE SUCCESSFUL

90 IBM Health Checker for z/OS User's Guide

A - ACTIVE I - INACTIVE
E - ENABLED D - DISABLED
G - GLOBAL CHECK + - ADDITIONAL WARNING MESSAGES ISSUED

Example of DISPLAY DETAIL message output: The following output is displayed
in response to a f hzsproc,display,checks,check=(IBMRSM,RSM_MEMLIMIT),detail
command:
HZS0201I 09.20.29 CHECK DETAIL
CHECK(IBMRSM,RSM_MEMLIMIT)
STATE: ACTIVE(ENABLED) STATUS: EXCEPTION-LOW
EXITRTN: IARHCADC
LAST RAN: 05/01/2006 09:14 NEXT SCHEDULED: (NOT SCHEDULED)
INTERVAL: ONETIME
EXCEPTION INTERVAL: SYSTEM
SEVERITY: LOW
WTOTYPE: INFORMATIONAL
SYSTEM DESCCODE: 12
THERE ARE NO PARAMETERS FOR THIS CHECK
REASON FOR CHECK: Performance may be impacted
MODIFIED BY: N/A
DEFAULT DATE: 20041006
ORIGIN: HZSADDCK
LOCALE: HZSPROC
DEBUG MODE: OFF VERBOSE MODE: NO

Example of DISPLAY DIAG message output: The following output is displayed
in response to a f hzsproc,display,check(IBMGRS,grs_mode),detail,diag
command. The output shows diagnostic information such as the address of the
check routine and message table:
HZS0201I 09.22.18 CHECK DETAIL
CHECK(IBMGRS,GRS_MODE)
STATE: ACTIVE(DISABLED) GLOBAL STATUS: SUCCESSFUL
EXITRTN: ISGHCADC
LAST RAN: 05/01/2006 09:14 NEXT SCHEDULED: (DISABLED)
INTERVAL: ONETIME
EXCEPTION INTERVAL: SYSTEM
SEVERITY: LOW
WTOTYPE: INFORMATIONAL
SYSTEM DESCCODE: 12
DEFAULT PARAMETERS: STAR
REASON FOR CHECK: GRS should run in STAR mode to improve

performance.
MODIFIED BY: N/A
DEFAULT DATE: 20050105
ORIGIN: HZSADDCK
LOCALE: HZSPROC
DEBUG MODE: OFF VERBOSE MODE: NO
INTERNAL DIAGNOSTICS - CHECK TOKEN: 01020038.7FD94000
ROUTINE: ISGHCGRS-7F038300 MSGTBL: ISGHCMSG-7F0343B8 FUNC: DELETE
LAST CPU TIME: 0.070 MAX CPU TIME: 0.070

Example of DISPLAY POLICY SUMMARY message output: The following output
is displayed in response to a f hzsproc,display,policy,stmt=* command:
HZS0204I 11.03.45 POLICY SUMMARY FRAME LAST F E SYS=SY1
STMT TYPE CHECK OWNER CHECK NAME
GRSMODE_SEVERITY UPD IBMGRS GRS_MODE

Chapter 4. Managing checks 91

Example of DISPLAY POLICY DETAIL message output: The following output is
displayed in response to a f hzsproc,display,policy,stmt=*,detail command:
HZS0202I 11.04.44 POLICY DETAIL FRAME LAST F E SYS=SY1
POLICY STMT: GRSMODE_SEVERITY ORIGIN: HZSPRMOO DATE: 20050105
UPDATE CHECK(IBMGRS,GRS_MODE)
REASON: update check to high severity
SEVERITY: HIGH

Example of DISPLAY STATUS message output: The following output is displayed
in response to a f hzsproc,display,status or f hzsproc,display command:
HZS0203I 15.26.41 HZS INFORMATION FRAME 1 F E SYS=SY39
POLICY(*NONE*)
OUTSTANDING EXCEPTIONS: 1
(SEVERITY NONE: 0 LOW: 0 MEDIUM: 1 HIGH: 0)
ELIGIBLE CHECKS: 4 (CURRENTLY RUNNING: 0)
INELIGIBLE CHECKS: 0 DELETED CHECKS: 0
ASID: 0046 LOG STREAM: NOT DEFINED
LOG STREAM WRITES PER HOUR: 2
LOG STREAM AVERAGE BUFFER SIZE: 1825 BYTES
HZSPDATA RECORDS: 0
ORIGINAL PARMLIB SOURCE: PREV
OPTIONS: NONE

92 IBM Health Checker for z/OS User's Guide

Part 2. Developing Checks for IBM Health Checker for z/OS

© Copyright IBM Corp. 2006, 2015 93

94 IBM Health Checker for z/OS User's Guide

Chapter 5. Planning checks

The IBM Health Checker for z/OS is a component of MVS that provides the
framework for checking z/OS system and sysplex configuration parameters and
the system environment to help determine places where an installation is deviating
from suggested settings or where there might be configuration problems. IBM
provides a set of check routines in IBM Health Checker for z/OS, but vendors,
consultants, and system programmers can add other check routines.

The objective of a check is to identify potential problems before they impact your
availability or, in worst cases, cause outages. The output of a check is messages
and reports that help an installation analyze the health of a system.

You can use checks to look for things like:
v Changes in configuration values that occur dynamically over the life of an IPL.

Checks that look for changes in these values should run periodically to keep the
installation aware of changes accruing since the last IPL, to help ensure a cleaner
IPL the next time.

v Threshold levels approaching the upper limits, especially those that might occur
gradually or insidiously.

v Single points of failure in a configuration.
v Unhealthy combinations of configurations or values that an installation might

not think to check.
v Monitoring checks that create reports of collected data.

A check routine does the following:

v Defines the severity of exceptions it finds and suggests a fix for the exception.
v Defines a timer interval for the check.
v May have default values overridden by installation updates.
v Communicates check results by issuing messages to a buffer associated with the

check.

The following are examples of situations customers uncovered running IBM
Health Checker for z/OS at different times:
v Configuration abnormalities in what was believed to be a stable system.
v Unexpected values on a system. Investigation revealed changes had been

correctly made to that system, but not replicated on other systems.
v Default configurations that were never optimized for performance.
v Outdated settings that didn't support all current applications.
v Mismatched naming conventions that could have led to an outage.
v Dynamic changes accruing over the life of the IPL that can cause problems.

Hints for planning your checks:
v Keep in mind that each check should only check for one thing. This will make it

much easier for the installation to resolve exceptions that the check finds and
override defaults.

v If you are writing a check that will flag a default or common valid configuration
setting as an exception, you should:

© Copyright IBM Corp. 2006, 2015 95

– Make sure that the HZSADDCHECK exit routine for your check specifies the
INACTIVE parameter on the HZSADDCK macro. INACTIVE specifies that
the check should not run until the installation changes the state to active. See
Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 191 and
“HZSADDCK macro — HZS add a check” on page 266.

– Include information in your check output messages about why the check user
is getting an exception message for a default or common valid setting.

Look for great information on writing checks in our Redpaper™: There's lots of
great experience-basecd information on writing checks in Redpaper Exploiting the
Health Checker for z/OS infrastructure (REDP-4590-00).

Sample checks: You will find sample checks in the SYS1.SAMPLIB dataset and in
the z/OS UNIX file system directory /usr/lpp/bcp/samples.

Identifying potential checks
Look for potential checks in the following areas:
v System history can provide an insight to potential checks.
v Past system outages or conditions that produced an alert usually indicate a

situation that could be detected by an appropriate check.
v Support call documentation can reveal common configuration problems and

values.
v Product documentation may reveal settings that you wish to check in real time.
v Single and multisystem configuration situations.

Within those areas, look for check routine candidates from the following:
v Configuration problems or dynamic installation changes, including common

initial setup errors and single points of failure.
v Configuration values do not reflect recommended settings. For example, the

CNZ_SYSCONS_MSCOPE check ensures that MVS system consoles are defined
to have local message scope, which is recommended.

v Defaults that no longer reflect the current recommendations.
v Configuration recommendations that may have changed as a result of new

functions introduced.
v Installation values approaching configuration limits

The life-cycle of a check - check terminology
We'll use the following terms throughout this document:
v Check iteration: An instance of a check routine that does the check processing

and clean up phases of a check routine. Only one iteration of a particular check,
identified by the check and owner name, can run at a time. During refresh
processing, a check is reset to its first iteration.

v Check life-cycle: The life-cycle of a check is one full cycle of a check, from
initialization through delete. Then, when a check is added to the system as part
of refresh processing, the life of the check starts all over again.

v Installation updates: The installation can update or override some of the default
check values you define in the check definition using:
– SDSF
– The MODIFY command
– Policy statements in the HZSPRMxx parmlib member

96 IBM Health Checker for z/OS User's Guide

The installation might update some check values to make the check more
suitable for their environment or configuration. See Chapter 4, “Managing
checks,” on page 43.

v Refresh process: Refresh processing first deletes one or more checks from the
IBM Health Checker for z/OS and then add the same checks back to the system.
The system does the following for each refreshed check:
– Applies any installation updates to the default values for the check.
– Clears the 2K work area (PQEChkWork)
– Resets the check's iteration count to one.
– Starts the initialization phase for the check, if the check is defined as active.

For a local check , you can have multiple checks in a single check routine. When
you refresh some, but not all, of the checks in a check routine, the system does
refresh processing only for the specified checks.
Refresh processing is kicked off in response to:
– Refresh request (E action character) from the SDSF CK panel. See “Using

SDSF to manage checks” on page 45.
– The MODIFY (F) hcproc,REFRESH operator command. See “Using HZSPRMxx

and MODIFY hzsproc command” on page 66.

What kind of check do you want to write?
You can develop the following basic types of checks:
v “Local checks”
v “Remote checks” on page 98
v “REXX checks” on page 100

To issue messages from your check, see “Issuing messages for your check -
message table checks versus DIRECTMSG checks” on page 102.

Local checks
Local checks run in the IBM Health Checker for z/OS address space, hzsproc. You
can write local checks in either Metal C or assembler. See “Writing local and
remote checks in Metal C” on page 99.

Because the local check runs in the IBM Health Checker address space, writing a
local check is simpler than a remote check, but the data you can access might be a
little more limited than you can access from a remote check running in the caller's
address space. Make sure that your check can access the data it needs from the
IBM Health Checker for z/OS address space and that it does not require any
potentially disruptive actions, such as I/O intensive operations, serialization, or
waits. This is important because if your check hangs in the hzsproc address space, it
can affect the performance of IBM Health Checker for z/OS and all the other
checks.

Local checks must be APF authorized.

The following figure shows the parts of a local check. The shaded items show the
parts that a check developer must provide:

Chapter 5. Planning checks 97

Remote checks
Remote checks run as tasks in the address space of the caller. For example, a
remote check might run in a server address space so that it can more easily obtain
the necessary data about the server space and also more easily read data from data
sets.

You can write remote checks in either Metal C or assembler. See “Writing local and
remote checks in Metal C” on page 99.

You should write a remote check when:
v You need a check to run in a specific address space, or you cannot access the

data you need for your check from the IBM Health Checker for z/OS address
space

v Your check requires potentially disruptive actions, such as I/O intensive
operations, serialization, or waits. This is important because if your check hangs
in the hzsproc address space, it can affect the performance of IBM Health
Checker for z/OS and all the other checks.

Local and remote check routines share a basic structure, but there are enough
differences between them that you'll need to know before you start writing
whether you are writing a local or a remote check. A remote check requires
synchronization and communication between the remote check routine and IBM
Health Checker for z/OS.

IBM Health Checker for z/OS tracks remote checks for you. If the caller's address
space where the remote check is running goes down, IBM Health Checker for
z/OS treats the check as if it had been deleted. If the IBM Health Checker for

IBM Health Checker for z/OS
address space

Message
table

Local
check
routine

HZSPQE
data
area

Installation
overrides

optional
HZSADDCHECK

exit
routine

Figure 5. The parts of a local check

98 IBM Health Checker for z/OS User's Guide

z/OS address space terminates, upon restart it restarts any remote checks that
were defined to the system when the address space terminated, unless they have
been explicitly deleted.

A remote check need not be APF authorized, but, if not, must be permitted by
RACF or other security product.

The following figure shows the parts of a remote check. The shaded items show
the parts that a check developer must provide:

Writing local and remote checks in Metal C
You can write either local or remote checks in Metal C. Metal C programming uses
features provided by the XL C compiler as a high level language (HLL) alternative
to writing the program in assembly language. Using Metal C, you can:
v Generate code that is independent of the Language Environment®.
v Generate code that follows MVS linkage conventions, making it easy to integrate

with the existing code base, such as the IBM Health Checker for z/OS
framework.

v Provide support for accessing the data stored in data spaces.
v Provide support for embedding assembly statements, including assembler

service calls, into the compiler-generated code, using the __asm keyword.

See z/OS Metal C Programming Guide and Reference.

Besides the existing Metal C header files in the runtime library in z/OS UNIX file
system directory /usr/include/metal/, IBM Health Checker for z/OS provides
generic C header files (hzsh*.h) containing:
v Mappings of IBM Health Checker for z/OS structures and control blocks
v Commonly used Health Checker related constants

IBM Health Checker for z/OS
address space

Caller’s address space

Message
table

Remote
check
routine

HZSADDCK

HZSPQE
data
area

Installation
overrides

Figure 6. The parts of a remote check

Chapter 5. Planning checks 99

These header files are contained in SYS1.SIEAHDRV.H. See Chapter 6, “Writing
local check routines,” on page 105 or Chapter 7, “Writing remote check routines,”
on page 135 for more information about the header files and using Metal C to
write checks.

You can find IBM Health Checker for z/OS related Metal C samples in z/OS UNIX
file system directory /usr/lpp/bcp/samples.

REXX checks
A REXX check runs in a System REXX address space in an APF authorized
environment defined by System REXX. You identify it as a REXX check on the
REXX(YES) parameter when defining the check to the system.

A REXX check makes it easy to issue system commands (using the AXRCMD
function) and to analyze the output of commands issued. REXX also makes it easy
to read data sets or to issue system commands, and parse the retrieved information

You can run System REXX checks in TSO and non-TSO environments.

See the following for information about REXX:
v System REXX in z/OS MVS Programming: Authorized Assembler Services Guide for

information about the AXRCMD function and coding REXX execs in TSO and
non-TSO environments.

v z/OS TSO/E REXX Reference

v z/OS Using REXX and z/OS UNIX System Services

The following figure shows the parts of a REXX check. The shaded items show the
parts that a check developer must provide:

Summary of checks - differences and similarities
The following table shows some of the differences between local and remote
checks:

Message
table

HZSPQE
data
area

Installation
overrides

IBM Health Checker for z/OS
address space

System REXX

REXX
check

HZS_PQE
variables

Figure 7. The parts of a REXX check

100 IBM Health Checker for z/OS User's Guide

Table 8. Summary of local, remote, and REXX checks

Local checks Remote checks REXX checks

How do I know which type of check to write?

Write a local check in assembler or Metal
C to look at system storage and use
assembler services. (You can issue
assembler services in either assembler or
Metal C.)

A local check runs in the IBM Health
Checker for z/OS address space, so make
sure your check can access the data it
needs from there, and does not require a
potentially disruptive action, such as a
wait. (If your check hangs in the hzsproc
address space, it can affect the
performance of IBM Health Checker for
z/OS and all the other checks.)

A local check has the advantage of
receiving IBM Health Checker for z/OS
recovery support.

Write a remote check in assembler or
Metal C to look at system storage and use
assembler services. (You can issue
assembler services in either assembler or
Metal C.)

A remote check runs in the caller's address
space, and is a good choice if:

v Your check needs to access data that is
hard to reach from the IBM Health
Checker for z/OS address space.

v Your check requires potentially
disruptive actions, such as I/O intensive
operations, serialization, or waits.

Write a REXX check to take advantage of
the ease in issuing system commands
(using the AXRCMD function) and
analyzing the output of commands issued.
It is easy in a System REXX check to
handle I/O. For example, from a REXX
check, it is very easy to parse parameters
into multiple variables and to read from
and write to REXXIN and REXXOUT data
sets.

What languages are supported?

Metal C and assembler Metal C and assembler REXX exec

Where does the check run?

In the IBM Health Checker for z/OS
address space.

In the caller's address space. In a System REXX address space.

What kind of recovery support does the system provide for my check?

If the check routine abends, the system
handles the abend and continues trying to
call the check on subsequent iterations.

If the check routine abends, it is up to the
application to provide recovery to handle
the abend.

If the task that issues the HZSADDCK
macro defining the check terminates for
any reason, including an abend that is not
re-tried, the system treats the check as if it
is deleted.

If the REXX check abends, the system will
mark the check as no longer running for
that iteration.

How do I define a check?

Do one of the following:

v For testing purposes, define the check
defaults in HZSPRMxx using
ADD|ADDREPLACE CHECK.

v Create a separate HZSADDCHECK exit
routine that issues the HZSADDCK
service to describe check defaults. You
must then add the check to IBM Health
Checker for z/OS by adding the exit
routine to the HZSADDCHECK exit.

Check routine defines itself by issuing the
HZSADDCK macro describing check
defaults.

Do one of the following:

v Define the check defaults in HZSPRMxx
using ADD|ADDREPLACE CHECK.

v You can also create a separate assembler
HZSADDCHECK exit routine that issues
the HZSADDCK service to describe
check defaults. You must then add the
check to IBM Health Checker for z/OS
by adding the exit routine to the
HZSADDCHECK exit.

Multiple checks per check routine supported?

Yes - Consolidation of multiple checks in
one check routine for a product or
element supported and recommended.

Yes - Consolidation of multiple checks in
one check routine is supported. Since you
must manage the storage for remote
checks, whether or not there is any benefit
to grouping checks into a single routine
depends on how you manage the storage.

Note that each remote check, even when
grouped in one check routine, must run in
a separate task.

Yes - Consolidation of multiple checks in
one check exec is supported.

What prompts the processing phase for the check routine?

Chapter 5. Planning checks 101

Table 8. Summary of local, remote, and REXX checks (continued)

Local checks Remote checks REXX checks

Function codes in the HZSPQE data area
for local check routines.

Release codes from the IEAVPSE service
for remote check routines.

The check invokes HZSLSTRT to initialize
the check environment, and HZSLSTOP to
indicate that check processing is complete.

Need to synchronize the check routine and the system?

No - see Chapter 6, “Writing local check
routines,” on page 105

Yes - see Chapter 7, “Writing remote check
routines,” on page 135

No - see Chapter 8, “Writing REXX
checks,” on page 169

Who loads the message table module for the check into storage?

IBM Health Checker for z/OS The remote check routine IBM Health Checker for z/OS

Can I read and write persistent data to the HZSPDATA data set?

Yes, all the check types can use the HZSPDATA data set.

How many checks can I run at a time?

The system can process 20 checks at a time. Processing a check can mean either:

v Running a local check

v Starting a remote check

Once a remote check has been started, it can run on its own and is not subject to the
limitation of 20. Thus there is no intrinsic limit to the number of remote checks that
can be run at a time.

See System REXX in z/OS MVS
Programming: Authorized Assembler Services
Guide.

How does delete processing work?

When a check is deleted through either
refresh processing or when a user deletes
the check, your check will come back to
run again whenever ADDNEW or refresh
processing occurs, unless you use the
DELETE parameter in the active policy.

When a check is deleted, through either
refresh processing or when a user deletes
the check, the check is marked as deleted
and does not come back at subsequent
refresh or ADDNEW processing. The
delete request is passed to the remote
check in a release code and depending on
the type of delete release code, the check
routine can re-define itself.

A REXX check is not called for delete
processing. When a check is deleted
through either refresh processing or when
a user deletes the check, your check will
come back to run again whenever
ADDNEW or refresh processing occurs,
unless you use the DELETE parameter in
the active policy.

Issuing messages for your check - message table checks versus
DIRECTMSG checks

The messages that your check issues are the most important part of your check,
because they report the results found by the check. For all of the check types, there
are two ways to issue check messages:
v Create a separate message table module that defines the check output messages

issued by the check routine. A message table has the advantage of allowing you
to create much more complete messages. Using a message table also makes it
easier to create consistent and maintainable messages and includes formatting
support. See “Issuing messages in your local check routine with the HZSFMSG
macro” on page 117 for additional information on planning check messages in a
message table.

v Issue messages directly from the check routine. You define the message text right
in the message request, as follows:
– For local or remote checks, use HZSFMSG REQUEST=DIRECTMSG,

providing the message text in the HZSLFMSG REQUEST=DIRECTMSG
request. See “HZSFMSG macro — Issue a formatted check message” on page
313.

– For REXX checks, use HZSLFMSG_REQUEST='DIRECTMSG', providing the
message text right in the HZSLFMSG_REQUEST='DIRECTMSG' input
variables. See “Input variables for HZSLFMSG_REQUEST='DIRECTMSG'” on
page 238.

102 IBM Health Checker for z/OS User's Guide

When it is time to define a DIRECTMSG check to the system, you must do so
using the MESSAGETABLE=*NONE subparameter on the MODIFY hzsproc
command or in an HZSPRMxx parmlib member on the ADD | ADDREPLACE
parameter. See “Using HZSPRMxx and MODIFY hzsproc command” on page 66.

Where to next? A road map for developing your check
To create a IBM Health Checker for z/OS check for your component or product,
you must do the following:
1. Write a check routine that gathers information, compares current values with

suggested settings or looks for configuration problems, and issues messages
with the results of the check.
v For a local check, see Chapter 6, “Writing local check routines,” on page 105.
v For a remote check, see Chapter 7, “Writing remote check routines,” on page

135.
v If you are writing a REXX check, see Chapter 8, “Writing REXX checks,” on

page 169.
2. Create messages for the check. You can do this in two ways:

v Create a separate message table module that defines the check output
messages issued by the check routine. See “Issuing messages in your local
check routine with the HZSFMSG macro” on page 117.

v Create DIRECTMSG messages right in the check routine in one of the
following ways:
– For local or remote checks, use HZSFMSG REQUEST=DIRECTMSG. See

“HZSFMSG macro — Issue a formatted check message” on page 313.
– For REXX checks, use HZSLFMSG_DIRECTMSG_. See “Input variables for

HZSLFMSG_REQUEST='DIRECTMSG'” on page 238.
3. Provide documentation about check-specific installation overrides to allow the

installation to override the default check values defined when the check was
added. See Chapter 13, “IBM Health Checker for z/OS checks,” on page 389.

Chapter 5. Planning checks 103

104 IBM Health Checker for z/OS User's Guide

Chapter 6. Writing local check routines

A local check runs in the IBM Health Checker for z/OS address space, hzsproc. You
can write a local check in either Metal C or assembler.

To learn about the differences between local and remote checks and deciding
which type you want to write, see “Remote checks” on page 98.

In this chapter, we'll cover the following:
v “Metal C or assembler?”
v “Sample local checks” on page 106
v “Local check routine basics” on page 106
v “Defining a local check to IBM Health Checker for z/OS” on page 108
v “Programming considerations” on page 109
v “Using the check parameter parsing service (HZSCPARS)” on page 111
v “Using the HZSPQE data area in your local check routine” on page 111
v “Function codes for local check routines” on page 113
v “Creating and using data saved between restarts” on page 115
v “Issuing messages in your local check routine with the HZSFMSG macro” on

page 117
v “Writing a check with dynamic severity levels” on page 124
v “Controlling check exception message WTOs and their automation

consequences” on page 126
v “Defining the variables for your messages” on page 120
v “The well-behaved local check routine - recommendations and recovery

considerations” on page 127
v “Building Metal C checks” on page 130
v “Debugging checks” on page 132
v Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 191

Metal C or assembler?
As mentioned above, you can write a local or remote check in either Metal C or
assembler. The concepts in this section apply to either language.

Metal C lets you create a IBM Health Checker for z/OS compatible load module
that follows MVS linkage conventions. You can also easily use assembler macros,
such as HZSFMSG, HZSCPARS, or any other assembler macro, in your Metal C
check routine using the __asm keyword.

If you are writing in Metal C, IBM Health Checker for z/OS provides generic C
header files (hzsh*.h) in SYS1.SIEAHDRV.H containing the following mappings of
IBM Health Checker for z/OS structures and control blocks and commonly used
Health Checker related constants:

© Copyright IBM Corp. 2006, 2015 105

Table 9. Correlation between IBM Health Checker for z/OS mapping macros and Metal C
header files

Assembler mapping
macros in
SYS1.MACLIB

Description Metal C header file in
SYS1.SIEAHDRV.H

HZSPQE Individual check data area HZSHPQE

HZSDPQE Individual deleted check data
area

HZSHDPQE

HZSMGB Message data area HZSHMGB

HZSQUAA HZSQUERY return information
data area

HZSHQUAA

HZSZCPAR Check parameter area HZSHCPAR

HZSZENF Event data for ENF 67 HZSHENF

HZSZHCKL Message buffer log entry HZSHHCKL

HZSZCONS Check return and reason codes HZSHCONS

Common shared types HZSHTYPE

Include that pulls in all the other
header files above

HZSH

For detailed information about Metal C, see z/OS Metal C Programming Guide and
Reference. You will also want to use the sample checks in “Sample local checks.”

Sample local checks
Of course you're going to read this entire chapter to understand everything you
need to know about writing a local check routine. But we also have what you're
really looking for - samples:
v Metal C samples in z/OS UNIX file system directory /usr/lpp/bcp/samples:

– hzscchkr.c - Sample Metal C local check routine demonstrating how to issue
check messages.

– hzscchkp.c - Sample Metal C local check demonstrating how to handle
parameters and use persistent data.

– hzscadd.c - Sample Metal C HZSADDCHECK exit routine.
– hzssmake.mk - Sample Metal C makefile to build sample health checks.

v Assembler samples in SYS1.SAMPLIB:
– HZSSADCK - Sample assembler HZSADDCHECK exit routine.
– HZSSCHKP - Sample assembler local check routine.
– HZSSCHKR - Sample assembler local check routine.
– HZSSMSGT - Sample message input.

Local check routine basics
A check routine is a program that gathers installation information and looks for
problems, and then issues the check results in messages. IBM Health Checker for
z/OS writes the check exception messages as WTOs or to the message buffer. The
check routine runs in the IBM Health Checker for z/OS address space, which has
superuser authority.

When IBM Health Checker for z/OS calls the check routine, register 1 points to a
parameter list containing the address of the HZSPQE data area for the check (as

Local check routine

106 IBM Health Checker for z/OS User's Guide

well as the address of the 4K dynamic work area). For a Metal C check, use the
HZSHPQE header contained in SYS1.SIEAHDRV.H, which mirrors the HZSPQE
data area. The HZSPQE data area for a check contains:
v The defaults defined for the check.
v A 2K check work area, a pointer to a 4K dynamic work area, and a pointer to a

2GB - 4K dataspace for use by the check.
v A function code indicating why the check was called.
v Any installation update values.

The check routine should not update the HZSPQE data area except for the 2K
check work area. See “Using the HZSPQE data area in your local check routine” on
page 111.

We recommend that you keep the check routine very simple. At a high level, your
check will consist of:

1. Reentrant entry and exit linkage (“Assembler reentrant entry and exit linkage”
on page 110) and other setup.

2. Handling of input parameters, if any, for your check when the system indicates
that parameter data has changed. See “Using the check parameter parsing
service (HZSCPARS)” on page 111.

3. The meat of the check - checking for potential problems on a system.
4. Issuing messages using the HZSFMSG macro (“Issuing messages in your local

check routine with the HZSFMSG macro” on page 117)
5. Defining your message variables in the HZSMGB data area (“Defining the

variables for your messages” on page 120)

Limit a check to looking at one setting or one potential problem. Limiting the
scope of a check will make it easier for the installation using the check to:
v Resolve any exceptions that the check finds by either fixing the exception,

overriding the setting, or deactivating the check.
v Set appropriate override values for check defaults such as severity or interval.

Do not set return and reason codes for your check routine. The system will
return a result for you in the PQE_Result field when you use HZSFMSG
REQUEST=CHECKMSG macro request (for exception messages) or the HZSFMSG
REQUEST=STOP macro request (to stop the check). Do not set this field in your
check routine.

Use the 2K check work area: Use the 2K check work area in field PQEChkWork
for data you want to retain through check iterations for the life of the check, until
the check is refreshed or deleted. Using the 2K check work area allows you to
avoid obtaining additional resources for your check routine. Prior to the Init
function code call, the system sets the 2K work area to zeros.

Use the 4K dynamic work area: Use the 4K dynamic work area for data you want
to last for only one function code call. The check routine can find the address of
the 4K dynamic work area in:
v Register 0 on entry to the check routine.
v The second word of the parameter list pointed to by Register 1
v Field PQE_DynamicAreaAddr in the HZSPQE data area

Local check routine

Chapter 6. Writing local check routines 107

Using the 4K dynamic work area allows you to avoid obtaining additional
resources for your check routine. However, you cannot rely on the contents of this
area being set to a specific value between check function calls or check iterations.

Use the 2GB - 4K dataspace: Use the dataspace for data you want to last for only
one function code call. The check routine can find the address of the dataspace in
field PQE_DataspaceALET in the HZSPQE data area. Our sample check
HZSSCHKP demonstrates how to use this dataspace and release the dataspace
pages at the end of the check iteration. See “Sample local checks” on page 106.

If you do obtain additional resources for your check routine besides the 2K and
4K work area, the storage must be either:
v Obtained and freed in the same function code processing.
v Owned by the jobstep task and freed no later than PQE_Function_Code_Delete

processing.

For complete information on managing virtual storage in a program, see z/OS MVS
Programming: Authorized Assembler Services Guide

The PQEChkWork field should be the only field your check routine writes to in
the HZSPQE data area. The check routine can write to the 2K PQEChkWork field
in the HZSPQE data area, and the system saves the entire area for subsequent calls
to the check routine. The system clears the 2K PQEChkWork user area before
calling the check with the PQE_Function_Code_Init function code. Changes made
to any other HZSPQE fields are not saved between function codes.

You can also, of course, write to the 4K dynamic work area pointed to by field
PQE_DynamicAreaAddr.

Group checks for a single element or product in a single check routine. You can
group multiple uniquely named checks for a single element or product in a single
check routine. This can help to reduce system overhead and simplify maintenance.
If you are using an HZSADDCHECK exit routine to add your local checks to the
system, you should also use a single exit routine to add related checks to the
system. Code your check routine to look for the entry code passed in field
PQE_Entry_Code, (from the ENTRYCODE parameter on the HZSADDCK call or
HZSPRMxx parmlib member) and pass control to processing for the check
indicated. Note that the IBM Health Checker for z/OS will not verify the
uniqueness of the entry codes you define for your checks.

When you group local checks together in a single check routine, each check still
gets its own HZSPQE data area. Checks cannot communicate with each other.

Do not attempt to communicate between individual checks. Even though you
may have placed all of your check routines in the same module, do not rely on
communication between them. Each check is intended to stand by itself.

Defining a local check to IBM Health Checker for z/OS
Starting with z/OS V1R8, there are two ways to add your local check to the
system:
v After you've written your check, use the ADD | ADDREPLACE CHECK

parameter in an HZSPRMxx parameter to define check defaults and add the
check. See "ADD or ADDREPLACE CHECK parameters".

Local check routine

108 IBM Health Checker for z/OS User's Guide

v Write an authorized HZSADDCHECK exit routine running in the IBM Health
Checker for z/OS address space, as described in Chapter 9, “Writing an
HZSADDCHECK exit routine,” on page 191. The HZSADDCHECK exit routine
describes the information about your local check or checks. The
HZSADDCHECK exit routine invokes the HZSADDCK macro to:
– Identify the check, providing values such as the check owner, check name,

check routine name, and message table name.
– Specifies the default values for the check, such as the check interval, check

parameter, and check severity.

Programming considerations

Environment
IBM Health Checker for z/OS calls the check routine in primary mode from the
IBM Health Checker for z/OS address space.
v Minimum authorization: Authorized
v Address space: IBM Health Checker for z/OS
v State: Supervisor
v Dispatchable unit mode: Task
v Cross memory mode: PASN=SASN=HASN
v AMODE: 31
v ASC mode: Primary
v Key: System defined. The system will choose a key for a check and use it for all

function code calls to the check routine. The key will match the key in field
TCBPKF.

v Interrupt status: Enabled for I/O and external interrupts
v Locks: No locks held
v Control parameters: Control parameters are in the IBM Health Checker for z/OS

address space

Requirements
v Many installations are multilevel secure systems, and check developers must be

aware of the multilevel system environment..
v The check routine must be able to handle the IBM Health Checker for z/OS

function or release codes:
– “Function codes for local check routines” on page 113
– “Release codes for remote check routines” on page 145

See “The well-behaved local check routine - recommendations and recovery
considerations” on page 127.

v The check routine load module and message table must reside in an
APF-authorized library. The system will treat them as reentrant.

Restrictions
None

Gotchas
v If your check routine gets an abend X'290', reason code xxxx4007, it could mean

that the routine is not in an APF authorized library.

Local check routine

Chapter 6. Writing local check routines 109

v The check routine is reentrant, so your check routine must use the LIST and
EXECUTE forms of the any z/OS macros with parameter lists, including the
HZS macros.

Input Registers
When a check receives control the contents of the registers are as follows:

Register
Contents

Register 0
Address of the 4K dynamic work area

Register 1
Address of an 8 byte parameter list containing:
v The 4 byte address of the HZSPQE for the check
v The 4 byte address of the 4K dynamic work area

Register 13
Address of a 144 byte save area

Register 14
Return address

Register 15
Address of the check routine

Output Registers
When a check returns control, the contents of the registers are as follows:

Register
Contents

Register 0 - 15
The check routine does not have to place any information in this register,
and does not have to restore its contents to what they were when the exit
routine received control

Establishing a recovery routine for a check
Establishing an ESTAEX or IEAARR routine in the check routine will provide
recovery from errors encountered during check execution. See Writing recovery
routines in z/OS MVS Programming: Assembler Services Guide.

The check routine continues to be invoked at the interval defined unless three
consecutive calls fail, in which case the check is placed in a disabled state.

See “The well-behaved local check routine - recommendations and recovery
considerations” on page 127.

Assembler reentrant entry and exit linkage
To see an example of how to code the reentrant entry and exit linkage for a local
assembler check routine, see sample check HZSSCHKR in SYS1.SAMPLIB. For
more information about entry and exit linkage, see the following topics in z/OS
MVS Programming: Assembler Services Guide:
v Linkage Conventions
v Example of Using the Linkage Stack

Local check routine

110 IBM Health Checker for z/OS User's Guide

Note that for Metal C checks, you do not have to specify this assembler linkage.
All you need to do is specify compiler option RENT - See “Building Metal C
checks” on page 130.

Using the check parameter parsing service (HZSCPARS)
If your local or remote check includes parameters, you can use the HZSCPARS
check parameter parsing service to parse parameters. You can use HZSCPARS in
either an assembler or Metal C check routine. When HZSCPARS finds a parameter
error, it issues appropriate error messages for you using the REASON=PARSxxxx
reason values on the HZSFMSG macro. This means that your check routine does
not have to issue error messages for parameter errors. See “HZSFMSG macro —
Issue a formatted check message” on page 313 for explanations of all the
REASON=PARSxxxx values.

If you are using HZSCPARS for a check that expects a parameter or parameters
but does not get one, HZSCPARS considers this an error and issues an error
message.

Your check routine can also use REASON=PARSxxxx on HZSFMSG
REQUEST=HZSMSG to issue parsing error messages in the course of doing its
own parameter parsing.

You will use HZSCPARS REQUEST=PARSE in your check routine to allocate a
parameter area, mapped by mapping macro HZSZCPAR, that describes the parsed
parameters for the check. You can free this parameter area using HZSCPARS
REQUEST=FREE. For a local check, if you do not free the parameter area, the
system will delete the parameter area upon return from the check routine.

See “HZSCPARS macro — HZS Check Parameter Parsing” on page 300 for
complete information.

For an example of using the HZSCPARS macro in a check routine, see sample
HZSSRCHC, which you can find in SYS1.SAMPLIB.

Note that your check routine must still issue the HZSFMSG REQUEST=STOP
request when HZSCPARS finds a parameter error - see “Function codes for local
check routines” on page 113 and “Release codes for remote check routines” on
page 145.

Using the HZSPQE data area in your local check routine
The HZSPQE data area contains all the information a check routine needs,
including the defaults defined in the HZSADDCHECK exit routine and any
installation overrides to those defaults. As we mentioned above, for Metal C
checks, the IBM Health Checker for z/OS header file HZSHPQE mirrors the
HZSPQE data area mapping.

The HZSPQE contains a number of sections, but some of the most important are:
v The PQE_DynamicAreaAddr, which contains the address of the 4K dynamic

user area.
v PQEChkParms, which shows the current values for the check.
v PQEChkWork, which is the 2K check work area.

The table below shows the structure and some of the most important fields in the
HZSPQE data area.

Local check routine

Chapter 6. Writing local check routines 111

Table 10. Important fields in the HZSPQE data area for a local check routine

Field name Meaning

PQEHeader section - contains general control block information.

PQE_DynamicAreaAddr The address of a 4K dynamic work area. The system does not clear this work area
before or after a function code call. Use the 4K dynamic work area for data you want
to last for only one function code call. You cannot rely on the contents of this area
being set to a specific value between check function calls or check iterations. This field
does not apply to remote checks.

PQEStatus section - contains status information about the check.

PQE_ CleanupInDifferentTaskThanCheck

This bit indicates that the cleanup function is executing under a different task than the
check function. If this bit is on, and the task that ran the check function obtained a
resource owned by the current task, the local check routine does not need to use the
cleanup function to free the resource. See “Function codes for local check routines” on
page 113. This bit applies only to local checks.

PQE_Function_Code This field indicates the function code for the check. The check routine receives control
in response to one of the following function codes: PQE_Function_Code_Init,
PQE_Function_Code_Check, PQE_Function_Code_Cleanup, or
PQE_Function_Code_Delete. This bit applies only to local checks. Release code
information for remote checks is mapped by the HZSZCONS mapping macro - see
“Release codes for remote check routines” on page 145.

PQE_DataspaceALET The ALET of a data space on the DU-AL that the check routine can use for any
purpose. The check routine must not assume that any of the storage is 0. The check
can use all the storage in the range 1000-x'7FFEFFF'. This field is only valid for local
checks (non-REXX).

PQE_DataspaceSTOKEN The STOKEN of the data space addressed by PQE_DataspaceALET. If the check
routine uses more than two pages of data space storage it should issue DSPSERV
RELEASE using this STOKEN and the used range upon completion of the check
function (or in the cleanup function). This field is only valid for local checks
(non-REXX).

PqeChkInfo section - contains the defaults defined in the HZSADDCHECK exit routine for the check

PQE_Entry_Code Contains the identifier (entry code) assigned for the check in the HZSADDCHECK exit
routine. The entry code is used when a check routine contains multiple checks.

PqeChkParms section - contains the installation overrides for default parameters for the check from HZSPRMxx
and the Modify command (F hzsproc).

PQE_LookAtParms A bit indicating that the parameters have changed. If this bit is on, the check routine
should read the PQE_ParmArea and PQE_PARMLen fields in
PQE_Function_Code_Check processing.

PQE_Verbose A byte indicating whether the check is in verbose mode.

PQE_Debug A byte indicating whether the check is in debug mode.

PQE_ParmLen Contains the length of the parameter area. Quotes surrounding the PARMS value in an
operator command or HZSPRMxx statement are not included in the resulting length.
For example, PARMS('THE_PARM') will result in a length of 8.

PQE_ParmArea The area containing the user parameters. Quotes surrounding the PARMS value in an
operator command or HZSPRMxx statement are not included.

PQEChkWork section - 2K check work area used and mapped by the check routine as needed. The system zeros the
2K user PQEChkWork user area before calling the check with function code PQE_Function_Code_Init. A check
routine can both write and read from this field, and the system will retain this information for subsequent calls to the
check routine. Changes made to any other HZSPQE fields are not saved between function calls.

Local check routine

112 IBM Health Checker for z/OS User's Guide

Function codes for local check routines
IBM Health Checker for z/OS invokes a local check routine with a function code
to indicate why it was called. All the function code calls will run under the same
jobstep task, but you cannot assume that any of these function codes will run in
the same task as a preceding function.

In general:
v PQE_Function_Code_Init (Init function) is called once for the life of the check

(which lasts until the check is deleted).
v PQE_Function_Code_Check (Check function) is called at the specified interval

for the check
v PQE_Function_Code_Cleanup (Cleanup function) is called right after the Check

function
v PQE_Function_Code_Delete (Delete function) is called once at the end of the life

of the check.

The following table summarizes the function codes provided by IBM Health
Checker for z/OS, showing what the check should do for each
PQE_Function_Code_ and when IBM Health Checker for z/OS invokes it:

Table 11. Summary of function codes for local checks

Function Check and system actions When is it invoked?

Init What should the check do? For PQE_Function_Code_Init, the check routine
should validate that the environment is suitable for the check. If it is not, issue
the HZSFMSG REQUEST=STOP macro to stop the check. If you obtain
additional storage for the check, obtain it in Init processing and obtain it in
jobstep-task owned storage. (You cannot assume that each function code runs
under the same task.)

v Refresh

v When a check is
added

v When a check
transitions to the
active enabled
stateWhat does the system do? The system does the following setup steps to

prepare for multiple check iteration:

v Initializes the HZSPQE data area with default and override values for the
check.

v Passes the default and installation overrides to the check in the HZSPQE
data area for the check.

v Obtains 2K of workarea storage mapped by field PQEChkWork. This
storage is zeroed for Init processing and lasts for the life of the check.

v Obtains 4K of dynamic work area pointed to by field
PQE_DynamicAreaAddr. The contents of this work area are not set to any
particular value and are not preserved across check iterations.

Local check routine

Chapter 6. Writing local check routines 113

Table 11. Summary of function codes for local checks (continued)

Function Check and system actions When is it invoked?

Check What should the check do? For PQE_Function_Code_Check, the check routine
should:

1. Check to see if the PQE_LookatParm bit is set on, indicating either that
this is the first iteration of the check, or that the installation has changed
the check parameters since the last iteration. If the bit is on, validate the
parameters in the PQE_UserParmArea of the HZSPQE data area.

If the check finds bad installation parameters, it should:

a. Issue an error message indicating what the problem is.

b. Issue the HZSFMSG REQUEST=STOP,REASON=BADPARM macro
request to stop the check. See “HZSFMSG macro — Issue a formatted
check message” on page 313.

2. Check for the setting or potential problem it was designed to report on.

3. Report check results using the HZSFMSG service to issue exception
messages, reports, and other messages that tell the installation the results
of and how to respond to conditions found by the check. You can issue a
particular message multiple times in a check routine.

For an exception message, issue the HZSFMSG REQUEST=CHECKMSG
request. See “Issuing messages in your local check routine with the
HZSFMSG macro” on page 117.

v After Init function

v At specified check
interval

v When check run
is requested.

v When a check
parameter
changes.

What does the system do?

v If a check abends for three iterations in a row, the system stops calling the
check, which will not run again until it is refreshed or its parameter is
changed.

v Obtains 4K of dynamic work area pointed to by field
PQE_DynamicAreaAddr . The contents of this work area are not set to any
particular value and are not preserved across check iterations.

Cleanup What should the check do? For PQE_Function_Code_Cleanup, the check
routine should clean up anything that you want cleaned between check
iterations. For example, cleanup anything that you are not cleaning up in
Check processing, or that must be cleaned up if Check processing abends.

If you obtained resources owned by the current task during check function
processing, check the PQE_CleanupInDifferentTaskThanCheck bit. If the bit is
on, the system has already cleaned up the resources for you.

v After Check
function

What does the system do? The system obtains 4K of dynamic work area
pointed to by field PQE_DynamicAreaAddr. The contents of this work area
are not set to any particular value and are not preserved across check
iterations.

Delete What should the check do? For PQE_Function_Code_Delete, the check
routine should free any storage obtained during Init or Check processing that
has not yet been freed.

v Delete

v Refresh

v When the check
transitions out of
the active enabled
state. For
example, when
the check issues
HZSFMSG with
the STOP request.

v When the IBM
Health Checker
for z/OS address
space stops.

What does the system do? The system:

v Obtains 4K of dynamic work area pointed to by field
PQE_DynamicAreaAddr . The contents of this work area are not set to any
particular value and are not preserved across check iterations.

v Stops calling the check.

Local check routine

114 IBM Health Checker for z/OS User's Guide

Creating and using data saved between restarts
Your check can use the HZSPDATA data set for persistent data. Persistent data is
data that you want to save between restarts of either the system or IBM Health
Checker for z/OS. When you issue the HZSPWRIT macro to write persistent data,
the system saves data from two IPLs in HZSPDATA, the current IPL and the IPL
prior to the current. Then, for each IPL, HZSPDATA contains two instances of data
- one for the first iteration of the check and another for the most recent iteration of
the check that wrote data to HZSPDATA. The first instance does not change for the
life of the IPL, but the second instance is replaced each time a check writes data to
the HZSPDATA data set.

You can read data from the HZSPDATA data set using the HZSPREAD macro.
Commonly, checks use HZSPDATA to compare current data to the data saved in
the HZSPDATA data set from one of the saved IPLs.

We have a couple of tips for you in using HZSPREAD and HZSPWRIT macros to
read and write persistent data:
v Before you try to work with the persistent data that you read from the

HZSPDATA data set, make sure your code checks for the following HZSPREAD
return codes:
– Return code 8, reason code X'xxxx082D', equate symbol

HzslpdrdRsn_NoMatch indicates that no persistent data exists for this check.
– Return code 8, reason code X'xxxx0830', equate symbol

HzslpdrdRsn_DataDoesNotExist indicates that there is persistent data saved
for this check, but not for the requested IPL.

v Tips for using HZSPWRIT:
– You cannot delete data from the HZSPDATA data set once you have written it

there. You can only replace the data in the current IPL instance in
HZSPDATA.

– You cannot write a null record to HZSPDATA.
– You can issue multiple HZSPWRIT requests in a single check iteration. If the

check iteration completes normally (returns to its caller), all of the data
accumulated by HZSPWRIT requests for that iteration are written to
HZSPDATA. If the check iteration does not complete normally, none of the
data provided on HZSPWRIT requests for that check iteration is written to
HZSPDATA.

Gotcha: After your check writes data to the HZSPDATA data set using HZSPWRIT,
it takes one hour before data is actually hardened. That means that if the
installation restarts IBM Health Checker for z/OS before an hour or re-IPL less
than an hour has elapsed since the last HZSPWRIT, the data will not be saved in
the HZSPDATA data set. IBM Health Checker for z/OS operates this way so that if
a problem such as the following occurs, the system does not retain the data in the
HZSPDATA data set:
v The check iteration completes with an abend
v A remote check iteration is unsuccessful
v An invocation of HZSPWRIT is unsuccessful

Note that an unsuccessful check iteration or HZSPWRIT invocation does not have
any correlation to whether or not the check detected one or more exceptions.

Planning for persistent data: Sample HZSALLCP in SYS1.SAMPLIB shows how to
allocate and initialize the HZSPDATA data set. When you are allocating space for

Local check routine

Chapter 6. Writing local check routines 115

|
|

|
|

the HZSPDATA data set, keep in mind that in “Allocate the HZSPDATA data set to
save check data between restarts” on page 11, we tell customers to define the
HZSPDATA data set with a logical record length of 4096. You must plan for four
sets of data: for each of the two instances for both the current and previous IPLs.

Authorization for HZSPDATA: You can define RACF profiles in the XFACILIT
class for resources accessing the HZSPDATA.

Note that checks reading from or writing to the HZSPDATA data set must be both
APF authorized and also have indicated not to do security checks, or they must
have the appropriate access (READ or UPDATE) to either of the following:
v XFACILIT class resource HZS.sysname.checkowner.PDATA
v XFACILIT class resource HZS.sysname.checkowner.checkname.PDATA

See “HZSPREAD macro — Read Check Persistent Data” on page 346 and
“HZSPWRIT macro — Write Check Persistent Data” on page 356 for information
about authorization for checks to the HZSPDATA data set.

The following example shows how you might define a RACF profile for read or
update access to HZSPDATA data set for a check:
RDEFINE XFACILIT HZS.sysname.checkowner.checkname.PDATA UACC(NONE)
PERMIT HZS.sysname.checkowner.checkname.PDATA CLASS(XFACILIT) ID(hzspdid) ACCESS(READ|UPDATE)
SETROPTS CLASSACT(XFACILIT) RACLIST(XFACILIT)

If you have already RACLISTed the XFACILIT or FACILITY class, which you
probably have if you have IBM Health Checker for z/OS set up, just use the
REFRESH parameter on the SETROPTS statement:
SETROPTS RACLIST(XFACILIT) REFRESH

Use the SECCHECK(UNAUTH|ALL) parameter in your code to specify whether
you want the system to verify the security for writing to or reading from
HZSPDATA. See “HZSPWRIT macro — Write Check Persistent Data” on page 356
and “HZSPREAD macro — Read Check Persistent Data” on page 346.

Using ENF event code 67 to listen for check status changes
If your check is authorized, it can use the ENFREQ LISTEN service to detect check
status changes. On the ENFREQ service, specify theX'20000000' status change event
qualifier and the listener user exit routine that is to receive control after the
specified event occurs. The listener user exit specified receives control when IBM
Health Checker for z/OS comes up and notifies the check routine of the status
change.

To listen for ENF event code 67, you must specify the qualifying events on the
BITQUAL parameter, which specifies a 32-byte field, a hexadecimal constant, or a
register containing the address of a 32-byte field containing a bit-mapped qualifier
that further defines the event. The qualifier is mapped by mapping macro
HZSZENF. The BITQUAL value for the status change event is
Enf067_BitQual_StatusChange in the HZSZENF mapping macro. This might mean
on eof the following:
v The check completed with a different result than the last time it ran. For

example, the check ran successfully after the previous check run issued an
exception or vice versa.

v The check was deactivated or deleted

Local check routine

116 IBM Health Checker for z/OS User's Guide

|
|

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

The check then might want to issue the HZSQUERY macro to get information
about the check.

This event may not be presented if IBM Health Checker for z/OS is terminating
(indicated by a X'40000000' ENF 067 event for NotAvailable - see “Using ENF
event code 67 to listen for IBM Health Checker for z/OS availability” on page 139).

If the check routine decides it is no longer interested in knowing if IBM Health
Checker for z/OS is up or not, it can issue the ENFREQ REQUEST=DELETE
request to delete the listen request.

For information about ENFREQ and listener exits, see:
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v Listening for system events in z/OS MVS Programming: Authorized Assembler
Services Guide

Issuing messages in your local check routine with the HZSFMSG
macro

To issue a message with check results in your check routine, you must use the
HZSFMSG macro (“HZSFMSG macro — Issue a formatted check message” on page
313), which you can issue in either an assembler or Metal C check routine.

This section only covers using the HZSFMSG macro to issue a message, but a
message also consists of a few other ingredients. When your check runs, the
system assembles the message from the following:
v The actual text and explanation for your check messages are defined in your

message table, see “Issuing messages in your local check routine with the
HZSFMSG macro.”

v The variables for your check messages are defined in the HZSMGB data area
from your check routine. See “Defining the variables for your messages” on
page 120.

Note that you can omit the message table and issue messages directly from the
check routine in one of the following ways:
v For local or remote checks, use HZSFMSG REQUEST=DIRECTMSG. See

“HZSFMSG macro — Issue a formatted check message” on page 313.
v For REXX checks, use the REQUEST='DIRECTMSG' subfunction of the

HZSLFMSG function. See “Input variables for
HZSLFMSG_REQUEST='DIRECTMSG'” on page 238.

You can issue the following kinds of messages in your check routine:
v Exception messages and other check results messages (CHECKMSG or

DIRECTMSG request). For an overview of the various message types, see
Table 20 on page 216.

v IBM Health Checker for z/OS messages (HZSMSG request)
v IBM Health Checker for z/OS messages that indicate that the check is stopped

(STOP request). If your check routine issues HZSFMSG with the STOP request, it
prompts the system to call the delete function code for the check.

You can issue a particular message multiple times in a single iteration of a check -
a check routine should always issue an exception message to report an error.

Local check routine

Chapter 6. Writing local check routines 117

Check messages are important because they report the results of the check to an
installation. Each check should issue at least:
v One or more messages for any exception found to the setting the check is

looking for.
v A message indicating that no exceptions were found, when appropriate.

If an HZSFMSG macro call is incorrect, the system issues system abend X'290' with
a unique reason code and creates a logrec error record. The system checks the
following for each HZSFMSG call:
v To see that the HZSMGB data area (input to checks describing message

identifiers and variables) is complete
v That the message is in the message table
v That the number of inserts provided on the call exactly matches the number

required to complete the message
v That each variable definition is between 1-256 characters long

The reason codes for system abend X'290' describe the message error. See z/OS
MVS System Codes.

HZSFMSG updates the PQE_Result field in the HZSPQE as follows:
v For a specified severity of HIGH, the system sets the check result to 12
v For a specified severity of MEDIUM, the system sets the check result to 8
v For a specified severity of LOW, the system sets the check result to 4

PQE_Result is set to 0 when the check is called. See “Examples” on page 343.

For information on coding the message texts and explanation for messages, see
“Issuing messages in your local check routine with the HZSFMSG macro” on page
117.

Reporting check exceptions
When a check detects a system condition or setting that runs counter to the values
that the check is looking for, the check should issue an exception message to report
the exception. For an exception message, the system displays both the message text
and the entire message explanation in the message buffer. The message should
include a detailed explanation of the error and the appropriate action that the
installation should take to resolve the condition. If you are writing a check that
checks for a setting that conflicts with the default for the setting, you should
include in your check output information about why the check user is getting an
exception message for a default setting.

Along with an exception message, IBM Health Checker for z/OS will issue a line
showing the severity and the return code for the check. The check will continue to
run at the defined intervals, reporting the exception each time until the exception
condition is resolved.

The following example shows an exception message issued to the message buffer:
CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
START TIME: 05/25/2005 09:42:56.690844
CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or
more potential errors in the security controls on this system.

Local check routine

118 IBM Health Checker for z/OS User's Guide

Explanation: The RACF security configuration check has found one or
more potential errors with the system protection mechanisms.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator and the system auditor.

System Programmer Response: Examine the report that was produced by
the RACF check. Any data set which has an "E" in the "S" (Status)
column has excessive authority allowed to the data set. That
authority may come from a universal access (UACC) or ID(*) access
list entry which is too permissive, or if the profile is in WARNING
mode. If there is no profile, then PROTECTALL(FAIL) is not in
effect. Any data set which has a "V" in the "S" (Status) field is
not on the indicated volume. Remove these data sets from the list
or allocate the data sets on the volume.

Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate
that there is no RACF profile protecting the data set. Data sets
which do not have a RACF profile are flagged as exceptions, unless
SETROPTS PROTECTALL(FAIL) is in effect for the system.

If a valid user ID was specified as a parameter to the check, that
user’s authority to the data set is checked. If the user has an
excessive authority to the data set, that is indicated in the USER
column. For example, if the user has ALTER authority to an
APF-authorized data set, the USER column contains "<Read" to
indicate that the user has more than READ authority to the data set.

Problem Determination: See the RACF System Programmer’s Guide and
the RACF Auditor’s Guide for information on the proper controls for
your system.

Source:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Reference Documentation:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Automation: None.

Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH
APF-authorized data set, the USER column contains "

The Check Reason: field display the default reason in an exception message
without installation parameter overrides.

See "Issuing a REXX check exception message" for an example of how to issue an
exception message from a REXX check.

Example - Issuing a DIRECTMSG message for a REXX check: For a check that has
no message table associated with it, you can issue a check message directly from
the check routine, as shown in the example below. REXX sample check
SYS1.SAMPLIB(HZSSXCHN) also shows DIRECTMSG calls.

Local check routine

Chapter 6. Writing local check routines 119

/* Set up exception message input for HZSLFMSG */
/* Required input variables: */
HZSLFMSG_REQUEST=’DIRECTMSG’
HZSLFMSG_REASON=’CHECKEXCEPTION’
HZSLFMSG_DIRECTMSG_ID=’UTHH003E’
HZSLFMSG_DIRECTMSG_TEXT=’Brief exception summary’
/* Optional input variables: */
HZSLFMSG_DIRECTMSG.EXPL=’The exception explanation for UTHR003E’
HZSLFMSG_DIRECTMSG.AUTOMATION=’Automation text for UTHR003E’
HZSLFMSG_DIRECTMSG.SOURCE=’Source text for UTHR003E’
/* Call HZSLFMSG */
HZSLFMSG_RC = HZSLFMSG()

/* Set up report message input for HZSLFMSG */
HZSLFMSG_REQUEST=’DIRECTMSG’
HZSLFMSG_REASON=’CHECKREPORT’
HZSLFMSG_DIRECTMSG_TEXT=’Single line report message’
/* Call HZSLFMSG */
HZSLFMSG_RC = HZSLFMSG()

Defining the variables for your messages
The variable information for your check messages is defined in the HZSMGB data
area by your check routine. The check routine defines information about variables
and points to the HZSMGB data area for variable values. For Metal C check
routines, the HZSMGB data area layout is mirrored in the HZSHMGB header.

There are two HZSMGB formats you can use to map your keywords:
v MGBFORMAT=0: Requires you to point to a separately defined area in storage

where the length and value of the variable are defined, mapped by
MGB_InsertD. See “Using default HZSMGB data area format
(MGBFORMAT=0)” on page 121.

v MGBFORMAT=1: Allows you to specify the length and address of the variables
in HZSMGB fields MGB1_MsgInsertDesc_Length and
MGB1_MsgInsertDesc_Addr in the MGB1_MsgInsertDesc mapping. See “Using
HZSMGB data area format MGBFORMAT=1” on page 123.

Figure 14 on page 201 shows how messages with variables get resolved at check
runtime.

Use the following guidelines in defining variables for your messages:

Match up the number of variables in the HZSMGB data area and the message
table, because if you end up with a mismatch, your check will abend when it
issues the HZSFMSG macro to issue the message. Look in the logrec error record
or z/OS MVS System Codes to find the description of the reason code issued with
the abend.

To keep text on the same line, replace blank characters, X'40', with the required
blank character X'44'.

If I use the same variable twice in a message, do I have to define it twice in the
HZSMGB data area? Yes, every time you use a variable, even if you use the same
variable several times in the same message, you must point to separate entries in
the MGB_Inserts field for each variable instance. However, each of the entries for
an identical variable can point to the same area in storage where the variable
length and value are specified for the variable.

Local check routine

120 IBM Health Checker for z/OS User's Guide

Can I build the HZSMGB information for all my check messages once at
initialization and then reuse them whenever the check runs? Tempting idea, but
no. The problem with this method is that there's no guarantee that the HZSPQE
data area for the check will be in the same place for any given run of your check.
Although the contents of the PQEChkWork section are the same for every run of
the check, it's location is not. Thus if you try to point within your PQEChkWork
area for variable information, the offset will be the same, but the full address
probably will not be.

On the other hand, if you are pointing into either your check routine module or an
area that you GETMAINed at initialization to build your HZSMGB data area, those
areas will stay the same, and so the build once/use multiple times approach might
work. But this is a tricky maneuver.

In the HZSMGB data area, variables do not have variable names. You insert the
length (MGB_MsgILen field) and value (MGB_MsgIVal field) for a variable without
using the variable name you use in the check routine.

Can I have a null variable? You can indeed have a null variable by defining a
variable length of zero in the MGB_MsgILen field.

What happens if I make a mistake updating HZSMGB? If you make a mistake
while updating HZSMGB so that your variable values are not compatible with the
variable attributes in the message output at check runtime, your check will most
likely abend with system abend code X'290' and a reason code that describes the
error. The system also writes a record to SYS1.LOGREC that provides additional
detail in the variable recording area (VRA).

Using default HZSMGB data area format (MGBFORMAT=0)
Figure 8 on page 122 shows an example of how you define the message variables
in your check routine:

�1� shows an example of defining the message number in the
MGB_MessageNumber.

�2� shows an example of filling in the MGB_InsertCnt field with the number of
variables for your message.

�3� shows an example of putting the address of one variable into the MGB_Inserts
field. This address points to the area in storage where the length and value of the
variable are defined, mapped by MGB_InsertD.

�4� shows an example of defining the length and value of the variable in the
MGB_MsgILen and MGB_MsgIVal fields for the variable in storage. These fields
are in the MGB_InsertD mapping.

�5� shows an example of issuing a message. Note that this example shows a local
message. For a remote check, the HZSFMSG macro must include the
REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�6� shows how the variable address, length, and value are defined to be stored in
the HZSMGB data area or in storage.

�7� shows an example of creating an area big enough in the HZSMGB for the
information about all your variables. To create enough room for all your variables,

Local check routine

Chapter 6. Writing local check routines 121

use the formula HZSMGB_LEN + (n-1)*L'MGB_inserts where n is the number of
inserts. HZSMGB_LEN by itself will provide room for only one insert.

Figure 8 shows check routine code that defines variable data in the HZSMGB:

Important fields in the HZSMGB data area include:

* Issue a message with two inserts *

SYSSTATE ARCHLVL=1
* save regs, get dynamic storage, chain saveareas, set usings

LA 2,TheMGBArea
ST 2,TheMGBAddr
USING HZSMGB,2

�1� MVC MGB_MessageNumber,=F’1’ Message 1
�2� MVC MGB_insert_cnt,=F’2’ Two inserts

LA 3,Insert1Area Address of first insert
�3� ST 3,MGB_Inserts Save insert address

LA 3,Insert2Area Address of second insert
USING MGB_MsgInsertD,3

�4� MVC MGB_MsgILen,=AL2(L’Insert2Val) Insert length
MVC MGB_MsgIVal(L’Insert2Val),MyMod Insert value
DROP 3
ST 3,MGB_Inserts+4 Save insert address

�5� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,FMSGL)

DROP 2
*
* Place code to check return/reason codes here
*
* free dynamic storage, restore regs

BR 14
MyMod DC CL8’MYMODULE’ �6�
* Area for first insert
Insert1Area DS 0H
Insert1Len DC AL2(L’Insert1Val)
Insert1Val DC C’CSA ’

LTORG ,
HZSZCONS , Return code information
HZSMGB , Insert mapping

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
* Area for 2 inserts (HZSMGB_LEN accounts for one, so
* we add one more "length of MGB_Inserts")
TheMGBAddr DS A �7�
TheMGBArea DS CL(HZSMGB_LEN+1*L’MGB_Inserts)
* Area for second insert
Insert2Area DS 0H
Insert2Len DS AL2(L’Insert2Val)
Insert2Val DC X’00950000’

HZSFMSG MF=(L,FMSGL),PLISTVER=MAX
DYNAREA_LEN EQU *-DYNAREA

Figure 8. Example of issuing a message with variables in an assembler check

Local check routine

122 IBM Health Checker for z/OS User's Guide

Table 12. Important MGBFORMAT=0 fields in the HZSMGB data area for check message variables

Field name Meaning

MGB_MessageNumber
MGB_ID

Fullword field containing the value identifying each message. These fields are the
same - there are two names for this field. This field corresponds to the xreftext value
for each message. For example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB_InsertCnt Fullword field containing the number of variables (or inserts) to follow.

MGB_Inserts
MGB_InsertAddr

These fields are the same - there are two names for this field.

This field contains an array of pointers, each of which contains the address in storage
of an area for a specific variable. This area is mapped by Mgb_MsgInsertD.

MGB_MsgInsertD A structure in the HZSMGB data area that describes the length and value of the
variable:

v MGB_MsgILen, which is a 2 byte field containing the length of the variable.

v MGB_MsgIVal, which contains the value of the variable.

Using HZSMGB data area format MGBFORMAT=1
�1� shows an example of defining the message number in the
MGB1_MessageNumber field.

�2� shows an example of filling in the MGB1_Insert_Cnt field with the number of
variables for your message.

�3� shows examples of defining the length and address of the variable in the
MGB1_MsgInsertDesc_Length and MGB1_MsgInsertDesc_Addr fields for the
variable in storage. These fields are in the MGB1_MsgInsertDesc mapping.

�4� shows an example of issuing a message. Note that this example shows a local
message. For a remote check, the HZSFMSG macro must include the
REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�5� shows how the variable address, length, and value are defined to be stored in
the HZSMGB data area or in storage.

�6� shows an example of creating an area big enough in the HZSMGB1 for the
information about all your variables. To create enough room for all your variables,
use the formula HZSMGB1_LEN1 + (n)*MGB1_MsgInsertDesc_Len where n is the
number of inserts.

Figure 9 on page 124 shows check routine code that defines variable data in the
HZSMGB data area using MGBFORMAT=1:

Local check routine

Chapter 6. Writing local check routines 123

Important MGBFORMAT=1 fields in the HZSMGB data area include:

Table 13. Important MGBFORMAT=1 fields in the HZSMGB data area for check message
variables

Field name Meaning

MGB1_MessageNumber
MGB1_ID

Fullword field containing the value identifying each message.
These fields are the same - there are two names for this field. This
field corresponds to the xreftext value for each message. For
example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB1_InsertCnt Fullword field containing the number of variables (or inserts) to
follow.

MGB1_MsgInsert
Desc_Length

The length of the variable. For a null variable, use a length of
zero.

MGB1_MsgInsert
Desc_Addr

The address of the variable. For a null variable, you need not set
this field.

Writing a check with dynamic severity levels
You can create your check routine to issue check exception messages with a
dynamically varying severity level, giving users more control over how exception
messages are issued and handled. For example, you might use the dynamic
severity function for checks that inspect a system setting value and compare it
against a threshold. As the value approaches the high threshold, the check can
vary the severity of the exception, depending on how close to the threshold the
value is.

* Issue a message with two inserts *

SYSSTATE ARCHLVL=2
* save regs, get dynamic storage, chain saveareas, set usings

LA 2,TheMGBArea
ST 2,TheMGBAddr
USING HZSMGB1,2 �1� MVC MGB1_MessageNumber,=F'1' Message 1 �2� MVC MGB1_insert_cnt,=F'2' Two inserts
DROP 2
PUSH USING
USING MGB1_MsgInsertDesc,TheMSGInsertDesc1�3� MVC MGB1_MsgInsertDesc_Length,=AL2(L'Insert1Val) Insert length
LA 15,Insert1Val
ST 15,MGB1_MsgInsertDesc_Addr Insert address
POP USING
PUSH USING
USING MGB1_MsgInsertDesc,TheMGBInsertDesc2
MVC MGB1_MsgInsertDesc_Length,=AL2(L'Insert2Val) Insert length
LA 15,Insert2Val
ST 15,MGB1_MsgInsertDesc_Addr Insert address
POP USING�4� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

MGBFORMAT=1, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,FMSGL)

*
* Place code to check return/reason codes here
*
* free dynamic storage, restore regs

BR 14 �5�
* Area for first insert
Insert1Val DC C'CSA '
* Area for second insert
Insert2Val DC X’00950000’

LTORG ,
HZSZCONS , Return code information
HZSMGB , Insert mapping

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
TheMGBAddr DS A
* Area for 2 inserts �6�
TheMGBArea DS CL(HZSMGB_LEN1)
TheMSGInsertDesc1 DS CL(MGB1_MsgInsertDesc_Len)
TheMSGInsertDesc2 DS CL(MGB1_MsgInsertDesc_Len)
HZSFMSG MF=(L,FMSGL),PLISTVER=MAX
DYNAREA_LEN EQU *-DYNAREA

Figure 9. Example of issuing a message with variables using MGBFORMAT=1

Local check routine

124 IBM Health Checker for z/OS User's Guide

For information on how users work with checks enabled with dynamic severity,
see “Customizing check exceptions with dynamically varying severity” on page 31

How to enable a check for dynamic severity: In order to allow the customer to
use the dynamic severity function do the following:
1. Define check parameters that let the check know what severity exception to

issue. For example, if your check looks for parameter 'p', define the following
parameters:
v p_HIGH
v p_MED
v p_LOW
v p_NONE

In addition, define the corresponding short forms of the parameter, for example
for our case, you would define p_H, p_M, p_L, and p_N parameters. And,
because it's always likely that customers could forget the exact parameter
specifications, try to build in the obvious mistakes. For example, a customer
might try p_HI when the correct parameter is p_HIGH, so we recommend that
you also support p_HI and p_NO (as a short version of p_NONE).
We have the following tips for you in defining dynamic severity check
parameters: Note that the parameter names you create cannot exceed the 16
character parameter length limit for the ADD/UPDATE CHECK interface!
v Of course, the customer should not specify multiple forms for a given

severity, but it is not worth while enforcing that in your check routine.
Instead, program your check to accept the longest parameter. In other words,
if a customer specifies both p_HIGH and p_H parameters for a check, your
check should use the value from p_HIGH.

v If you are writing a new check that exploits dynamic severity, we
recommend that you use the suffixed parameters (p_HIGH, p_MED, p_LOW
and so on) and do not code a non-suffixed, non-dynamic version of the 'p'
parameter.
On the other hand, if you are upgrading an existing check to use dynamic
severity, keep the plain non-suffixed parameter and add the _HIGH, _MED,
_LOW, _NONE variants as well. Then make sure to code your check to use
the rule that if any of the dynamic severity variants are present, then the
non-dynamic severity variant is ignored. That way, you don't have to worry
about interpreting cases where the customer specifies both a non-dynamic 'p'
version of the parameter and a dynamic p_HIGH version.
If you are adding dynamic severity parameters for an old check, and none of
the existing parameters allow an underscore either within the parameter
name or value, you can code your check to assume that the customer is
using a dynamic severity specification if you find an underscore within the
parameter string.

v Code your check so that the customer does not need to specify a severity for
all parameters. They should be able to specify just the ones that they want.

2. Code your dynamic severity check to issue exception messages with the
SEVERITY parameter on the HZSFMSG service or using REXX function
HZSLFMSG_SEVERITY, as follows:
v If no dynamic severity parameter is provided and the criterion for an

exception based on the parameter is met, issue a severity-system message
v Else if a p_HIGH parameter is provided and the criterion for an exception

based on that parameter is met, issue a severity-high message

Local check routine

Chapter 6. Writing local check routines 125

v Else if a p_MED parameter is provided and the criterion for an exception
based on that parameter is met, issue a severity-medium message

v Else if a p_LOW parameter is provided and the criterion for an exception
based on that parameter is met, issue a severity-low message

v Else if a p_NONE parameter is provided and the criterion for an exception
based on that parameter is met, issue a severity-none message

Note that the severity specified on HZSFMSG or HZSLFMSG_SEVERITY
overrides the default severity defined for the check when it was added.

3. Add the check with ALLOWDYNSEV=YES specified. See the ADD or
ADDREPLACE CHECK paramters in “Syntax and parameters for HZSPRMxx
and MODIFY hzsproc” on page 69 or “HZSADDCK macro — HZS add a check”
on page 266.

How dynamic severity and the SEVERITY in the check definition interact: As
we mention above, a check using dynamic severity overrides the severity specified
in the check definition. So that was easy. But just to keep things interesting, note
that the implicit WTO handling of exception messages that is derived from the
severity in either the check definition or the dynamic check severity being used
can be overridden by a WTOTYPE specified in the check definition. See WTOTYPE
in “Syntax and parameters for HZSPRMxx and MODIFY hzsproc” on page 69.

Controlling check exception message WTOs and their automation
consequences

By default, IBM Health Checker for z/OS issues DOM requests to delete any check
exception message WTOs left behind from previous check iterations. It does this
DOMing right before the start of the new check iteration. That means that each
time the check generates an exception, it also sends a new exception WTO, which
also kicks off any automation actions you've set up for your installation.

So, what if you want more control over check exception WTOs and their
automation consequences? For example, let's say you have a check that runs every
hour. Now let's say that your check begins generating identical exceptions that
you've automated on to prompt a beeper call to your favorite system programmer.
You have not yet resolved the exception issue, and the installation policy is to not
disable checks generating exceptions. That's just good practice, right? And yet your
check might generate a lot of WTOs and beeper calls to that poor system
programmer while the issue gets resolved.

That's where DOM control comes in! Starting with z/OS V1R13, IBM Health
Checker for z/OS you can use the following functions that help you control
whether you want to suppress WTOs and any automation actions they trigger for
a check that is generating exceptions:
1. Add your check to the product using the DOM(CHECK) parameter on the

HZSPRMxx and MODIFY hzsproc command. See ADD or ADDREPLACE
CHECK parameters in “Syntax and parameters for HZSPRMxx and MODIFY
hzsproc” on page 69.

2. From your check you decide when to DOM WTOs from previous check runs
using the HZSFMSG REQUEST=DOM macro (“HZSFMSG macro — Issue a
formatted check message” on page 313) or the REXX
HZSLFMSG_REQUEST='DOM' function “HZSLFMSG function” on page 236.

Realizing the benefits of this function is all in the timing:

Local check routine

126 IBM Health Checker for z/OS User's Guide

v If your check (added with DOM(CHECK)) is generating multiple identical
unresolved exceptions, your check can wait to DOM the exception WTO (with
HZSFMSG REQUEST=DOM or the REXX HZSLFMSG_REQUEST='DOM'
function) until the exception condition is resolved. This way, your check is still
running, but the exception WTOs from previous iterations of the check do not
get DOMed. That means that exception messages from this check are just
recorded in the message buffer and not sent as WTOs that set off automation
actions.

v If your check is running successfully and is not generating an exception in a
check iteration or is generating different check exceptions between iterations,
your check should issue HZSFMSG REQUEST=DOM or the REXX
HZSLFMSG_REQUEST='DOM' function to DOM WTOs from previous iterations.
That way any subsequent exception will be sent as a WTO and will kick off any
defined automation actions.

On the other hand, if you always want to delete WTOs for your check, and never
wish to suppress duplicate exception WTOs, you will want to specify or default to
DOM(SYSTEM) when you add your check, and let the system take care of
DOMing of check WTOs for you!

The well-behaved local check routine - recommendations and recovery
considerations

Make your check clean up after itself, because the system won't do it for you:
IBM Health Checker for z/OS does not perform end-of-task cleanup for your check
on a regular basis. Check routines should track resources, such as storage obtained,
ENQs, locks, and latches, in the PQE_ChkWork field.

Release resources within the same function code processing: Whenever possible,
the check routine should release resources within the same function code
processing that it obtained. Releasing resources in a different function code call is
error prone, because you cannot assume that the cleanup function processing will
run under the same task as the Check function. If the Cleanup function does not
run under the same task as Check function, it means that the task under which the
Check function was running has been terminated.

Have your check stop itself when the environment is inappropriate: If your
check routine encounters an environmental condition that will prevent the check
from returning useful results, your check routine should stop itself and not run
again until environmental conditions change and your code requests it to run. Your
check should do the following to respond to an inappropriate environment:
1. Issue an information message to describe why the check is not running. For

example, you might issue the following message to let check users know that
the environment is not appropriate for the check, and when the check will run
again:
The server is down.
When the server is available, the check will run again.

2. Issue the HZSFMSG service to stop itself:
HZSFMSG REQEST=STOP,REASON=ENVNA

3. Make sure that your product or check includes code that can detect a change in
the environment and start running the check again when appropriate. To start
running the check, issue the following HZSCHECK service:
HZSCHECK REQUEST=RUN,CHECKOWNER=checkowner,CHECKNAME=checkname

Local check routine

Chapter 6. Writing local check routines 127

If the environment is still not appropriate when your code runs the check, it
can always stop itself again.

Your check should not add itself in an inappropriate environment: If you use a
HZSADDCHECK exit routine to add your checks to the system, note that some
checks or product code might add or delete checks to the system in response to
changes in system environmental conditions. For example, if a check or product
detects that a system environment is inappropriate for the check, it might then add
only the checks useful in the current environment by invoking the HZSADDCHCK
registration exit with an ADDNEW request (from the HZSCHECK service, the F
hzsproc command, or in the HZSPRMxx parmlib member. You should add similar
code to your HZSADDCHECK exit routine to make sure that your checks don't
run if they will not return useful results in the current environment. This code
might:
v Delete checks that do not apply in the current environment
v Run a check so that it can check the environment and disable itself if it is

inappropriate in the current environment. Consider supporting a check PARM so
the installation may indicate the condition is successful and not an error.

If your check can never be valid for the current IPL, consider not even adding it
from your HZSADDCHECK exit routine when you detect that situation. For
example, if a check is relevant only when in XCF LOCAL mode but the system is
not in that mode (and cannot change to that mode), there is no reason even to add
the check.

Have your check stop itself for bad parameters: If your check routine is passed a
bad parameter, it should stop itself using the HZSFMSG service:
HZSFMSG REQUEST=STOP,REASON=BADPARM

This request will also issue predefined HZS1001E error message to indicate what
the problem is. The check routine will not be called again until it is refreshed or its
parameters are changed. REQUEST=STOP prevents the check from running again
and sets the results in the PQE_Result field of HZSPQE. The system sets the result
field based on the severity value for the check. See “Issuing messages in your local
check routine with the HZSFMSG macro” on page 117 for examples and complete
information.

Plan recovery for abends: Your check routine should be designed to handle
abends. If on three consecutive check iterations:
v HZSFMSG issues abend X'290'
v The check abends and its recovery does not retry

then the system renders the check inactive until the check is refreshed, or
parameters for the check are changed. If the check routine has obtained a resource
that needs to be released under the same function code processing, but the check
routine abends, a recovery routine can release that resource. IBM suggests that you
use either an ESTAEX or IEAARR recovery routine.

In some cases you may not want your check to be stopped when an abend occurs
because some abend causing conditions might simply clear with time. For example,
if your check abends as a result of getting garbled data from an unserialized
resource, such as a data area in the midst of an MVC, your check should provide
its own recovery to:
v Retry the check a pre-determined number of times.
v If the check fails again, the check should stop running, but not stop itself.

Local check routine

128 IBM Health Checker for z/OS User's Guide

This allows the check to try running again at the next specified interval, with every
chance of success this time.

Take advantage of verbose and debug modes in your check:

IBM Health Checker for z/OS has support for the following modes:
v Debug mode, which tells the system to output extra messages designed to help

you debug your check. IBM Health Checker for z/OS outputs some extra
messages in debug mode, and some checks do also. When a check runs in debug
mode, each message line is prefaced by a message ID, which can be helpful in
pinpointing the problem. For example, report messages are not prefaced by
message IDs unless a check is running in debug mode.
There are two ways to issue extra messages in debug mode:
– Use conditional logic such that when in debug mode (when field

PQE_DEBUG in mapping macro HZSPQE has the value PQE_DEBUG_ON),
your check issues additional messages.

– Code debug type messages - see “Planning your debug messages” on page
203

Users can turn on debug mode using the DEBUG=ON parameter in the
MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG field
in SDSF to ON.

v Verbose mode, which tells the check routine to output messages with additional
detail about non-exception information found by the check. (RACF checks, for
example, issue additional detail in verbose mode.) To issue extra messages in
verbose mode, use conditional logic such that when in verbose mode (when
field PQE_VERBOSE in mapping macro HZSPQE has the value
PQE_VERBOSE_YES), your check issues additional messages.
Users can turn on verbose mode using the VERBOSE=YES parameter in the
F hzsproc command or in HZSPRMxx.

Look for logrec error records when you test your check: When testing your check,
be sure to look for logrec error records. The system issues abend X'290' if the
system encounters an error while a message is being issued, and issues a logrec
error record and a description of the problem in the variable recording area (VRA).

Save time, save trouble - test your check with these commands: When you have
written your check, test it with the following commands to find some of the most
common problems people make in writing checks:
F hzsproc,UPDATE,CHECK(check_owner,check_name),DEBUG=ON
F hzsproc,UPDATE,CHECK(check_owner,check_name),PARM=parameter,REASON=reason,DATE=date
F hzsproc,DELETE,CHECK(check_owner,check_name),FORCE=YES
F hzsproc,DISPLAY,CHECK(check_owner,check_name),DETAIL

Avoid disruptive practices in your check routine: The IBM Health Checker for
z/OS philosophy is to keep check routines very simple. IBM recommends that
checks read but not update system data and try to avoid disruptive behavior such
as:
v Modifying system control blocks
v I/O intensive operations, such as reading a data set
v Serialization
v Waits (directly or by services you call)
v Creating new tasks
v Creating new address spaces

Local check routine

Chapter 6. Writing local check routines 129

We're recommending against these practices because they require more overhead,
complicate your check routine, and, more seriously, can affect the performance of
other system functions. In addition, these practices can affect the running of other
checks, since only 20 local check routines can be in control concurrently. But you'll
need to decide what's appropriate on a check by check basis. An ENQ, for
example, serializing on a control block, can indeed affect the performance of other
functions that might need that control block. However, the downside of not
serializing is that a check might get information that is not consistent. You must
weigh the cost to customers of the chance of getting inconsistent data versus the
costs of using an ENQ in terms of system performance and IBM Health Checker
for z/OS processing.

See also “Debugging checks” on page 132.

Building Metal C checks
To make it easier to compile and build, link-edit, and bind a Metal C check, IBM
Health Checker for z/OS provides a sample makefile, hzssmake.mk, for use with
the z/OS UNIX System Services make utility. This makefile compiles and builds
the sample files shipped in z/OS UNIX file system directory /usr/lpp/bcp/
samples, where the makefile itself is shipped also.

Before you use the makefile, make sure you update the HCHECK_LOADLIB
variable in the makefile. This variable names the dataset where the makefile will
store the final load modules. This should be an APF authorized dataset in the link
list, suitable for your installation.

To create all sample load modules, change to the directory where the hzssmake.mk
file is stored and invoke the make utility like this:
make -f hzssmake.mk

Check out the other make rules in the makefile, in particular the cleanup rules. You
can invoke cleanup, for example, using the following command:
make -f hzssmake.mk clean

This command will clean up all intermediate files, but will keep the generated load
modules.

Once built, your Metal C load modules are ready to be registered with IBM Health
Checker for z/OS as you would any other check. See:
v “Defining a local check to IBM Health Checker for z/OS” on page 108
v “Issue the HZSADDCK macro to define a remote check to IBM Health Checker

for z/OS” on page 140
v “Creating product code that automatically registers checks at initialization” on

page 197

For a Metal C sample HZSADDCHECK exit routine, look for hzscadd.c in
/usr/lpp/bcp/samples .

For more information about the make utility and the other utilities used in the
makefile, see Shell command descriptions in z/OS UNIX System Services Command
Reference.
##
Name: HZSSMAKE
#
Description: Makefile for building Metal C sample

Local check routine

130 IBM Health Checker for z/OS User's Guide

local and remote health checks and
a sample HZSADDCHECK exit routine.
#
COMPONENT: IBM Health Checker for z/OS (SCHZS)
#
PROPRIETARY STATEMENT:
#
Licensed Materials - Property of IBM
5650-ZOS
Copyright IBM Corp. 2009
#
US Government Users Restricted Rights - Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with#
IBM Corp.
#
END OF PROPRIETARY STATEMENT
#
STATUS = HBB7770
#
Change Activity:
#
$L0=METALC HBB7770 20081202 PDGIO: Initial version
$L1=METALC HBB7770 20090513 RDUT: Updated options,targets#
#
##

The load modules created via this makefile will be put into this PDSE
dataset. Change this to an APF authorized dataset in the link list,
suitable for your installation.
The linker/binder will create the PDSE, if it does not exist yet.
HCHECK_LOADLIB =HLQ.LOADLIB

Location of Health Checker header filesHC_INCLUDES = "//’SYS1.SIEAHDR.H’"

(Metal-) C compiler utility
CC = c99

(Metal-) C compiler flags
nosearch - avoids using the non-Metal C header files
I - specifies our include paths, since nosearch disabled most
metal + S - makes it Metal C instead of "regular" C/C++
longname - optional, but allows for longer than 8 character names
CFLAGS = -S -Wc,metal,longname,nosearch \

-I /usr/include/metal,$(HC_INCLUDES)

Assembler utility
AS = as

Assembler flags
rent - requests reentrant code; required for health checks
goff - optional, but allows for longer than 8 character names
ASFLAGS = -mrent -mgoff

Linker/binder utility
LD = ld

Linker/binder flags
ac=1 - assigns authorization code; required for health checks
rent - requests reentrant code; required for health checks
-S - resolves system services (PAUSE token handling by remote
health checks) via SYSLIB CCSLIB
LDFLAGS = -bac=1 -brent
LDFLAGSR = -S "//’SYS1.CSSLIB’"

The four sample health checks and the one sample exit routine
HCHECK_TGTS = hzscchkp hzscchkr hzscrchc hzscrchk hzscadd

Local check routine

Chapter 6. Writing local check routines 131

Default rule
all: $(HCHECK_TGTS)

Uncomment this rule, if you would like to keep the intermediate
output files, in particular the generated .s assembler source,
instead of letting ’make’ delete them automatically.
#.SECONDARY:

Rule for cleaning up intermediate output
clean:
rm -f *.o *.s

Rule for cleaning up all output
cleanall:
rm -f *.o *.s
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscchkp)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscchkr)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscrchc)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscrchk)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscadd)’"

Rule for compiling a Metal C file into assembly language
%.s: %.c
$(CC) $(CFLAGS) $<

Rule for creating object code from assembly language
%.o: %.s
$(AS) $(ASFLAGS) -o $@ $<

Rules for creating LOAD modules (executable) from the object code
hzscchkp: hzscchkp.o
$(LD) $(LDFLAGS) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscchkr: hzscchkr.o
$(LD) $(LDFLAGS) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscadd: hzscadd.o
$(LD) $(LDFLAGS) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscrchc: hzscrchc.o
$(LD) $(LDFLAGS) $(LDFLAGSR) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscrchk: hzscrchk.o
$(LD) $(LDFLAGS) $(LDFLAGSR) -o "//’${HCHECK_LOADLIB}($@)’" $<

Debugging checks
Naturally, we hope you'll never need this section and that all your checks will run
perfectly the very first time. However, if you do run into trouble, this section will
help you debug your check routine and HZSADDCHECK exit routine.

Was my check added to the system? Use the F hzsproc,DISPLAY
CHECK(checkowner,checkname) to display the check you're adding to the system. If
your check shows up, it was successfully added to the system. If it does not show
up, it was not added to the system.

You can also check the return code from the HZSADDCK invocation in your
HZSADDCHECK exit routine (for local checks) or check routine (for remote
checks). A return code greater than 4 often indicates that there was a problem
adding the check to the system. See “HZSADDCK macro — HZS add a check” on
page 266.

Local check routine

132 IBM Health Checker for z/OS User's Guide

Turn on debug mode: Running in debug mode can help you debug your check,
because in debug mode:
v Each message line is prefaced by a message ID, which can be helpful in

pinpointing the problem. For example, report messages are not prefaced by
message IDs unless a check is running in debug mode.

v Debug messages, which may contain information about the error, are issued only
when the check is in debug mode.

You can turn on debug mode for a check that is not running properly using the
DEBUG parameter in the MODIFY hzsproc command, in HZSPRMxx, or by
overtyping the DEBUG field in SDSF to ON.

Create a recovery routine for your check routine if you need additional diagnostic
data for your check routine. See “Establishing a recovery routine for a check” on
page 110.

Debug HZSFMSG abends: If the system finds an error in a HZSFMSG macro call
to issue a message, the system issues system abend X'290' with a unique reason
code and creates a logrec error record. See the information for abend X'290' in z/OS
MVS System Codes for a description of the abend reason codes.

If the abend is caused by an incorrect macro call, the system issues the following
accompanying information:
v Logrec error record. Use EREP to view logrec errors, see "Using EREP to Obtain

Records from the Logrec Log Stream " in z/OS MVS Diagnosis: Tools and Service
Aids.

v A symptom dump written to the console and to the system log
v A SYSMDUMP, if you add a SYSMDUMP DD statement to hzsproc, the IBM

Health Checker for z/OS procedure.
Note that the contents and data set disposition of your SYSMDUMP depends on
the DISP= option you use on the DD statement. See "Obtaining ABEND dumps"
in z/OS MVS Diagnosis: Tools and Service Aids.

v There may be additional diagnostic data in the register at time of the abend that
can help with debugging. See “ABEND Codes” on page 338 for the kinds of
diagnostic data that may be available.
If your check routine has a recovery routine, the SDWA for the recovery routine
will contain these registers in the SDWAGRSV field.

If the abend is caused by the system, the system issues an SVC dump.

Where is my check routine? I need to locate it for debugging. If you do not
receive an abend for a problem, you can locate a local check routine and message
table (to use in a SLIP trap, for example) using the DIAG parameter on the F
hzsproc,DISPLAY command. For example, you can use the f
hzsproc,display,check(IBMGRS,grs_mode),detail,diag command. Note the
diagnostic information, including the location of the check routine and message
table in the output example below:
HZS0201I 13.06.05 CHECK DETAIL 716
CHECK(IBMGRS,GRS_MODE)
STATE: ACTIVE(ENABLED) GLOBAL STATUS: SUCCESSFUL
EXITRTN: ISGHCADC
LAST RAN: 07/06/2005 12:49 NEXT SCHEDULED: (NOT SCHEDULED)
INTERVAL: ONETIME SEVERITY: LOW
WTOTYPE: INFORMATIONAL
SYSTEM DESCCODE: 12

Local check routine

Chapter 6. Writing local check routines 133

DEFAULT PARAMETERS: STAR
REASON FOR CHECK: GRS should run in STAR mode to improve

performance.
MODIFIED BY: N/A
DEFAULT DATE: 20050105
DEBUG MODE: OFF
INTERNAL DIAGNOSTICS - CHECK TOKEN: 01020038.7FE9F000
ROUTINE: ISGHCGRS-7F2B4BC8 MSGTBL: ISGHCMSG-7F222120 FUNC: CLEANUP
LAST CPU TIME: 0.041 MAX CPU TIME: 0.041

Where is my HZSADDCHECK exit routine? If you need to locate the address of
your HZSADDCHECK exit routine for a local check, to set a SLIP trap, for
example, use the display command following:
DISPLAY PROG,EXIT,EXITNAME=HZSADDCHECK_exit_routine,DIAG

The system issues message CSV464I displaying information about the exit,
including the exit entry point address, the load point address of the exit routine
module, and other diagnostic information for exit routine.

Using SLIP traps for debugging: If you need to set a SLIP trap for either your
check routine or HZSADDCHECK exit routine, we suggest that you set a SLIP trap
on any error event in the IBM Health Checker for z/OS address space instead of
setting it on an abend X'290'. This will give you the information you need to
handle both the X'290' abend and any other unexpected problem.

Use the two hints directly above this one to find the addresses of your check
routine and HZSADDCHECK exit routine, for use in setting SLIP traps.

Local check routine

134 IBM Health Checker for z/OS User's Guide

Chapter 7. Writing remote check routines

A remote check runs as a task in the caller's address space. To learn about the
differences between local and remote checks and deciding which type you want to
write, see “Remote checks” on page 98.

A IBM Health Checker for z/OS check gathers information about the system
environment and parameters, compares them to suggested settings or looks for
configuration problems, and then informs customers of the results through detailed
messages. Because remote checks run in the caller's address space (rather than the
IBM Health Checker for z/OS address space) you must ensure communication
between the remote check routine and IBM Health Checker for z/OS.

To learn about the differences between local and remote checks and deciding
which type you want to write, see “Remote checks” on page 98.

In this chapter, we'll cover the following:
v “Metal C or assembler?” on page 105
v “Sample checks” on page 136
v “Remote check routine basics” on page 137
v “Programming considerations” on page 138
v “Preparing for check definition - making sure IBM Health Checker for z/OS is

up and running” on page 139
v “Allocate a pause element token using IEAVAPE” on page 140
v “Issue the HZSADDCK macro to define a remote check to IBM Health Checker

for z/OS” on page 140
v “Pause the remote check routine with IEAVPSE” on page 143
v “Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE to

communicate check start and stop to IBM Health Checker for z/OS” on page
143

v “Using the check parameter parsing service (HZSCPARS)” on page 111
v “Using the HZSPQE data area in your remote check routine” on page 144
v “Release codes for remote check routines” on page 145
v “Creating and using data saved between restarts” on page 115
v “Issuing messages in your remote check routine with the HZSFMSG macro” on

page 150
v “Writing a check with dynamic severity levels” on page 124
v “Controlling check exception message WTOs and their automation

consequences” on page 126
v “Defining the variables for your messages” on page 120
v “Recommendations and recovery considerations for remote checks” on page 161
v “Building Metal C checks” on page 130
v “Debugging checks” on page 166

Metal C or assembler?
As mentioned above, you can write a local or remote check in either Metal C or
assembler. The concepts in this section apply to either language.

© Copyright IBM Corp. 2006, 2015 135

Metal C lets you create a IBM Health Checker for z/OS compatible load module
that follows MVS linkage conventions. You can also easily use assembler macros,
such as HZSFMSG, HZSCPARS, or any other assembler macro, in your Metal C
check routine using the __asm keyword.

If you are writing in Metal C, IBM Health Checker for z/OS provides generic C
header files (hzsh*.h) in SYS1.SIEAHDRV.H containing the following mappings of
IBM Health Checker for z/OS structures and control blocks and commonly used
Health Checker related constants:

Table 14. Correlation between IBM Health Checker for z/OS mapping macros and Metal C
header files

Assembler mapping
macros in
SYS1.MACLIB

Description Metal C header file in
SYS1.SIEAHDRV.H

HZSPQE Individual check data area HZSHPQE

HZSDPQE Individual deleted check data
area

HZSHDPQE

HZSMGB Message data area HZSHMGB

HZSQUAA HZSQUERY return information
data area

HZSHQUAA

HZSZCPAR Check parameter area HZSHCPAR

HZSZENF Event data for ENF 67 HZSHENF

HZSZHCKL Message buffer log entry HZSHHCKL

HZSZCONS Check return and reason codes HZSHCONS

Common shared types HZSHTYPE

Include that pulls in all the other
header files above

HZSH

For detailed information about Metal C, see z/OS Metal C Programming Guide and
Reference. You will also want to use the sample checks in “Sample local checks” on
page 106.

Sample checks
Of course you're going to read this entire chapter to understand everything you
need to know about writing a check routine. But we also have what you're really
looking for - samples:
v Metal C samples in z/OS UNIX file system directory /usr/lpp/bcp/samples:

– hzscrchc.c - Sample Metal C remote check routine demonstrating how to issue
check messages and how to issue HZSCPARS, the parameter parsing service.

– hzscrchk.c - Sample Metal C remote check demonstrating how to handle
parameters and use persistent data.

– hzscadd.c - Sample Metal C HZSADDCHECK exit routine.
– hzssmake.mk - Sample Metal C makefile to build sample health checks.

v Assembler samples in SYS1.SAMPLIB:
– HZSSRCHK - Sample remote check routine.
– HZSSRCHC - Sample showing the use of the HZSCPARS parameter parsing

service.
– HZSSMSGT - Sample message input.

Remote check routine

136 IBM Health Checker for z/OS User's Guide

Remote check routine basics
A check routine is a program that gathers installation information and looks for
problems, and then issues the check results in messages. IBM Health Checker for
z/OS writes the check exception messages as WTOs or to the message buffer. The
remote check routine can run anywhere with any authority, with access granted by
RACF XFACILIT class profiles.

When IBM Health Checker for z/OS calls the remote check routine, it passes the
check a release code and the check can issue the HZSCHECK REQUEST=OPSTART
service request to obtain a copy of the HZSPQE data area of the check. For a Metal
C check, use the HZSHPQE header contained in SYS1.SIEAHDRV.H, which mirrors
the HZSPQE data area mapping. The HZSPQE data area for a check contains:
v The defaults defined for the check.
v A 2K check work area
v Any installation update values.

The check routine should not update the HZSPQE data area except for the 2K
check work area. See “Using the HZSPQE data area in your local check routine” on
page 111.

We recommend that you keep the check routine very simple. At a high level, your
remote check will consist of:

1. Handling of input parameters, if any, for your check when the system indicates
that parameter data has changed. See “Using the check parameter parsing
service (HZSCPARS)” on page 111.

2. The meat of the check - checking for potential problems on a system.
3. Issuing messages using the HZSFMSG macro (“Issuing messages in your local

check routine with the HZSFMSG macro” on page 117)
4. Defining your message variables in the HZSMGB data area (“Defining the

variables for your messages” on page 120)

Limit a check to looking at one setting or one potential problem. Limiting the
scope of a check will make it easier for the installation using the check to:
v Resolve any exceptions that the check finds by either fixing the exception,

overriding the setting, or deactivating the check.
v Set appropriate override values for check defaults such as severity or interval.

Do not set return and reason codes for your check routine. The system will
return a result for you in the PQE_Result field when you use HZSFMSG
REQUEST=CHECKMSG macro request (for exception messages) or the HZSFMSG
REQUEST=STOP macro request (to stop the check). Do not set this field in your
check routine.

Use the 2K check work area: Use the 2K check work area in field PQEChkWork
for data you want to retain through check iterations for the life of the check, until
the check is refreshed or deleted. Using the 2K check work area allows you to
avoid obtaining additional resources for your check routine. Prior to the Init
function code call, the system sets the 2K work area to zeros.

The PQEChkWork field should be the only field your check routine writes to in
the HZSPQE data area. The check routine can write to the 2K PQEChkWork field
in the HZSPQE data area, and the check can save the PQEChkWork user area for
subsequent calls by issuing the HZSCHECK REQUEST=OPCOMPLETE. The

Remote check routine

Chapter 7. Writing remote check routines 137

system clears the 2K PQEChkWork user area before calling the check with the
HZS_Remote_Function_InitRun release code. Changes made to any other HZSPQE
fields are not saved between function codes.

Group checks for a single element or product in a single check routine. You can
group multiple uniquely named checks for a single element or product in a single
check routine. This can help to reduce system overhead and simplify maintenance.
If you are using an HZSADDCHECK exit routine to add your local checks to the
system, you should also use a single exit routine to add related checks to the
system. Code your check routine to look for the entry code passed in field
PQE_Entry_Code, (from the ENTRYCODE parameter on the HZSADDCK call) and
pass control to processing for the check indicated. Note that the IBM Health
Checker for z/OS will not verify the uniqueness of the entry codes you define for
your checks.

Do not attempt to communicate between individual checks. Even though you
may have placed all of your check routines in the same module, do not rely on
communication between them. Each check is intended to stand by itself.

Programming considerations

Environment
For a remote check, the environment is up to you because it will be running in
your address space rather than the IBM Health Checker for z/OS address space.
Read the environment and requirements information for the IBM Health Checker
for z/OS macros that your check issues. See Chapter 12, “IBM Health Checker for
z/OS HZS macros,” on page 265.

Requirements
v Minimum authorization for your remote check task is problem state, PSW key

8-15. If the caller is APF authorized, it can connect to IBM Health Checker for
z/OS without specifically defining authorization to the RACF profiles below.
However, when problem state and key 8-15 and not APF authorized, or when
SECCHECK=ALL is specified, the caller must be authorized for control access to
any of the following:
– XFACILIT class resource HZS.sysname.ADD
– XFACILIT class resource HZS.sysname.checkowner.ADD
– XFACILIT class resource HZS.sysname.checkowner.checkname.ADD

v Many installations are multilevel secure systems, and check developers must be
aware of the multilevel system environment.

v The check routine must be able to handle the IBM Health Checker for z/OS
release codes. See “Release codes for remote check routines” on page 145.

v Each remote check must run in its own task, even if you group remote checks
together in one check routine.

Restrictions
None

Establishing a recovery routine for a check
Establishing an ESTAEX or IEAARR routine in the check routine provides recovery
from errors encountered during check execution. See Writing recovery routines in
z/OS MVS Programming: Assembler Services Guide.

Remote check routine

138 IBM Health Checker for z/OS User's Guide

If the task that issues the HZSADDCK macro defining check defaults terminates
for any reason, including an abend that is not re-tried, the system treats the check
as if it is deleted.

Preparing for check definition - making sure IBM Health Checker for
z/OS is up and running

A remote check can only define itself when IBM Health Checker for z/OS is up
and running. There are two ways to determine whether IBM Health Checker for
z/OS is up and running:
v An APF-authorized remote check can use the ENFREQ LISTEN service to

specify a listen exit for ENF event code 67 that tells the check routine that IBM
Health Checker for z/OS is up and running. Then, when the remote check
routine is assured that IBM Health Checker for z/OS is up and running, it can
issue the HZSADDCK macro to define itself.

v An unauthorized remote check cannot use the ENFREQ LISTEN service, so it
must periodically re-try the HZSADDCK macro until IBM Health Checker for
z/OS is up and running.

Using ENF event code 67 to listen for IBM Health Checker for
z/OS availability

If your remote check is authorized, it can use the ENFREQ LISTEN service to see
when IBM Health Checker for z/OS is up and running, or whether a check's status
has changed. On the ENFREQ service, you specify the specific event for which you
would like to listen (IBM Health Checker for z/OS availability) and the listener
user exit routine that is to receive control after the specified event occurs. The
listener user exit specified receives control when IBM Health Checker for z/OS
comes up and notifies the remote check routine, which can then define itself using
HZSADDCK.

To listen for ENF event code 67, you must specify the qualifying events on the
BITQUAL parameter, which specifies a 32-byte field, a hexadecimal constant, or a
register containing the address of a 32-byte field containing a bit-mapped qualifier
that further defines the event. The qualifiers are mapped by mapping macro
HZSZENF. The defined BITQUAL values are:

Qualifier
Information type

X'80000000'
IBM Health Checker for z/OS is available. Field Enf067_BitQual_Available in
the HZSZENF mapping macro.

X'40000000'
IBM Health Checker for z/OS has terminated and is not available. Field
Enf067_BitQual_NotAvailable in the HZSZENF mapping macro.

X'20000000'
The status has changed for a check. Field Enf067_BitQual_StatusChange in the
HZSZENF mapping macro. This might mean:
v The check completed with a different result than the last time it ran. For

example, the check ran successfully after the previous check run issued an
exception or vice versa.

v The check was deactivated or deleted

Remote check routine

Chapter 7. Writing remote check routines 139

If you are monitoring this event, upon receiving this you would probably want
to issue the HZSQUERY macro to get information about the check.

This event may not be presented if IBM Health Checker for z/OS is
terminating (indicated by a X'40000000' ENF 067 event for NotAvailable).

Note that it is possible that IBM Health Checker for z/OS will not be up any
longer by the time the check routine issues the HZSADDCK routine to define the
check to the system. In this case, if the check was using ENFREQ to LISTEN, it
should return to listening again. If the check was periodically re-trying the
HZSADDCK macro, it should go on trying.

If the check routine decides it is no longer interested in knowing if IBM Health
Checker for z/OS is up or not, it can issue the ENFREQ REQUEST=DELETE
request to delete the listen request.

For information about ENFREQ and listener exits, see:
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v Listening for system events in z/OS MVS Programming: Authorized Assembler
Services Guide

Allocate a pause element token using IEAVAPE
To aid in synchronization between the remote check task and IBM Health Checker
for z/OS, you must allocate a pause element token (PET). The PET is used as
follows:
v You provide the PET to the system when the check routine issues an

HZSADDCK service. When the routine issues an HZSCHECK service, the
system returns the PET that the check routine needs to use when it pauses.

v IBM Health Checker for z/OS uses the PET to tell the check to start running
(using the IEAVRLS service)

Use the IEAVAPE service in your remote check routine to allocate a PET. Note that
you can only use a PET in one pause/release cycle. Once a task is paused and
released, you'll need the updated PET returned by IEAVPSE to pause the check
routine next time.

You must always specify a value of IEA_UNAUTHORIZED for the auth_level
parameter when your remote check issues the IEAVAPE service, even if the calling
program is authorized.

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the IEAVAPE
and IEAVPSE services and Synchronizing tasks in the z/OS MVS Programming:
Assembler Services Guide.

Issue the HZSADDCK macro to define a remote check to IBM Health
Checker for z/OS

A remote check does not require a separate HZSADDCHECK exit routine to
identify and describe your check. All you have to do to define (identify, describe,
and add) a check to IBM Health Checker for z/OS is issue the HZSADDCK macro.

IBM Health Checker for z/OS assigns a handle to a remote check. The handle
identifies the remote check task to IBM Health Checker for z/OS for many
different check functions that require coordination between the remote check and

Remote check routine

140 IBM Health Checker for z/OS User's Guide

IBM Health Checker for z/OS. The handle is returned by IBM Health Checker for
z/OS when the remote check routine issues the HZSADDCK service to define the
check. Each time the check defines itself, the check routine, IBM Health Checker
for z/OS assigns a new handle to the check routine. The check routine uses the
handle to identify itself each time it starts a check iteration, issues a function code,
issues a check message (HZSFMSG service) or other IBM Health Checker for z/OS
service request (HZSCPARS, HZSCHECK), and completes a check iteration.

You must ensure that the remote check task has the authorization to define itself as
a remote check. Authorization requires either:
v That the remote check task be APF authorized
v That the calling program has CONTROL access to the SAF resource

HZS.sysname.checkowner.checkname.ADD in the XFACILIT class.

IBM Health Checker for z/OS processes the default values for the check from the
HZSADDCK macro call, and applies any installation updates to the defaults.

Use the following guidelines in defining defaults for your check on the
HZSADDCK macro call in your remote check routine:
v The CHECKOWNER field should reflect both the company and component or

product name: For quick identification of checks, we suggest that the owner
field include a company identifier and component or product name. For
example, CHECKOWNER name IBMGRS reflects both the company and
component that owns the check.

v Define a meaningful CHECKNAME for your check: Create a meaningful,
descriptive name for your check. Your CHECKNAME should start with a
component or product prefix so that you can easily identify where a check
comes from. In addition, using the prefix ensures that all the checks for a
particular component or product will be grouped together in an SDSF check
display, if supported on your system. For example, IBM's virtual storage
management (VSM) checks all start with VSM. (See Chapter 13, “IBM Health
Checker for z/OS checks,” on page 389.)

v Specify REMOTE=YES to indicate that the HZSADDCK macro call comes from
a remote check routine.

v Define an output field for the remote check HANDLE: To coordinate functions
between the remote check routine and IBM Health Checker for z/OS, the system
returns an identifying handle in the HANDLE parameter on the HZSADDCK
macro. You must use this handle when your issue the HZSFMSG macro to issue
a check message, a function code, and other processes.

v Specify the PETOKEN parameter: For a remote check routine, you must specify
the PET returned from the IEAVAPE macro call issued previously in the check
routine.

v Using the DATE parameters: The HZSADDCK DATE parameter specifies when
the setting or value being checked was defined. This will alert customers to
check the installation updates for this check. An installation update also has an
associated date, and when the installation update date is older than the DATE
parameter specified on HZSADDCK, the system:
– Does not apply the update
– Issues a message to inform the installation of the circumstance.

If you change your check, you should update the HZSADDCK DATE parameter
only if you want to make sure that the installation takes a look at your check
again to make sure any installation updates are still appropriate.

Remote check routine

Chapter 7. Writing remote check routines 141

v Assign a severity to your check based on the problems your check is looking
for and how critical they are. The severity you choose will determine how the
system handles the exception messages that your check routine issues with the
HZSFMSG service:
– SEVERITY(HIGH) indicates that the check routine is checking for

high-severity problems in an installation. All exception messages that the
check issues with the HZSFMSG service will be issued to the console as
critical eventual action messages.

– SEVERITY(MEDIUM) indicates that the check is looking for problems that
will degrade the performance of the system. All exception messages the check
issues with HZSFMSG will be issued to the console as eventual action
messages.

– SEVERITY(LOW) indicates that the check is looking for problems that will not
impact the system immediately, but that should be investigated. All exception
messages the check issues with HZSFMSG will be issued to the console as
informational messages.

Installations can update the SEVERITY value in the HZSADDCHECK exit
routine using either the SEVERITY or WTOTYPE parameter in an installation
update.

v Selecting an INTERVAL and EINTERVAL for your check: Keep the following
in mind when selecting an interval for a check:
– The INTERVAL parameter specifies how often the check will run. But you can

also specify an exception interval (EINTERVAL), which lets you specify a
more frequent interval for the check to run if it has raised an exception.

– A check INTERVAL must be 1 minute or longer.
– The specified INTERVAL or EINTERVAL time starts ticking away when a

check finishes running.
v Specify whether your check requires UNIX System Services: Use the USS

keyword to specify whether your check requires z/OS UNIX System Services.
Any check that uses UNIX System Services such as DUB should specify
USS=YES. If you specify USS=YES for a check, the system will run the check
only when UNIX System Services are available.

A program check encountered when invoking HZSADDCK for a remote check
should be handled as an expected situation that can be tried again at least once.
The most likely case being that the re-try will find that IBM Health Checker for
z/OS is currently stopped. There should be no dump and no recording to
LOGREC.

Example of an HZSADDCK macro call for a remote check
The following example shows an assembler HZSADDCK macro call for a remote
check:
HZSADDCK CHECKNAME=RNAME,

CHECKOWNER=ROWNER,
REMOTE=YES,
HANDLE=RHANDLE,
PETOKEN=RPETOKEN,
DATE=RDATE2,
REASON=RREASON,
REASONLEN=RREASONLEN,
SEVERITY=LOW,
INTERVAL=TIMER,
HOURS=RHOURS,MINUTES=RMINUTES,
RETCODE=RetCode,
RSNCODE=RsnCode

Remote check routine

142 IBM Health Checker for z/OS User's Guide

*
* Place code to check return/reason codes here
*
ROWNER DC CL16’IBMABC’
RNAME DC CL32’A_CHECK’
RDATE DC CL8’20060112’
RREASON DC CL32’Verify widgets are present.’
RREASONLEN DC A(L’RREASON)
RHOURS DC H’1’
RMINUTES DC H’0’

HZSZCONS Return code information
DYNAREA DSECT
RHANDLE DS CL16
RPETOKEN DS CL16
RRETCODE DS F
RRSNCODE DS F

HZSADDCK MF=(L,ADDCKL),PLISTVER=MAX

For complete information, see “HZSADDCK macro — HZS add a check” on page
266.

Pause the remote check routine with IEAVPSE
Use the IEAVPSE service in a remote check routine to pause the check routine task
after one processing phase is finished and wait for IBM Health Checker for z/OS
to tell it when to resume running. When you issue IEAVPSE to pause the remote
check routine, the service returns an updated pause element token (PET). You must
use the updated PET the next time you pause the remote check routine.

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the IEAVAPE
and IEAVPSE services and Synchronizing tasks in the z/OS MVS Programming:
Assembler Services Guide.

Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE
to communicate check start and stop to IBM Health Checker for z/OS

A remote check routine must use the HZSCHECK macro REQUEST=OPSTART or
OPCOMPLETE to communicate to IBM Health Checker for z/OS when the check
is starting or stopping itself because the check has completed an iteration:
HZSCHECK REMOTE=YES,

HANDLE=handle,
REQUEST=OPSTART or REQUEST=OPCOMPLETE

For information, see “HZSCHECK macro — HZS Check command request” on
page 285.

Using the check parameter parsing service (HZSCPARS)
If your local or remote check includes parameters, you can use the HZSCPARS
check parameter parsing service to parse parameters. You can use HZSCPARS in
either an assembler or Metal C check routine. When HZSCPARS finds a parameter
error, it issues appropriate error messages for you using the REASON=PARSxxxx
reason values on the HZSFMSG macro. This means that your check routine does
not have to issue error messages for parameter errors. See “HZSFMSG macro —
Issue a formatted check message” on page 313 for explanations of all the
REASON=PARSxxxx values.

Remote check routine

Chapter 7. Writing remote check routines 143

If you are using HZSCPARS for a check that expects a parameter or parameters
but does not get one, HZSCPARS considers this an error and issues an error
message.

Your check routine can also use REASON=PARSxxxx on HZSFMSG
REQUEST=HZSMSG to issue parsing error messages in the course of doing its
own parameter parsing.

You will use HZSCPARS REQUEST=PARSE in your check routine to allocate a
parameter area, mapped by mapping macro HZSZCPAR, that describes the parsed
parameters for the check. You can free this parameter area using HZSCPARS
REQUEST=FREE. For a local check, if you do not free the parameter area, the
system will delete the parameter area upon return from the check routine.

See “HZSCPARS macro — HZS Check Parameter Parsing” on page 300 for
complete information.

For an example of using the HZSCPARS macro in a check routine, see sample
HZSSRCHC, which you can find in SYS1.SAMPLIB.

Note that your check routine must still issue the HZSFMSG REQUEST=STOP
request when HZSCPARS finds a parameter error - see “Function codes for local
check routines” on page 113 and “Release codes for remote check routines” on
page 145.

Using the HZSPQE data area in your remote check routine
The HZSPQE data area contains all the information a check routine needs,
including the defaults defined in the HZSADDCHECK exit routine and any
installation overrides to those defaults. The HZSPQE contains a number of
sections, but some of the most important are:
v PQEChkParms, which shows the current values for the check.
v PQEChkWork, which is the 2K check work area.

The table below shows the structure and some of the most important fields in the
HZSPQE data area.

Table 15. Important fields in the HZSPQE data area for a remote check routine

Field name Meaning

PqeChkInfo section - contains the defaults defined in the HZSADDCHECK exit routine for the check

PQE_Entry_Code Contains the identifier (entry code) assigned for the check in the HZSADDCHECK exit
routine. The entry code is used when a check routine contains multiple checks.

PqeChkParms section - contains the installation overrides for default parameters for the check from HZSPRMxx
and the Modify command (F hzsproc).

PQE_LookAtParms A bit indicating that the parameters have changed. If this bit is on, the check routine
should read the PQE_ParmArea and PQE_PARMLen fields in
PQE_Function_Code_Check processing.

PQE_Verbose A byte indicating whether the check is in verbose mode.

PQE_Debug A byte indicating whether the check is in debug mode.

PQE_ParmLen Contains the length of the parameter area. Quotes surrounding the PARMS value in an
operator command or HZSPRMxx statement are not included in the resulting length.
For example, PARMS('THE_PARM') will result in a length of 8.

Remote check routine

144 IBM Health Checker for z/OS User's Guide

Table 15. Important fields in the HZSPQE data area for a remote check routine (continued)

Field name Meaning

PQE_ParmArea The area containing the user parameters. Quotes surrounding the PARMS value in an
operator command or HZSPRMxx statement are not included.

PQEChkWork section - 2K check work area used and mapped by the check routine as needed. The system zeros the
2K user PQEChkWork user area before calling the check with function code PQE_Function_Code_Init. A check
routine can both write and read from this field, and the system will retain this information for subsequent calls to the
check routine. Changes made to any other HZSPQE fields are not saved between function calls.

Release codes for remote check routines
There are two kinds of release codes for remote checks:
v Pre-defined release codes: When IBM Health Checker for z/OS unpauses a

remote check task that issued the IEAVPSE service, the remote check receives a
pre-defined release code that tells the remote check routine why it was called.
Remote checks should always check the release code on being unpaused
(IEAVRLS service) by the system. The equates for the release codes are provided
in the HZSZCONS mapping macro. The release codes are similar to the function
codes that local checks use and are described in Table 16 on page 146.

v Application-defined release codes: An application can unpause a remote check
with its own, application-defined release code. Release codes in the range
X'C00000' to X'FFFFFF' are reserved for this use and will not conflict with the
pre-defined IBM Health Checker for z/OS release codes. See “Ending a check
that is coupled with an application” on page 147for an example for using your
own release codes.

For remote checks, the pre-defined IBM Health Checker for z/OS release codes
include:
v The INITRUN function is invoked once for the life of the check (which lasts

until the check is deleted or deactivated), to do initialization processing and run
the check for the first time. In the HZSZCONS mapping macro, this release code
is HZS_Remote_Function_InitRun.

v The RUN function is called to indicate that the remote check should run and do
check cleanup after the initial run (INITRUN) of the check, at the specified
interval. In the HZSZCONS mapping macro, this release code is
HZS_Remote_Function_Run.

v Delete functions:
– The DELETE function indicates that a user issued a DELETE request on either

UPDATE or POLICY STMT in the HZSPRMxx parmlib member on or a F
hzsproc command. In the HZSZCONS mapping macro, this release code is
HZS_Remote_Function_Delete.

– The DELETE_REFRESH function indicates that IBM Health Checker for z/OS
deleted the check as part of refresh processing. In the HZSZCONS mapping
macro, this release code is HZS_Remote_Function_DeleteRefresh.

– The DELETE_TERM function indicates that the system deleted the check
when the IBM Health Checker for z/OS address space went down. In the
HZSZCONS mapping macro, this release code is
HZS_Remote_Function_DeleteTerm.
See “Ending a check that is coupled with an application” on page 147.

Remote check routine

Chapter 7. Writing remote check routines 145

v The RESTART function indicates that IBM Health Checker for z/OS has been
restarted so that the remote check can re-define itself (using the HZSADDCK
macro). In the HZSZCONS mapping macro, this release code is
HZS_Remote_Function_Restart.

v The DEACTIVATE function indicates that the remote check has been deactivated.
In the HZSZCONS mapping macro, this release code is
HZS_Remote_Function_Deactivate.

The following table summarizes the release codes for remote checks, showing what
the check should do for each one and when IBM Health Checker for z/OS invokes
them:

Table 16. Summary of release codes for remote checks

Release code Check and system actions When is it invoked?

INITRUN and
RUN

What should the check do? The check routine should:

v Issue HZSCHECK REQUEST=OPSTART.

v Validate that the environment is suitable for the check. If it is not, issue the
HZSFMSG REQUEST=STOP macro to stop the check.

v Check to see if the PQE_LookatParm bit is set on, indicating either that this is the first
iteration of the check, or that the installation has changed the check parameters since
the last iteration. If the bit is on, validate the parameters in the PQE_ParmArea field
of the HZSPQE data area.

If the check finds bad installation parameters, it should:

1. Issue an error message indicating what the problem is.

2. Issue the HZSFMSG REQUEST=STOP,REASON=BADPARM macro request to stop
the check. See “HZSFMSG macro — Issue a formatted check message” on page
313.

v For INITRUN, obtain any first-time-called resources needed for the check.

v Perform the check, including issuing exception messages (HZSFMSG service), reports
and other messages. You can issue a particular message multiple times in a check
routine.

v Clean up anything that you want cleaned between check iterations.

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Issue IEAVPSE to pause the check and to look at the release code upon being
released..

v Refresh

v When a check is
added

v When a check
transitions to the
active enabled state

v At specified check
interval

v When a check
parameter changes

What does the system do? The system does the following setup steps to prepare for
multiple check iteration:

v Initializes the HZSPQE data area with default and override values for the check.

v Passes the default and installation overrides to the check in the HZSPQE data area for
the check.

v Obtains 2K of workarea storage mapped by field PQEChkWork. This storage is
zeroed for Init processing and lasts for the life of the check.

DELETE What should the check do? The check should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained
during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v The check should deallocate its pause element token using IEAVDPE and terminate.

A user deletes the
check using F hzsproc
or the HZSPRMxx
parmlib member.

What does the system do? The system stops calling the check.

Remote check routine

146 IBM Health Checker for z/OS User's Guide

Table 16. Summary of release codes for remote checks (continued)

Release code Check and system actions When is it invoked?

DELETE_
REFRESH

What should the check do? IBM Health Checker for z/OS deleted the check as part of
refresh processing. The check should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained
during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Load the check routine and message table into storage that will persist as long as the
check needs them.

v Issue the IEAVAPE service to allocate a PET, if it had not already obtained one.

v Issue HZSADDCK to re-define itself and get a new handle.

v Issue IEAVPSE to pause the check and to look at the release code upon being
released.

v Refresh

What does the system do? The system stops calling the check and creates the
HZSDPQE for the remote check. Then, upon receiving the HZSADDCK redefining the
check, it starts calling the check again.

DELETE_
TERM

What should the check do? The system deleted the check when the IBM Health
Checker for z/OS address space went down. The check should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained
during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Issue IEAVPSE to pause the check and to look at the release code upon being
released.

v When the IBM
Health Checker for
z/OS address space
goes down

What does the system do? The system stops calling the check.

RESTART What should the check do? The IBM Health Checker for z/OS address space has been
restarted. (This release code does not indicate that the check is restarting.) The check
should:

v Load the check routine and message table into storage that will persist as long as the
check needs them.

v Issue the IEAVAPE to allocate a PET, if it had not already obtained one.

v Issue HZSADDCK to re-define itself and get a new handle.

v Issue IEAVPSE to pause the check and to look at the release code upon being
released.

v When the IBM
Health Checker for
z/OS address space
is restarted

What does the system do? Continues to initialize IBM Health Checker for z/OS.

DEACTIVATE What should the check do? A user deactivated the check using the F hzsproc command
or the HZSPRMxx parmlib member. The check routine should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained
during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Issue IEAVPSE to pause the check and to look at the release code upon being
released.

v Refresh

v When the check
transitions out of the
active enabled state.
For example, when
the check issues
HZSFMSG with the
STOP request.

v When the IBM
Health Checker for
z/OS address space
stops.

What does the system do? The system stops calling the check.

Ending a check that is coupled with an application
If you write a check that is coupled with an application or product, you should
code it so that the check is stopped and deleted when the application shuts down.
In this section, we recommend a protocol to do this. Following this protocol is
particularly important when IBM Health Checker for z/OS is ending at the same
time as the application. Our protocol is as follows:

Remote check routine

Chapter 7. Writing remote check routines 147

1. Define a release code for your application in the range X'C00000' to X'FFFFFF'
(see “Release codes for remote check routines” on page 145), which you can use
to signal a check routine to stop and delete itself.

2. Code your remote check so that when it receives a DELETE_TERM release
code, the check records that fact for use by the process controlling application
termination.

3. When an application begins to terminate and the remote check is already
paused after receiving a DELETE_TERM release code, release the check using
the application release code defined in Step 1 above.

4. When an application begins to terminate and the remote check is not paused
by a DELETE_TERM release code, issue the HZSCHECK REQUEST=DELETE
service to release the remote check with the DELETE release code.
It is possible that a timing collision can occur in this process, in which the
remote check is just about to be released with DELETE_TERM at the same time
that the HZSCHECK REQUEST=DELETE service is issued. In this case,
consider using a loop of STIMER or STIMERM invocations to wait in short
intervals to see if the DELTE_TERM or DELETE has completed, and continue
with application termination when one of those has completed.

Creating and using data saved between restarts
Your check can use the HZSPDATA data set for persistent data. Persistent data is
data that you want to save between restarts of either the system or IBM Health
Checker for z/OS. When you issue the HZSPWRIT macro to write persistent data,
the system saves data from two IPLs in HZSPDATA, the current IPL and the IPL
prior to the current. Then, for each IPL, HZSPDATA contains two instances of data
- one for the first iteration of the check and another for the most recent iteration of
the check that wrote data to HZSPDATA. The first instance does not change for the
life of the IPL, but the second instance is replaced each time a check writes data to
the HZSPDATA data set.

You can read data from the HZSPDATA data set using the HZSPREAD macro.
Commonly, checks use HZSPDATA to compare current data to the data saved in
the HZSPDATA data set from one of the saved IPLs.

We have a couple of tips for you in using HZSPREAD and HZSPWRIT macros to
read and write persistent data:
v Before you try to work with the persistent data that you read from the

HZSPDATA data set, make sure your code checks for the following HZSPREAD
return codes:
– Return code 8, reason code X'xxxx082D', equate symbol

HzslpdrdRsn_NoMatch indicates that no persistent data exists for this check.
– Return code 8, reason code X'xxxx0830', equate symbol

HzslpdrdRsn_DataDoesNotExist indicates that there is persistent data saved
for this check, but not for the requested IPL.

v Tips for using HZSPWRIT:
– You cannot delete data from the HZSPDATA data set once you have written it

there. You can only replace the data in the current IPL instance in
HZSPDATA.

– You cannot write a null record to HZSPDATA.
– You can issue multiple HZSPWRIT requests in a single check iteration. If the

check iteration completes normally (returns to its caller), all of the data
accumulated by HZSPWRIT requests for that iteration are written to

Remote check routine

148 IBM Health Checker for z/OS User's Guide

|
|

|
|

HZSPDATA. If the check iteration does not complete normally, none of the
data provided on HZSPWRIT requests for that check iteration is written to
HZSPDATA.

Gotcha: After your check writes data to the HZSPDATA data set using HZSPWRIT,
it takes one hour before data is actually hardened. That means that if the
installation restarts IBM Health Checker for z/OS before an hour or re-IPL less
than an hour has elapsed since the last HZSPWRIT, the data will not be saved in
the HZSPDATA data set. IBM Health Checker for z/OS operates this way so that if
a problem such as the following occurs, the system does not retain the data in the
HZSPDATA data set:
v The check iteration completes with an abend
v A remote check iteration is unsuccessful
v An invocation of HZSPWRIT is unsuccessful

Note that an unsuccessful check iteration or HZSPWRIT invocation does not have
any correlation to whether or not the check detected one or more exceptions.

Planning for persistent data: Sample HZSALLCP in SYS1.SAMPLIB shows how to
allocate and initialize the HZSPDATA data set. When you are allocating space for
the HZSPDATA data set, keep in mind that in “Allocate the HZSPDATA data set to
save check data between restarts” on page 11, we tell customers to define the
HZSPDATA data set with a logical record length of 4096. You must plan for four
sets of data: for each of the two instances for both the current and previous IPLs.

Authorization for HZSPDATA: You can define RACF profiles in the XFACILIT
class for resources accessing the HZSPDATA.

Note that checks reading from or writing to the HZSPDATA data set must be both
APF authorized and also have indicated not to do security checks, or they must
have the appropriate access (READ or UPDATE) to either of the following:
v XFACILIT class resource HZS.sysname.checkowner.PDATA
v XFACILIT class resource HZS.sysname.checkowner.checkname.PDATA

See “HZSPREAD macro — Read Check Persistent Data” on page 346 and
“HZSPWRIT macro — Write Check Persistent Data” on page 356 for information
about authorization for checks to the HZSPDATA data set.

The following example shows how you might define a RACF profile for read or
update access to HZSPDATA data set for a check:
RDEFINE XFACILIT HZS.sysname.checkowner.checkname.PDATA UACC(NONE)
PERMIT HZS.sysname.checkowner.checkname.PDATA CLASS(XFACILIT) ID(hzspdid) ACCESS(READ|UPDATE)
SETROPTS CLASSACT(XFACILIT) RACLIST(XFACILIT)

If you have already RACLISTed the XFACILIT or FACILITY class, which you
probably have if you have IBM Health Checker for z/OS set up, just use the
REFRESH parameter on the SETROPTS statement:
SETROPTS RACLIST(XFACILIT) REFRESH

Use the SECCHECK(UNAUTH|ALL) parameter in your code to specify whether
you want the system to verify the security for writing to or reading from
HZSPDATA. See “HZSPWRIT macro — Write Check Persistent Data” on page 356
and “HZSPREAD macro — Read Check Persistent Data” on page 346.

Remote check routine

Chapter 7. Writing remote check routines 149

|
|

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

Issuing messages in your remote check routine with the HZSFMSG
macro

To issue a message with check results in your check routine, you must use the
HZSFMSG macro (“HZSFMSG macro — Issue a formatted check message” on page
313), which you can issue in either an assembler or Metal C check routine.

This section only covers using the HZSFMSG macro to issue a message, but a
message also consists of a few other ingredients. When your check runs, the
system assembles the message from the following:
v The actual text and explanation for your check messages are defined in your

message table, see “Issuing messages in your local check routine with the
HZSFMSG macro” on page 117.

v The variables for your check messages are defined in the HZSMGB data area
from your check routine. See “Defining the variables for your messages” on
page 120.

Note that you can omit the message table and issue messages directly from the
check routine in one of the following ways:
v For local or remote checks, use HZSFMSG REQUEST=DIRECTMSG. See

“HZSFMSG macro — Issue a formatted check message” on page 313.
v For REXX checks, use the REQUEST='DIRECTMSG' subfunction of the

HZSLFMSG function. See “Input variables for
HZSLFMSG_REQUEST='DIRECTMSG'” on page 238.

You can issue the following kinds of messages in your check routine:
v Exception messages and other check results messages (CHECKMSG or

DIRECTMSG request). For an overview of the various message types, see
Table 20 on page 216.

v IBM Health Checker for z/OS messages (HZSMSG request)
v IBM Health Checker for z/OS messages that indicate that the check is stopped

(STOP request). If your check routine issues HZSFMSG with the STOP request, it
prompts the system to call the delete function code for the check.

You can issue a particular message multiple times in a single iteration of a check -
a check routine should always issue an exception message to report an error.

For a remote check, the HZSFMSG macro call must:
v Specify REMOTE=YES
v Specify the handle that identifies the check to IBM Health Checker for z/OS on

the HANDLE parameter. The system assigns and returns the handle to the
remote check when the check issues the HZSADDCHK macro to define the
check to the system. See “Issue the HZSADDCK macro to define a remote check
to IBM Health Checker for z/OS” on page 140.

v Specify the location of the message table for the check in the MSGTABLE
parameter. (Local checks do not have to specify the location of the message table
because both the check and the message table are in the IBM Health Checker for
z/OS address space.)
Note that a remote check must also load the message table into storage.

For example, a remote check might issue a check exception message with the
following HZSFMSG macro call:

Remote check routine

150 IBM Health Checker for z/OS User's Guide

HZSFMSG REQUEST=CHECKMSG,MGBADDR=Addr_Of_MGB1,
MGBFORMAT=1,
REMOTE=YES,HANDLE=CK_Handle,
MsgTable=Addr_Of_MsgTable,
MF=(E,HZSFMSG_List)

Check messages are important because they report the results of the check to an
installation. Each check should issue at least:
v One or more messages for any exception found to the setting the check is

looking for.
v A message indicating that no exceptions were found, when appropriate.

If an HZSFMSG macro call is incorrect, the system issues system abend X'290' with
a unique reason code and creates a logrec error record. The system checks the
following for each HZSFMSG call:
v To see that the HZSMGB data area (input to checks describing message

identifiers and variables) is complete
v That the message is in the message table
v That the number of inserts provided on the call exactly matches the number

required to complete the message
v That each variable definition is between 1-256 characters long

The reason codes for system abend X'290' describe the message error. See z/OS
MVS System Codes.

HZSFMSG updates the PQE_Result field in the HZSPQE as follows:
v For a specified severity of HIGH, the system sets the check result to 12
v For a specified severity of MEDIUM, the system sets the check result to 8
v For a specified severity of LOW, the system sets the check result to 4

PQE_Result is set to 0 when the check is called. See “Examples” on page 343.

For information on coding the message texts and explanation for messages, see
“Issuing messages in your local check routine with the HZSFMSG macro” on page
117.

Reporting check exceptions
When a check detects a system condition or setting that runs counter to the values
that the check is looking for, the check should issue an exception message to report
the exception. For an exception message, the system displays both the message text
and the entire message explanation in the message buffer. The message should
include a detailed explanation of the error and the appropriate action that the
installation should take to resolve the condition. If you are writing a check that
checks for a setting that conflicts with the default for the setting, you should
include in your check output information about why the check user is getting an
exception message for a default setting.

Along with an exception message, IBM Health Checker for z/OS will issue a line
showing the severity and the return code for the check. The check will continue to
run at the defined intervals, reporting the exception each time until the exception
condition is resolved.

The following example shows an exception message issued to the message buffer:

Remote check routine

Chapter 7. Writing remote check routines 151

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
START TIME: 05/25/2005 09:42:56.690844
CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or
more potential errors in the security controls on this system.

Explanation: The RACF security configuration check has found one or
more potential errors with the system protection mechanisms.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator and the system auditor.

System Programmer Response: Examine the report that was produced by
the RACF check. Any data set which has an "E" in the "S" (Status)
column has excessive authority allowed to the data set. That
authority may come from a universal access (UACC) or ID(*) access
list entry which is too permissive, or if the profile is in WARNING
mode. If there is no profile, then PROTECTALL(FAIL) is not in
effect. Any data set which has a "V" in the "S" (Status) field is
not on the indicated volume. Remove these data sets from the list
or allocate the data sets on the volume.

Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate
that there is no RACF profile protecting the data set. Data sets
which do not have a RACF profile are flagged as exceptions, unless
SETROPTS PROTECTALL(FAIL) is in effect for the system.

If a valid user ID was specified as a parameter to the check, that
user’s authority to the data set is checked. If the user has an
excessive authority to the data set, that is indicated in the USER
column. For example, if the user has ALTER authority to an
APF-authorized data set, the USER column contains "<Read" to
indicate that the user has more than READ authority to the data set.

Problem Determination: See the RACF System Programmer’s Guide and
the RACF Auditor’s Guide for information on the proper controls for
your system.

Source:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Reference Documentation:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Automation: None.

Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH
APF-authorized data set, the USER column contains "

The Check Reason: field display the default reason in an exception message
without installation parameter overrides.

Remote check routine

152 IBM Health Checker for z/OS User's Guide

See "Issuing a REXX check exception message" for an example of how to issue an
exception message from a REXX check.

Example - Issuing a DIRECTMSG message for a REXX check: For a check that has
no message table associated with it, you can issue a check message directly from
the check routine, as shown in the example below. REXX sample check
SYS1.SAMPLIB(HZSSXCHN) also shows DIRECTMSG calls.

/* Set up exception message input for HZSLFMSG */
/* Required input variables: */
HZSLFMSG_REQUEST=’DIRECTMSG’
HZSLFMSG_REASON=’CHECKEXCEPTION’
HZSLFMSG_DIRECTMSG_ID=’UTHH003E’
HZSLFMSG_DIRECTMSG_TEXT=’Brief exception summary’
/* Optional input variables: */
HZSLFMSG_DIRECTMSG.EXPL=’The exception explanation for UTHR003E’
HZSLFMSG_DIRECTMSG.AUTOMATION=’Automation text for UTHR003E’
HZSLFMSG_DIRECTMSG.SOURCE=’Source text for UTHR003E’
/* Call HZSLFMSG */
HZSLFMSG_RC = HZSLFMSG()

/* Set up report message input for HZSLFMSG */
HZSLFMSG_REQUEST=’DIRECTMSG’
HZSLFMSG_REASON=’CHECKREPORT’
HZSLFMSG_DIRECTMSG_TEXT=’Single line report message’
/* Call HZSLFMSG */
HZSLFMSG_RC = HZSLFMSG()

Defining the variables for your messages
The variable information for your check messages is defined in the HZSMGB data
area by your check routine. The check routine defines information about variables
and points to the HZSMGB data area for variable values. For Metal C check
routines, the HZSMGB data area layout is mirrored in the HZSHMGB header.

There are two HZSMGB formats you can use to map your keywords:
v MGBFORMAT=0: Requires you to point to a separately defined area in storage

where the length and value of the variable are defined, mapped by
MGB_InsertD. See “Using default HZSMGB data area format
(MGBFORMAT=0)” on page 121.

v MGBFORMAT=1: Allows you to specify the length and address of the variables
in HZSMGB fields MGB1_MsgInsertDesc_Length and
MGB1_MsgInsertDesc_Addr in the MGB1_MsgInsertDesc mapping. See “Using
HZSMGB data area format MGBFORMAT=1” on page 123.

Figure 14 on page 201 shows how messages with variables get resolved at check
runtime.

Use the following guidelines in defining variables for your messages:

Match up the number of variables in the HZSMGB data area and the message
table, because if you end up with a mismatch, your check will abend when it
issues the HZSFMSG macro to issue the message. Look in the logrec error record
or z/OS MVS System Codes to find the description of the reason code issued with
the abend.

To keep text on the same line, replace blank characters, X'40', with the required
blank character X'44'.

Remote check routine

Chapter 7. Writing remote check routines 153

If I use the same variable twice in a message, do I have to define it twice in the
HZSMGB data area? Yes, every time you use a variable, even if you use the same
variable several times in the same message, you must point to separate entries in
the MGB_Inserts field for each variable instance. However, each of the entries for
an identical variable can point to the same area in storage where the variable
length and value are specified for the variable.

Can I build the HZSMGB information for all my check messages once at
initialization and then reuse them whenever the check runs? Tempting idea, but
no. The problem with this method is that there's no guarantee that the HZSPQE
data area for the check will be in the same place for any given run of your check.
Although the contents of the PQEChkWork section are the same for every run of
the check, it's location is not. Thus if you try to point within your PQEChkWork
area for variable information, the offset will be the same, but the full address
probably will not be.

On the other hand, if you are pointing into either your check routine module or an
area that you GETMAINed at initialization to build your HZSMGB data area, those
areas will stay the same, and so the build once/use multiple times approach might
work. But this is a tricky maneuver.

In the HZSMGB data area, variables do not have variable names. You insert the
length (MGB_MsgILen field) and value (MGB_MsgIVal field) for a variable without
using the variable name you use in the check routine.

Can I have a null variable? You can indeed have a null variable by defining a
variable length of zero in the MGB_MsgILen field.

What happens if I make a mistake updating HZSMGB? If you make a mistake
while updating HZSMGB so that your variable values are not compatible with the
variable attributes in the message output at check runtime, your check will most
likely abend with system abend code X'290' and a reason code that describes the
error. The system also writes a record to SYS1.LOGREC that provides additional
detail in the variable recording area (VRA).

Using default HZSMGB data area format (MGBFORMAT=0)
Figure 8 on page 122 shows an example of how you define the message variables
in your check routine:

�1� shows an example of defining the message number in the
MGB_MessageNumber.

�2� shows an example of filling in the MGB_InsertCnt field with the number of
variables for your message.

�3� shows an example of putting the address of one variable into the MGB_Inserts
field. This address points to the area in storage where the length and value of the
variable are defined, mapped by MGB_InsertD.

�4� shows an example of defining the length and value of the variable in the
MGB_MsgILen and MGB_MsgIVal fields for the variable in storage. These fields
are in the MGB_InsertD mapping.

Remote check routine

154 IBM Health Checker for z/OS User's Guide

�5� shows an example of issuing a message. Note that this example shows a local
message. For a remote check, the HZSFMSG macro must include the
REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�6� shows how the variable address, length, and value are defined to be stored in
the HZSMGB data area or in storage.

�7� shows an example of creating an area big enough in the HZSMGB for the
information about all your variables. To create enough room for all your variables,
use the formula HZSMGB_LEN + (n-1)*L'MGB_inserts where n is the number of
inserts. HZSMGB_LEN by itself will provide room for only one insert.

Figure 8 on page 122 shows check routine code that defines variable data in the
HZSMGB:

Remote check routine

Chapter 7. Writing remote check routines 155

Important fields in the HZSMGB data area include:

Table 17. Important MGBFORMAT=0 fields in the HZSMGB data area for check message variables

Field name Meaning

MGB_MessageNumber
MGB_ID

Fullword field containing the value identifying each message. These fields are the
same - there are two names for this field. This field corresponds to the xreftext value
for each message. For example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB_InsertCnt Fullword field containing the number of variables (or inserts) to follow.

MGB_Inserts
MGB_InsertAddr

These fields are the same - there are two names for this field.

This field contains an array of pointers, each of which contains the address in storage
of an area for a specific variable. This area is mapped by Mgb_MsgInsertD.

* Issue a message with two inserts *

SYSSTATE ARCHLVL=1
* save regs, get dynamic storage, chain saveareas, set usings

LA 2,TheMGBArea
ST 2,TheMGBAddr
USING HZSMGB,2

�1� MVC MGB_MessageNumber,=F’1’ Message 1
�2� MVC MGB_insert_cnt,=F’2’ Two inserts

LA 3,Insert1Area Address of first insert
�3� ST 3,MGB_Inserts Save insert address

LA 3,Insert2Area Address of second insert
USING MGB_MsgInsertD,3

�4� MVC MGB_MsgILen,=AL2(L’Insert2Val) Insert length
MVC MGB_MsgIVal(L’Insert2Val),MyMod Insert value
DROP 3
ST 3,MGB_Inserts+4 Save insert address

�5� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,FMSGL)

DROP 2
*
* Place code to check return/reason codes here
*
* free dynamic storage, restore regs

BR 14
MyMod DC CL8’MYMODULE’ �6�
* Area for first insert
Insert1Area DS 0H
Insert1Len DC AL2(L’Insert1Val)
Insert1Val DC C’CSA ’

LTORG ,
HZSZCONS , Return code information
HZSMGB , Insert mapping

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
* Area for 2 inserts (HZSMGB_LEN accounts for one, so
* we add one more "length of MGB_Inserts")
TheMGBAddr DS A �7�
TheMGBArea DS CL(HZSMGB_LEN+1*L’MGB_Inserts)
* Area for second insert
Insert2Area DS 0H
Insert2Len DS AL2(L’Insert2Val)
Insert2Val DC X’00950000’

HZSFMSG MF=(L,FMSGL),PLISTVER=MAX
DYNAREA_LEN EQU *-DYNAREA

Figure 10. Example of issuing a message with variables in an assembler check

Remote check routine

156 IBM Health Checker for z/OS User's Guide

Table 17. Important MGBFORMAT=0 fields in the HZSMGB data area for check message variables (continued)

Field name Meaning

MGB_MsgInsertD A structure in the HZSMGB data area that describes the length and value of the
variable:

v MGB_MsgILen, which is a 2 byte field containing the length of the variable.

v MGB_MsgIVal, which contains the value of the variable.

Using HZSMGB data area format MGBFORMAT=1
�1� shows an example of defining the message number in the
MGB1_MessageNumber field.

�2� shows an example of filling in the MGB1_Insert_Cnt field with the number of
variables for your message.

�3� shows examples of defining the length and address of the variable in the
MGB1_MsgInsertDesc_Length and MGB1_MsgInsertDesc_Addr fields for the
variable in storage. These fields are in the MGB1_MsgInsertDesc mapping.

�4� shows an example of issuing a message. Note that this example shows a local
message. For a remote check, the HZSFMSG macro must include the
REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�5� shows how the variable address, length, and value are defined to be stored in
the HZSMGB data area or in storage.

�6� shows an example of creating an area big enough in the HZSMGB1 for the
information about all your variables. To create enough room for all your variables,
use the formula HZSMGB1_LEN1 + (n)*MGB1_MsgInsertDesc_Len where n is the
number of inserts.

Figure 9 on page 124 shows check routine code that defines variable data in the
HZSMGB data area using MGBFORMAT=1:

Remote check routine

Chapter 7. Writing remote check routines 157

Important MGBFORMAT=1 fields in the HZSMGB data area include:

Table 18. Important MGBFORMAT=1 fields in the HZSMGB data area for check message
variables

Field name Meaning

MGB1_MessageNumber
MGB1_ID

Fullword field containing the value identifying each message.
These fields are the same - there are two names for this field. This
field corresponds to the xreftext value for each message. For
example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB1_InsertCnt Fullword field containing the number of variables (or inserts) to
follow.

MGB1_MsgInsert
Desc_Length

The length of the variable. For a null variable, use a length of
zero.

MGB1_MsgInsert
Desc_Addr

The address of the variable. For a null variable, you need not set
this field.

Writing a check with dynamic severity levels
You can create your check routine to issue check exception messages with a
dynamically varying severity level, giving users more control over how exception
messages are issued and handled. For example, you might use the dynamic
severity function for checks that inspect a system setting value and compare it
against a threshold. As the value approaches the high threshold, the check can
vary the severity of the exception, depending on how close to the threshold the
value is.

* Issue a message with two inserts *

SYSSTATE ARCHLVL=2
* save regs, get dynamic storage, chain saveareas, set usings

LA 2,TheMGBArea
ST 2,TheMGBAddr
USING HZSMGB1,2 �1� MVC MGB1_MessageNumber,=F'1' Message 1 �2� MVC MGB1_insert_cnt,=F'2' Two inserts
DROP 2
PUSH USING
USING MGB1_MsgInsertDesc,TheMSGInsertDesc1�3� MVC MGB1_MsgInsertDesc_Length,=AL2(L'Insert1Val) Insert length
LA 15,Insert1Val
ST 15,MGB1_MsgInsertDesc_Addr Insert address
POP USING
PUSH USING
USING MGB1_MsgInsertDesc,TheMGBInsertDesc2
MVC MGB1_MsgInsertDesc_Length,=AL2(L'Insert2Val) Insert length
LA 15,Insert2Val
ST 15,MGB1_MsgInsertDesc_Addr Insert address
POP USING�4� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

MGBFORMAT=1, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,FMSGL)

*
* Place code to check return/reason codes here
*
* free dynamic storage, restore regs

BR 14 �5�
* Area for first insert
Insert1Val DC C'CSA '
* Area for second insert
Insert2Val DC X’00950000’

LTORG ,
HZSZCONS , Return code information
HZSMGB , Insert mapping

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
TheMGBAddr DS A
* Area for 2 inserts �6�
TheMGBArea DS CL(HZSMGB_LEN1)
TheMSGInsertDesc1 DS CL(MGB1_MsgInsertDesc_Len)
TheMSGInsertDesc2 DS CL(MGB1_MsgInsertDesc_Len)
HZSFMSG MF=(L,FMSGL),PLISTVER=MAX
DYNAREA_LEN EQU *-DYNAREA

Figure 11. Example of issuing a message with variables using MGBFORMAT=1

Remote check routine

158 IBM Health Checker for z/OS User's Guide

For information on how users work with checks enabled with dynamic severity,
see “Customizing check exceptions with dynamically varying severity” on page 31

How to enable a check for dynamic severity: In order to allow the customer to
use the dynamic severity function do the following:
1. Define check parameters that let the check know what severity exception to

issue. For example, if your check looks for parameter 'p', define the following
parameters:
v p_HIGH
v p_MED
v p_LOW
v p_NONE

In addition, define the corresponding short forms of the parameter, for example
for our case, you would define p_H, p_M, p_L, and p_N parameters. And,
because it's always likely that customers could forget the exact parameter
specifications, try to build in the obvious mistakes. For example, a customer
might try p_HI when the correct parameter is p_HIGH, so we recommend that
you also support p_HI and p_NO (as a short version of p_NONE).
We have the following tips for you in defining dynamic severity check
parameters: Note that the parameter names you create cannot exceed the 16
character parameter length limit for the ADD/UPDATE CHECK interface!
v Of course, the customer should not specify multiple forms for a given

severity, but it is not worth while enforcing that in your check routine.
Instead, program your check to accept the longest parameter. In other words,
if a customer specifies both p_HIGH and p_H parameters for a check, your
check should use the value from p_HIGH.

v If you are writing a new check that exploits dynamic severity, we
recommend that you use the suffixed parameters (p_HIGH, p_MED, p_LOW
and so on) and do not code a non-suffixed, non-dynamic version of the 'p'
parameter.
On the other hand, if you are upgrading an existing check to use dynamic
severity, keep the plain non-suffixed parameter and add the _HIGH, _MED,
_LOW, _NONE variants as well. Then make sure to code your check to use
the rule that if any of the dynamic severity variants are present, then the
non-dynamic severity variant is ignored. That way, you don't have to worry
about interpreting cases where the customer specifies both a non-dynamic 'p'
version of the parameter and a dynamic p_HIGH version.
If you are adding dynamic severity parameters for an old check, and none of
the existing parameters allow an underscore either within the parameter
name or value, you can code your check to assume that the customer is
using a dynamic severity specification if you find an underscore within the
parameter string.

v Code your check so that the customer does not need to specify a severity for
all parameters. They should be able to specify just the ones that they want.

2. Code your dynamic severity check to issue exception messages with the
SEVERITY parameter on the HZSFMSG service or using REXX function
HZSLFMSG_SEVERITY, as follows:
v If no dynamic severity parameter is provided and the criterion for an

exception based on the parameter is met, issue a severity-system message
v Else if a p_HIGH parameter is provided and the criterion for an exception

based on that parameter is met, issue a severity-high message

Remote check routine

Chapter 7. Writing remote check routines 159

v Else if a p_MED parameter is provided and the criterion for an exception
based on that parameter is met, issue a severity-medium message

v Else if a p_LOW parameter is provided and the criterion for an exception
based on that parameter is met, issue a severity-low message

v Else if a p_NONE parameter is provided and the criterion for an exception
based on that parameter is met, issue a severity-none message

Note that the severity specified on HZSFMSG or HZSLFMSG_SEVERITY
overrides the default severity defined for the check when it was added.

3. Add the check with ALLOWDYNSEV=YES specified. See the ADD or
ADDREPLACE CHECK paramters in “Syntax and parameters for HZSPRMxx
and MODIFY hzsproc” on page 69 or “HZSADDCK macro — HZS add a check”
on page 266.

How dynamic severity and the SEVERITY in the check definition interact: As
we mention above, a check using dynamic severity overrides the severity specified
in the check definition. So that was easy. But just to keep things interesting, note
that the implicit WTO handling of exception messages that is derived from the
severity in either the check definition or the dynamic check severity being used
can be overridden by a WTOTYPE specified in the check definition. See WTOTYPE
in “Syntax and parameters for HZSPRMxx and MODIFY hzsproc” on page 69.

Controlling check exception message WTOs and their automation
consequences

By default, IBM Health Checker for z/OS issues DOM requests to delete any check
exception message WTOs left behind from previous check iterations. It does this
DOMing right before the start of the new check iteration. That means that each
time the check generates an exception, it also sends a new exception WTO, which
also kicks off any automation actions you've set up for your installation.

So, what if you want more control over check exception WTOs and their
automation consequences? For example, let's say you have a check that runs every
hour. Now let's say that your check begins generating identical exceptions that
you've automated on to prompt a beeper call to your favorite system programmer.
You have not yet resolved the exception issue, and the installation policy is to not
disable checks generating exceptions. That's just good practice, right? And yet your
check might generate a lot of WTOs and beeper calls to that poor system
programmer while the issue gets resolved.

That's where DOM control comes in! Starting with z/OS V1R13, IBM Health
Checker for z/OS you can use the following functions that help you control
whether you want to suppress WTOs and any automation actions they trigger for
a check that is generating exceptions:
1. Add your check to the product using the DOM(CHECK) parameter on the

HZSPRMxx and MODIFY hzsproc command. See ADD or ADDREPLACE
CHECK parameters in “Syntax and parameters for HZSPRMxx and MODIFY
hzsproc” on page 69.

2. From your check you decide when to DOM WTOs from previous check runs
using the HZSFMSG REQUEST=DOM macro (“HZSFMSG macro — Issue a
formatted check message” on page 313) or the REXX
HZSLFMSG_REQUEST='DOM' function “HZSLFMSG function” on page 236.

Realizing the benefits of this function is all in the timing:

Remote check routine

160 IBM Health Checker for z/OS User's Guide

v If your check (added with DOM(CHECK)) is generating multiple identical
unresolved exceptions, your check can wait to DOM the exception WTO (with
HZSFMSG REQUEST=DOM or the REXX HZSLFMSG_REQUEST='DOM'
function) until the exception condition is resolved. This way, your check is still
running, but the exception WTOs from previous iterations of the check do not
get DOMed. That means that exception messages from this check are just
recorded in the message buffer and not sent as WTOs that set off automation
actions.

v If your check is running successfully and is not generating an exception in a
check iteration or is generating different check exceptions between iterations,
your check should issue HZSFMSG REQUEST=DOM or the REXX
HZSLFMSG_REQUEST='DOM' function to DOM WTOs from previous iterations.
That way any subsequent exception will be sent as a WTO and will kick off any
defined automation actions.

On the other hand, if you always want to delete WTOs for your check, and never
wish to suppress duplicate exception WTOs, you will want to specify or default to
DOM(SYSTEM) when you add your check, and let the system take care of
DOMing of check WTOs for you!

Recommendations and recovery considerations for remote checks
Recovery needed for your check routine is basically the same as for any other
program - the following recommendations are not, for the most part, unique to
writing a check routine.

Make your check clean up after itself, because the system won't do it for you:
IBM Health Checker for z/OS does not perform any end-of-task cleanup for your
check. Check routines should track resources, such as storage obtained, ENQs,
locks, and latches, in the PQE_ChkWork field.

Have your check stop itself when the environment is inappropriate: If your
check routine encounters an environmental condition that will prevent the check
from returning useful results, your check routine should stop itself and not run
again until environmental conditions change and your code requests it to run. Your
check should do the following to respond to an inappropriate environment:
1. Issue an information message to describe why the check is not running. For

example, you might issue the following message to let check users know that
the environment is not appropriate for the check, and when the check will run
again:
The server is down.
When the server is available, the check will run again.

2. Issue the HZSFMSG service to stop itself:
HZSFMSG REQEST=STOP,REASON=ENVNA

3. Make sure that your product or check includes code that can detect a change in
the environment and start running the check again when appropriate. To start
running the check, issue the following HZSCHECK service:
HZSCHECK REQUEST=RUN,CHECKOWNER=checkowner,CHECKNAME=checkname

If the environment is still not appropriate when your code runs the check, it
can always stop itself again.

Your check should not add itself in an inappropriate environment: If you use a
HZSADDCHECK exit routine to add your checks to the system, note that some
checks or product code might add or delete checks to the system in response to

Remote check routine

Chapter 7. Writing remote check routines 161

changes in system environmental conditions. For example, if a check or product
detects that a system environment is inappropriate for the check, it might then add
only the checks useful in the current environment by invoking the HZSADDCHCK
registration exit with an ADDNEW request (from the HZSCHECK service, the F
hzsproc command, or in the HZSPRMxx parmlib member. You should add similar
code to your HZSADDCHECK exit routine to make sure that your checks don't
run if they will not return useful results in the current environment. This code
might:
v Delete checks that do not apply in the current environment
v Run a check so that it can check the environment and disable itself if it is

inappropriate in the current environment. Consider supporting a check PARM so
the installation may indicate the condition is successful and not an error.

If your check can never be valid for the current IPL, consider not even adding it
from your HZSADDCHECK exit routine when you detect that situation. For
example, if a check is relevant only when in XCF LOCAL mode but the system is
not in that mode (and cannot change to that mode), there is no reason even to add
the check.

Have your check stop itself for bad parameters: If your check routine is passed a
bad parameter, it should stop itself using the HZSFMSG service:
HZSFMSG REQUEST=STOP,REASON=BADPARM

This request will also issue predefined HZS1001E error message to indicate what
the problem is. The check routine will not be called again until it is refreshed or its
parameters are changed. REQUEST=STOP prevents the check from running again
and sets the results in the PQE_Result field of HZSPQE. The system sets the result
field based on the severity value for the check. See “Issuing messages in your local
check routine with the HZSFMSG macro” on page 117 for examples and complete
information.

Take advantage of verbose and debug modes in your check:

IBM Health Checker for z/OS has support for the following modes:
v Debug mode, which tells the system to output extra messages designed to help

you debug your check. IBM Health Checker for z/OS outputs some extra
messages in debug mode, and some checks do also. When a check runs in debug
mode, each message line is prefaced by a message ID, which can be helpful in
pinpointing the problem. For example, report messages are not prefaced by
message IDs unless a check is running in debug mode.
There are two ways to issue extra messages in debug mode:
– Use conditional logic such that when in debug mode (when field

PQE_DEBUG in mapping macro HZSPQE has the value PQE_DEBUG_ON),
your check issues additional messages.

– Code debug type messages - see “Planning your debug messages” on page
203

Users can turn on debug mode using the DEBUG=ON parameter in the
MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG field
in SDSF to ON.

v Verbose mode, which tells the check routine to output messages with additional
detail about non-exception information found by the check. (RACF checks, for
example, issue additional detail in verbose mode.) To issue extra messages in
verbose mode, use conditional logic such that when in verbose mode (when

Remote check routine

162 IBM Health Checker for z/OS User's Guide

field PQE_VERBOSE in mapping macro HZSPQE has the value
PQE_VERBOSE_YES), your check issues additional messages.
Users can turn on verbose mode using the VERBOSE=YES parameter in the
F hzsproc command or in HZSPRMxx.

Plan recovery for your check: Your check routine should be designed to handle
abends. If the task that issues the HZSADDCK macro defining check defaults
terminates for any reason, including an abend that is not re-tried, the system treats
the check as if it is deleted.

In some cases you may not want your check to be stopped when an abend occurs
because some abend causing conditions might simply clear with time. For example,
if your check abends as a result of getting garbled data from an unserialized
resource, such as a data area in the midst of an MVC, your check should provide
its own recovery to:
v Retry the check a pre-determined number of times.
v If the check fails again, the check should stop running, but not stop itself.

This allows the check to try running again at the next specified interval, with every
chance of success this time.

Look for logrec error records when you test your check: When testing your check,
be sure to look for logrec error records. The system issues abend X'290' if the
system encounters an error while a message is being issued, and issues a logrec
error record and a description of the problem in the variable recording area (VRA).

Save time, save trouble - test your check with these commands: When you have
written your check, test it with the following commands to find some of the most
common problems people make in writing checks:
F hzsproc,UPDATE,CHECK(check_owner,check_name),DEBUG=ON
F hzsproc,UPDATE,CHECK(check_owner,check_name),PARM=parameter,REASON=reason,DATE=date
F hzsproc,DELETE,CHECK(check_owner,check_name),FORCE=YES
F hzsproc,DISPLAY,CHECK(check_owner,check_name),DETAIL

Avoid modifying system control blocks in your check routine: The IBM Health
Checker for z/OS philosophy is to keep check routines very simple. IBM
recommends that checks read but not update system data and try to avoid
disruptive behavior such as modifying system control blocks.

See also “Debugging checks” on page 166.

Building Metal C checks
To make it easier to compile and build, link-edit, and bind a Metal C check, IBM
Health Checker for z/OS provides a sample makefile, hzssmake.mk, for use with
the z/OS UNIX System Services make utility. This makefile compiles and builds
the sample files shipped in z/OS UNIX file system directory /usr/lpp/bcp/
samples, where the makefile itself is shipped also.

Before you use the makefile, make sure you update the HCHECK_LOADLIB
variable in the makefile. This variable names the dataset where the makefile will
store the final load modules. This should be an APF authorized dataset in the link
list, suitable for your installation.

To create all sample load modules, change to the directory where the hzssmake.mk
file is stored and invoke the make utility like this:

Remote check routine

Chapter 7. Writing remote check routines 163

make -f hzssmake.mk

Check out the other make rules in the makefile, in particular the cleanup rules. You
can invoke cleanup, for example, using the following command:
make -f hzssmake.mk clean

This command will clean up all intermediate files, but will keep the generated load
modules.

Once built, your Metal C load modules are ready to be registered with IBM Health
Checker for z/OS as you would any other check. See:
v “Defining a local check to IBM Health Checker for z/OS” on page 108
v “Issue the HZSADDCK macro to define a remote check to IBM Health Checker

for z/OS” on page 140
v “Creating product code that automatically registers checks at initialization” on

page 197

For a Metal C sample HZSADDCHECK exit routine, look for hzscadd.c in
/usr/lpp/bcp/samples .

For more information about the make utility and the other utilities used in the
makefile, see Shell command descriptions in z/OS UNIX System Services Command
Reference.
##
Name: HZSSMAKE
#
Description: Makefile for building Metal C sample
local and remote health checks and
a sample HZSADDCHECK exit routine.
#
COMPONENT: IBM Health Checker for z/OS (SCHZS)
#
PROPRIETARY STATEMENT:
#
Licensed Materials - Property of IBM
5650-ZOS
Copyright IBM Corp. 2009
#
US Government Users Restricted Rights - Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with#
IBM Corp.
#
END OF PROPRIETARY STATEMENT
#
STATUS = HBB7770
#
Change Activity:
#
$L0=METALC HBB7770 20081202 PDGIO: Initial version
$L1=METALC HBB7770 20090513 RDUT: Updated options,targets#
#
##

The load modules created via this makefile will be put into this PDSE
dataset. Change this to an APF authorized dataset in the link list,
suitable for your installation.
The linker/binder will create the PDSE, if it does not exist yet.
HCHECK_LOADLIB =HLQ.LOADLIB

Location of Health Checker header filesHC_INCLUDES = "//’SYS1.SIEAHDR.H’"

(Metal-) C compiler utility

Remote check routine

164 IBM Health Checker for z/OS User's Guide

CC = c99

(Metal-) C compiler flags
nosearch - avoids using the non-Metal C header files
I - specifies our include paths, since nosearch disabled most
metal + S - makes it Metal C instead of "regular" C/C++
longname - optional, but allows for longer than 8 character names
CFLAGS = -S -Wc,metal,longname,nosearch \

-I /usr/include/metal,$(HC_INCLUDES)

Assembler utility
AS = as

Assembler flags
rent - requests reentrant code; required for health checks
goff - optional, but allows for longer than 8 character names
ASFLAGS = -mrent -mgoff

Linker/binder utility
LD = ld

Linker/binder flags
ac=1 - assigns authorization code; required for health checks
rent - requests reentrant code; required for health checks
-S - resolves system services (PAUSE token handling by remote
health checks) via SYSLIB CCSLIB
LDFLAGS = -bac=1 -brent
LDFLAGSR = -S "//’SYS1.CSSLIB’"

The four sample health checks and the one sample exit routine
HCHECK_TGTS = hzscchkp hzscchkr hzscrchc hzscrchk hzscadd

Default rule
all: $(HCHECK_TGTS)

Uncomment this rule, if you would like to keep the intermediate
output files, in particular the generated .s assembler source,
instead of letting ’make’ delete them automatically.
#.SECONDARY:

Rule for cleaning up intermediate output
clean:
rm -f *.o *.s

Rule for cleaning up all output
cleanall:
rm -f *.o *.s
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscchkp)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscchkr)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscrchc)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscrchk)’"
- tso -t "DELETE ’${HCHECK_LOADLIB}(hzscadd)’"

Rule for compiling a Metal C file into assembly language
%.s: %.c
$(CC) $(CFLAGS) $<

Rule for creating object code from assembly language
%.o: %.s
$(AS) $(ASFLAGS) -o $@ $<

Rules for creating LOAD modules (executable) from the object code
hzscchkp: hzscchkp.o
$(LD) $(LDFLAGS) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscchkr: hzscchkr.o
$(LD) $(LDFLAGS) -o "//’${HCHECK_LOADLIB}($@)’" $<

Remote check routine

Chapter 7. Writing remote check routines 165

hzscadd: hzscadd.o
$(LD) $(LDFLAGS) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscrchc: hzscrchc.o
$(LD) $(LDFLAGS) $(LDFLAGSR) -o "//’${HCHECK_LOADLIB}($@)’" $<

hzscrchk: hzscrchk.o
$(LD) $(LDFLAGS) $(LDFLAGSR) -o "//’${HCHECK_LOADLIB}($@)’" $<

Debugging checks
Naturally, we hope you'll never need this section and that all your checks will run
perfectly the very first time. However, if you do run into trouble, this section will
help you debug your check routine and HZSADDCHECK exit routine.

Was my check added to the system? Use the F hzsproc,DISPLAY
CHECK(checkowner,checkname) to display the check you're adding to the system. If
your check shows up, it was successfully added to the system. If it does not show
up, it was not added to the system.

You can also check the return code from the HZSADDCK invocation in your
HZSADDCHECK exit routine (for local checks) or check routine (for remote
checks). A return code greater than 4 often indicates that there was a problem in
adding the check to the system. See “HZSADDCK macro — HZS add a check” on
page 266.

Turn on debug mode: Running in debug mode can help you debug your check,
because in debug mode:
v Each message line is prefaced by a message ID, which can be helpful in

pinpointing the problem. For example, report messages are not prefaced by
message IDs unless a check is running in debug mode.

v Debug messages, which may contain information about the error, are issued only
when the check is in debug mode.

You can turn on debug mode for a check that is not running properly using the
DEBUG parameter in the MODIFY hzsproc command, in HZSPRMxx, or by
overtyping the DEBUG field in SDSF to ON.

Create a recovery routine for your check routine if you need additional diagnostic
data for your check routine. See “Establishing a recovery routine for a check” on
page 138.

Debug HZSFMSG abends: If the system finds an error in a HZSFMSG macro call
to issue a message, the system issues system abend X'290' with a unique reason
code and creates a logrec error record. See the information for abend X'290' in z/OS
MVS System Codes for a description of the abend reason codes.

If the abend is caused by an incorrect macro call, the system issues the following
accompanying information:
v Logrec error record. Use EREP to view logrec errors, see "Using EREP to Obtain

Records from the Logrec Log Stream " in z/OS MVS Diagnosis: Tools and Service
Aids.

v A symptom dump written to the console and to the system log
v A SYSMDUMP, if you add a SYSMDUMP DD statement to hzsproc, the IBM

Health Checker for z/OS procedure.

Remote check routine

166 IBM Health Checker for z/OS User's Guide

Note that the contents and data set disposition of your SYSMDUMP depends on
the DISP= option you use on the DD statement. See "Obtaining ABEND dumps"
in z/OS MVS Diagnosis: Tools and Service Aids.

v There may be additional diagnostic data in the register at time of the abend that
can help with debugging. See “ABEND Codes” on page 338 for the kinds of
diagnostic data that may be available.
If your check routine has a recovery routine, the SDWA for the recovery routine
will contain these registers in the SDWAGRSV field.

If the abend is caused by the system, the system issues an SVC dump.

Remote check routine

Chapter 7. Writing remote check routines 167

168 IBM Health Checker for z/OS User's Guide

Chapter 8. Writing REXX checks

A REXX check consists of an exec containing one or more remote checks coded in
REXX language instructions. This code is interpreted and executed by System
REXX and runs in a System REXX address space, in an APF authorized
environment defined by System REXX. You can identify your check as a REXX
check by using the REXX(YES) parameter in the check definition.

Use the following documents for guidance on coding in the REXX language:
v z/OS TSO/E REXX User's Guide

v z/OS TSO/E REXX Reference

v System REXX in z/OS MVS Programming: Authorized Assembler Services Guide

Look for REXX check information in our Redpaper: There's lots of great
experience-basecd information on writing REXX checks in Redpaper Exploiting the
Health Checker for z/OS infrastructure (REDP-4590-00).

In this chapter, we'll cover the following:
v “Sample REXX checks”
v “REXX check basics” on page 170
v “Using input data sets in a TSO-environment REXX check” on page 174
v “Using REXXIN data sets” on page 174
v “Using REXXOUT data sets” on page 175
v “Defining a REXX check to IBM Health Checker for z/OS” on page 177
v “Issuing messages from your REXX check with the HZSLFMSG function” on

page 181
v “Writing a check with dynamic severity levels” on page 124
v “Controlling check exception message WTOs and their automation

consequences” on page 126
v “The well-behaved REXX check - recommendations and recovery considerations”

on page 188
v “Debugging REXX checks” on page 189

Sample REXX checks
Of course you're going to read this entire chapter to understand everything you
need to know about writing a REXX check. But we also have what you're really
looking for - REXX check samples in SYS1.SAMPLIB:
v HZSSXCHK - Sample REXX checks.
v HZSSXCHN - Sample REXX check showing the use of

HZSLFMSG_REQUEST='DIRECTMSG'.
v HZSSMSGT - Sample message input, which is common to all check types.

© Copyright IBM Corp. 2006, 2015 169

REXX check basics
You can use System REXX services to write a REXX check to gather installation
information and look for problems, most likely by reading data set(s) and using
the AXRCMD function to issue a system command and looking at its output, and
then issuing the check results in messages. IBM Health Checker for z/OS may also
write check exception messages as WTOs.

A REXX check runs in a System REXX address space, in an APF authorized
environment defined by System REXX. .

You can write your REXX checks for two environments: TSO and non-TSO. Writing
a check for a TSO environment gives you a dynamic TSO environment to work
with and is very secure, because it ensures that the check routine runs by itself in a
single address space. Example HZSSXCHK in SYS1.SAMPLIB shows code for both
a TSO and a non-TSO environment check.

See System REXX in z/OS MVS Programming: Authorized Assembler Services Guide for
more information about writing and running REXX execs on z/OS.

We recommend that you keep the REXX check very simple. At a high level, your
REXX check will:

1. Invoke the HZSLSTRT function to indicate that the exec has started running
and place some check information from the HZSPQE data area into REXX
variables.

2. Look at the HZS_PQE_ENTRY_CODE REXX variable set by IBM Health
Checker for z/OS from the check definition to identify the REXX check being
called when an exec contains more than one REXX check.

3. Start processing the REXX check.
4. If desired, look for the function code set by IBM Health Checker for z/OS (in

HZS_PQE_FUNCTION_CODE). If the function code is INITRUN for a first
iteration of a REXX check, the REXX check sets the HZS_PQE_CHKWORK field
to nulls and the REXX check should do any necessary set up.

5. The REXX check should validate input parameters, if any, for the REXX check
when the system indicates that parameter data has changed. Use the
HZSLSTRT REXX function output variable, HZS_PQE_LOOKATPARMS, to see
whether check parameters have changed since the last time the REXX check
ran. (Check parameters are contained in HZSLSTRT output variable
HZS_PQE_PARMAREA.) When the HZS_PQE_LOOKATPARMS variable is set
on, it indicates that check parameters have been changed since the last time the
REXX check ran. Use the HZSLFMSG REXX function input variables to report
parameter errors found by the REXX check. See “HZSLFMSG function” on
page 236.

6. Now for the guts of the REXX check - check for potential problems on a
system.

7. Issue messages or handle parameter and other errors the REXX check
encounters using the HZSLFMSG function. HZSLFMSG is the interface to the
HZSFMSG macro - see “HZSFMSG macro — Issue a formatted check message”
on page 313. HZSLFMSG also sets or modifies the status for the REXX check.

8. Invoke the HZSLSTOP function to indicate the REXX check has completed
running.

REXX checks only run when System REXX is up and running: If System REXX is
not available, your REXX checks will not run because these checks run in a System

REXX checks

170 IBM Health Checker for z/OS User's Guide

REXX address space. To add your REXX check, see “Defining a REXX check to
IBM Health Checker for z/OS” on page 177.

Defining the environment for a REXX check: A REXX check runs in a System
REXX address space in an environment defined and controlled by System REXX.
IBM Health Checker for z/OS runs your REXX check using the AXREXX service.
REXX checks run under the security assigned to the IBM Health Checker for z/OS
procedure, hzsproc. See System REXX in z/OS MVS Programming: Authorized
Assembler Services Guide for information.

The system loads the message table for your REXX check into the IBM Health
Checker for z/OS address space.

Information that every REXX check starts out with: When IBM Health Checker
for z/OS calls the REXX check, it sets the following HZSLSTART function variables
for the REXX check to use:
v HZS_HANDLE, which identifies the remote REXX check in order to synchronize

processing between the REXX check and IBM Health Checker for z/OS. This is
important because a REXX check is a remote check - it runs in a System REXX
address space. The system uses this handle as input within the HZSLSTRT,
HZSLFMSG, and HZSLSTOP functions. The REXX check should never alter this
field and probably will never even need to reference it except when
encapsulating calls to those functions in procedures. In this case, make sure you
use the REXX EXPOSE statement to allow the use of HZS_HANDLE inside the
procedure. This will avoid ABEND 290 RSN=858 (HZS_HANDLE was not valid)

v HZS_PQE_ENTRY_CODE, which identifies the check being called, for a REXX
check containing more than one check.

v HZS_PQE_FUNCTION_CODE, which indicates whether the REXX check is
being called for the first time (INITRUN) or for a subsequent iteration (RUN).

Limit a REXX check to looking at one setting or one potential problem. Limiting
the scope of a REXX check will make it easier for the installation using the REXX
check to:
v Resolve any exceptions that the REXX check finds by either fixing the exception,

overriding the setting, or deactivating the REXX check.
v Set appropriate override values for REXX check defaults such as severity or

interval.

Do not set a return code in your REXX check: IBM Health Checker for z/OS
ignores any return code set by your REXX check. When you use the HZSLFMSG
function, the system will return information in the RESULT and HZSLFMSG_RSN
variables.

Use the 2K check work area: Use the 2K check work area (HZS_PQE_CHKWORK
variable made available by the HZSLSTRT function) to hold data that you want to
retain through check iterations for the life of the REXX check. Prior to the
INITRUN function code call, the system sets the 2K work area to null. The
HZS_PQE_CHKWORK variable is the only HZSLSTRT variable your REXX check
should write to. The system saves the HZS_PQE_CHKWORK contents when the
REXX check invokes the HZSLSTOP System REXX function, and then sets the area
to null when any of the following occur
v The REXX check is to run for the first time
v The check is REFRESHed

REXX checks

Chapter 8. Writing REXX checks 171

v The check becomes either INACTIVE or DISABLED for any reason besides
invalid parameters

If your REXX check does obtain additional resources, allocation of a data set, for
example, the REXX check must release these resources before it completes. A REXX
check is not called for cleanup or delete, as a local check is, so that when the REXX
check runs again there is no guarantee it will execute in the address space or
under the same task. The REXX check must also release resources when a
non-exception condition, such as a time-out or cancel, occurs.

Using the IBM Health Checker for z/OS System REXX functions: Use the System
REXX functions listed below in your REXX check. Note that a check is marked in
error if ANY of the HZSLxxxx functions fail with a return code 8 or higher. See the
individual HZSLxxxx function return codes in Chapter 11, “IBM Health Checker for
z/OS System REXX Functions,” on page 235 to determine the cause of an error.
v Invoke HZSLSTRT to indicate that the REXX check has started to run. This

function sets REXX variables containing the HZSPQE information for the REXX
check, such as check definition values. This function is used at the very start of
the REXX check. Do not alter any HZSLSTRT variables except for the
HZS_PQE_CHKWORK work area. Some of the most important HZSLSTRT
variables you use in a REXX check include:

Table 19. Important HZSPQE information used in a REXX check from HZSLSTRT variables

Field name Meaning

HZS_PQE_FUNCTION_CODE Contains the function code for the REXX check. The REXX check
receives control in response to either the RUN or INITRUN function
code. The system sets this field on entry to the REXX check.

HZS_PQE_ENTRY_CODE Contains the identifier (entry code) assigned for the REXX check in the
check definition. The entry code is used when a REXX exec contains
multiple checks. The system sets this field on entry to the REXX check.

HZS_HANDLE Identifies the remote REXX check in order to synchronize processing
between the REXX check and IBM Health Checker for z/OS. This is
important because a REXX check is a remote check - it runs in a
System REXX address space. The REXX check uses this handle as input
to the HZSLSTRT, HZSLFMSG, and HZSLSTOP functions. The system
sets this field on entry to the REXX check.

HZS_PQE_LOOKATPARMS A bit indicating that the parameters have changed. If this bit is on, the
REXX check should read the HZS_PQE_PAREMAREA and
HZS_PQE_PARMLEN variables.

HZS_PQE_VERBOSE A byte indicating whether the REXX check is in verbose mode.

HZS_PQE_DEBUG A byte indicating whether the REXX check is in debug mode.

HZS_PQE_PARMAREA The area containing the user parameters. Quotes surrounding the
PARMS value in an operator command or HZSPRMxx statement are
not included.

HZS_PQE_CHKWORK 2K check work area used and mapped by the REXX check as needed.
The system zeros the 2K check work area before calling the REXX
check with function code RUN. A REXX check can both write and read
from this field, and the system will retain this information for
subsequent calls to the check. Changes made to any other variables are
not saved between function calls.

HZS_PQE_DOM_CHECK Indicates how the DOM(SYSTEM|CHECK) parameter was set when
the check was added to IBM Health Checker for z/OS. If the value 1,
DOM(CHECK) was specified for the check. If the value is 0,
DOM(SYSTEM) was specified for the check. For information on how
DOM=CHECK and HZSFMSG REQUEST=DOM/
HZSLFMSG_REQUEST=DOM works, see “Controlling check exception
message WTOs and their automation consequences” on page 126.

See “HZSLSTRT function” on page 260 for all of the REXX variables returned.

REXX checks

172 IBM Health Checker for z/OS User's Guide

v Invoke HZSLFMSG to:
– Issue REXX check messages and IBM Health Checker for z/OS messages. You

will invoke this function multiple times in your REXX check. See “Issuing
messages from your REXX check with the HZSLFMSG function” on page 181

– Report a problem with the check - use HZSLFMSG to report the problem and
change the check state. You can also stop the REXX check in case of an error
found, such as bad parameters or an inappropriate environment for the check.

v Invoke HZSLSTOP to indicate that the REXX check has completed an iteration.
The REXX check invokes this function at the end of the REXX check. This
function saves HZS_PQE_CHKWORK for the next REXX check iteration.

All of the REXX functions return a return code (RESULT variable) and reason code
(HZSLnnnn_RSN variable). These functions also include many other useful input
and output variables. See Chapter 11, “IBM Health Checker for z/OS System REXX
Functions,” on page 235 for complete information on these functions.

Give grouped REXX checks individual entry codes: Multiple REXX checks can
use a single REXX exec. When you do this, each individual REXX check still gets
its own HZSPQE area, and you must define a unique entry code for each
individual check. This ensures that the REXXIN and REXXOUT data sets for each
REXX check are unique - the system uses the entry code in the data set name
suffix. Code your REXX check to look for the entry code passed in the
HZSLSTART function HZS_PQE_ENTRY_CODE variable, and pass control to
processing for the REXX check indicated. You define the entry code for each REXX
check with the ENTRYCODE parameter in the check definition on the HZSADDCK
call or HZSPRMxx parmlib member.Note that the IBM Health Checker for z/OS
will not verify the uniqueness of the entry codes you define for your REXX checks.

The following example shows how a REXX check uses entry codes to route control
to individual checks:
/***/
/* Check the entry code to determine which check to process */
/***/
IF HZS_PQE_ENTRY_CODE = 1 THEN

DO
Call Process_HZS_SAMPLE_REXXIN_CHECK

END
IF HZS_PQE_ENTRY_CODE = 2 THEN

DO
Call Process_HZS_SAMPLE_REXXTSO_CHECK

END
EXIT

If you are using HZSADDCHECK exit routines to add your REXX checks to the
system, you should also use a single exit routine to add related checks to the
system. See “Defining a REXX check to IBM Health Checker for z/OS” on page
177.

Do not attempt to communicate between individual REXX checks. Even though
you may have placed all of your REXX checks in the same exec, do not rely on
communication between them. Each REXX check is intended to stand by itself and
has a unique severity, reason, parameters, HZSPQE data area, and entry code.

REXX checks

Chapter 8. Writing REXX checks 173

Using input data sets in a TSO-environment REXX check
A REXX check running in a TSO environment (REXXTSO(YES)) can use TSO
services. A REXXTSO(YES) check can allocate and read from or write to any data
set that it can access When there is a lot of input parameter data, we recommend
that the check parameter be the name of the data set and the exec would allocate
and read from that data set to access its parameters. For example, lets say a TSO
REXX check is defined with the PARMS parameter, as follows:
PARMS(’DSN(IBMUSER.HZSSXCHK.DATA)’)

Based on the data set specified in PARMS, the REXX check uses data set
IBMUSER.HZSSXCHK.DATA as its input data set.

In order to get consistent results from your REXX checks, IBM suggests that the
exec has exclusive access to the input data set. If the system cannot allocate or use
a requested input data set, the REXX check does not run successfully.

Using REXXIN data sets
An exec running in a non-TSO environment can use the REXXIN data set to read
data from. You must specify REXXTSO(NO) and REXXIN(YES) in the check
definition in order to use a REXXIN data set. Typically, a check would use a
REXXIN data set when it has a lot of input parameter data.

TSO environment REXX checks can use input data sets, see “Using input data sets
in a TSO-environment REXX check.”

In order to get consistent results from your REXX checks, IBM suggests that the
exec has exclusive access to the REXXIN data set. If the system cannot allocate or
use a requested REXXIN data set, the REXX check does not run successfully.

REXXIN data set naming conventions
If you specify REXXIN(YES), the system allocates and names your REXXIN input
data set using the following REXX check definition information:
1. REXXHLQ(hlq)
2. EXEC(execname)
3. REXXIN(YES)
4. ENTRYCODE(entrycode)

For example, let's say a non-TSO REXX check is defined with the following
parameters:
EXEC(HZSSXCHK)
REXXHLQ(IBMUSER)
REXXIN(YES)
ENTRYCODE(1)

The REXXIN data set name that the system uses is
IBMUSER.HZSSXCHK.REXXIN.E1. If you did not define an entry code for this
REXX check, the REXXIN data set name would be
IBMUSER.HZSSXCHK.REXXIN

REXX checks

174 IBM Health Checker for z/OS User's Guide

Using REXXOUT data sets
Both TSO environment (REXXTSO(YES)) and non-TSO (REXXTSO(NO))
environment REXX checks can use REXXOUT data sets to diagnose REXX check
problems. The REXXOUT data set is provided when the check is in debug mode
and is intended to capture data used to debug the check. When a REXXOUT data
set is provided, System REXX writes data to the REXXOUT data set every time:
v You code the SAY or TRACE keyword in your REXX exec. For example, if your

REXX check finds an error in parameters or when issuing a message
(HZSLFMSG function), you might want to capture data such as HZSLFMSG
return and reason codes, system diagnostic information, abend reason codes and
details of user errors.

v When your REXX check receives a TSO error message
v When your REXX check receives a System REXX message

If your REXX check is not running in debug mode, this output is lost. To place a
REXX check in DEBUG mode, use the following command example:
F hzsproc,UPDATE,CHECK=(checkowner,checkname),DEBUG=ON

From SDSF, you can also place a REXX check in debug mode by over-typing the
DEBUG field to ON.

REXX check exception, information, and report messages are written to the
message buffer rather than the REXXOUT data set.

The system will allocate the REXXOUT data set for you based on the naming
conventions for your environment, if it is not already allocated when the REXX
check runs. However, you must ensure that IBM Health Checker for z/OS address
space has the authority to allocate the data set. If the system cannot exclusively
allocate or use the REXXOUT data set, the REXX check will not run successfully.

REXXOUT data set naming conventions
For both TSO (REXXTSO(YES)) and non-TSO (REXXTSO(NO)) environment REXX
checks, the system allocates REXXOUT data sets for use using the following:
1. REXXHLQ(hlq) from the check definition
2. EXEC(execname) from the check definition
3. REXXOUT
4. ENTRYCODE(entrycode) from the REXX check definition, if defined

For example, let's say a REXX check is defined with the following parameters:
EXEC(HZSSXCHK)
REXXHLQ(IBMUSER)
ENTRYCODE(1)

The REXXOUT data set name that the system uses is
IBMUSER.HZSSXCHK.REXXOUT.E1. If you did not define an entry code for this
REXX check, the REXXOUT data set name would be
IBMUSER.HZSSXCHK.REXXOUT.

Examples: Capturing error data in REXXOUT
The following examples show code that captures error data in REXXOUT. Note
that before writing the error detail to REXXOUT, the REXX checks first determine
whether the check is in debug mode by looking at the HZS_PQE_DEBUG variable.

REXX checks

Chapter 8. Writing REXX checks 175

Example 1 - Using HZSLFMSG to capture bad parameter data in REXXOUT: The
following example shows a TSO REXX check which requires a REXXIN data set,
the name of which is specified PARMS parameter. If the REXX check finds that the
parameter in PARMS is invalid, it uses the SAY keyword to capture error
information in a REXXOUT data set allocated by the system when the check is in
debug mode:
Process_HZS_SAMPLE_REXXTSO_CHECK:
/***/
/* Process parameters for HZS_SAMPLE_REXXTSO_CHECK */
/***/
/* */
/* For our example, */
/* - assume that the required PARMAREA string is DSN(value) where */
/* value is the name of a sequential data set that contains data */
/* to be processed by this check. We use TSO services to do the */
/* validation. */
/* */
/***/
ADDRESS TSO "Alloc "HZS_PQE_PARMAREA" SEQ OLD"
IF RC ^= 0 THEN

DO
HZSLFMSG_REQUEST = "STOP"
HZSLFMSG_REASON = "BADPARM"
HZSLFMSG_RC = HZSLFMSG()
IF HZS_PQE_DEBUG = 1 THEN
DO /* Report debug detail in REXXOUT */

SAY "PARMS: ||"HZS_PQE_PARMAREA"||"
SAY "HZSLFMSG RC" HZSLFMSG_RC
SAY "HZSLFMSG RSN" HZSLFMSG_RSN
SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

END
EXIT /* The check is not performed */

END

In this example, we write the return and reason codes from HZSLFMSG and
system diagnostic information to REXXOUT to help debug the parameter
problem.See “HZSLFMSG function” on page 236 for complete information about
HZSLFMSG input and output variables.

Example 2 - Capturing HZSLFMSG message function error data in REXXOUT:
The following example from a non-TSO REXX check shows how to capture error
data when the message function, HZSLFMSG, completes with a RESULT of 8:
/***/
/* */
/* When the message service detects a user error, HZSLFMSG result */
/* will be 8. */
/* */
/* HZSLSFMSG_RSN = 000008xx A user error was detected */
/* */
/* HZSLSFMSG_RSN = 0000089F See HZSLFMSG_USERRSN. */
/* HZSLSFMSG_USERRSN The reason for the user error. */
/* See ABEND REASON CODES in HZSLFMSG */
/* */
/* HZSLFMSG_ABENDRESULT contains diagnostic detail about user */
/* errors */
/* */
/* Check looks for debug mode on, and if on, writes SAY messages */
/* with debug detail in REXXOUT data set. */
/* */
/***/

IF HZS_PQE_DEBUG = 1 THEN
DO /* place debug detail in REXXOUT */

SAY "PARMS: ||"HZS_PQE_PARMAREA"||"

REXX checks

176 IBM Health Checker for z/OS User's Guide

SAY "HZSLFMSG RC" HZSLFMSG_RC
SAY "HZSLFMSG RSN" HZSLFMSG_RSN
SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG
SAY "USER RSN" HZSLFMSG_UserRsn
SAY "USER RESULT" HZSLFMSG_AbendResult

END

In this example, we write the return and reason codes from HZSLFMSG, system
diagnostic information, the user error detail, and abend reason code to REXXOUT
to help debug the HZSLFMSG error. See “HZSLFMSG function” on page 236 for
complete information about HZSLFMSG input and output variables.

See the information for abend X'290' in z/OS MVS System Codes for a description of
the abend reason codes for IBM Health Checker for z/OS.

Example 3: Capturing TRACE data in REXXOUT: The following REXXOUT
output data was created by placing the TRACE ALL REXX instruction in
SYS1.SAMPLIB check HZSSXCHK, and running the checks with DEBUG(ON):

905 *-* ADDRESS TSO "Alloc DSN("DataSetName") OLD"
>>> "Alloc DSN(’IBMUSER.HZSSXCHK.DATA’) OLD"

IKJ56228I DATA SET IBMUSER.HZSSXCHK.DATA NOT IN CATALOG OR CATALOG CAN NOT BE AC
IKJ56701I MISSING DATA SET NAME+
IKJ56701I MISSING NAME OF DATA SET TO BE ALLOCATED

+++ RC(12) +++
963 *-* ERROR:
964 *-* FAILURE:
965 *-* NOVALUE:
966 *-* HALT:
967 *-* ERR1 = "An Error has occurred on line: "Sigl
968 *-* ERR2 = sourceline(sigl)
969 *-* Say Err1

An Error has occurred on line: 905
970 *-* Say "Line "Sigl" text: "Err2

Line 905 text: ADDRESS TSO "Alloc DSN("DataSetName") OLD"
971 *-* ADDRESS TSO "FREE DSN("DataSetName")"

>>> "FREE DSN(’IBMUSER.HZSSXCHK.DATA’)"
IKJ56247I DATA SET IBMUSER.HZSSXCHK.DATA NOT FREED, IS NOT ALLOCATED

+++ RC(12) +++
972 *-* HZSLFMSG_REQUEST = "STOP" /* Disable the check
973 *-* HZSLFMSG_REASON = "ERROR"
974 *-* HZSLFMSG_DIAG = Right(RC,16,0) /* report the decimal rc in the

e and the check display detail
977 *-* HZSLFMSG_RC = HZSLFMSG()
978 *-* IF HZS_PQE_DEBUG = 1

- THEN
979 *-* DO /* Report debug detail in REXXOU
980 *-* SAY "PARMS: "HZS_PQE_PARMAREA

PARMS: DSN(IBMUSER.HZSSXCHK.DATA)
981 *-* SAY "HZSLFMSG RC" HZSLFMSG_RC

HZSLFMSG RC 0
982 *-* SAY "HZSLFMSG RSN" HZSLFMSG_RSN

HZSLFMSG RSN 0
983 *-* SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

SYSTEMDIAG N/A
984 *-* END
985 *-* EXIT /* The check is not performed */

Defining a REXX check to IBM Health Checker for z/OS
After you've written your REXX check, use the ADD | ADDREPLACE CHECK
parameter in an HZSPRMxx parameter to define check defaults and add the check.
Do this as follows:
1. Create a parmlib member.

REXX checks

Chapter 8. Writing REXX checks 177

2. Use the ADD | ADDREPLACE CHECK parameter to define the new System
REXX check definition. For example:
ADDREPLACE CHECK(IBMSAMPLE,HZS_SAMPLE_REXXTSO_CHECK)

EXEC(HZSSXCHK)
REXXHLQ(IBMUSER)
REXXTSO(YES)
MSGTBL(HZSSMSGT)
ENTRYCODE(2)
PARMS(’DSN(MY.PARMLIB)’)
SEVERITY(LOW)
INTERVAL(0:05)
EINTERVAL(SYSTEM)
DATE(20061219)
REASON(’A sample check to demonstrate an ’,

’exec check using TSO services.’)

See the ADD or ADDREPLACE CHECK parameter in “Syntax and parameters
for HZSPRMxx and MODIFY hzsproc” on page 69.

3. Use the ADD,PARMLIB command to add the new parmlib member containing
the REXX check definition. For example:
F hzsproc,ADD,PARMLIB=xx

While IBM suggests using HZSPRMxx to define REXX checks, you can also define
your REXX check by writing an authorized HZSADDCHECK exit routine running
in the IBM Health Checker for z/OS address space. See Chapter 9, “Writing an
HZSADDCHECK exit routine,” on page 191.

Note that whether you use HZSPRMxx or an HZSADDCHECK exit routine to
define your check, you cannot change the high level qualifier for the REXXIN and
REXXOUT data sets once you have defined them.

You can specify the following parameters for REXX checks in either the
ADDREPLACE CHECK parameter in HZSPRMxx or their equivalents in the
HZSADDCK macro:
v EXEC(execname) - This parameter, required for a REXX check defined in the

HZSPRMxx parmlib member, specifies the name of the REXX exec containing
the REXX check or checks. This parameter tells the system that you are defining
a REXX check. For an assembler check, you would specify the
CHECKROUTINE(checkname).
If you define your REXX check with the HZSADDCK macro in an
HZSADDCHECK exit routine, the equivalent of EXEC(execname) is the
REXX=YES,EXEC=execname parameters.

v REXXHLQ(hlq) - This parameter, required for a REXX check, specifies the high
level qualifier for any input or output data set for the check.

v REXXTIMELIMIT(timelimit) - This optional input parameter specifies the number
of seconds a check iteration is allowed to run before the system ends it. A value
of 0, which is the default, specifies that there is no time limit for the check.

v REXXTSO(YES | NO) - This parameter, optional for a REXX check, specifies
whether the check runs in a TSO environment or a non-TSO environment. The
default is REXXTSO(YES).
– REXXIN(YES | NO) - This parameter, optional for a REXX check, specifies

whether or not a non-TSO check requires an sequential input data set. The
name of the REXXIN data set will consist of the high level qualifier specified
in the HLQ parameter, the exec name specified in the EXEC parameter, and
an optional entry code specified in the ENTRYCODE parameter.
You can only specify REXXIN(YES) if you also specify REXXTSO(NO).

REXX checks

178 IBM Health Checker for z/OS User's Guide

If you modify the definition for your REXX check, the changes will take effect the
next time the check runs.

Gotcha - Don't make a typo when defining your REXX check! When you define
your REXX check in a HZSPRMxx parmlib member using the
ADD|ADDREPLACE CHECK parameters, do it carefully, because it is a nuisance
to delete check definitions created using parmlib members, because you can't
delete the check definition, even if you delete all the checks. And creating multiple
definitions for the same REXX check may cause an error when the check is added
or refreshed.

If you do make a mistake, you can do one of the following to resolve the problem:
v Issue the following command, which will first delete all existing check

definitions and then add the definitions found in the specified parmlib members:
F hzsproc,REPLACE,PARMLIB=(suffix1,suffix2,...suffixn),CHECKS

v If you make a mistake when defining a REXX check in an HZSADDCHECK exit
routine, you must delete the check (by creating a policy statement that deletes
the check) and then delete the erroneous exit using SETPROG. You can then add
the corrected HZSADDCHECK exit routine again.

v Stop and start IBM Health Checker for z/OS to delete the check definition.

Why does IBM Health Checker for z/OS make it so hard to delete a check
definition? Because if you delete your check definition, you lose all the history of
the check and may find it more difficult to re-define it.

Installation requirement for running compiled REXX checks: In order to run
compiled REXX checks, installations must have either the SEAGALT or SEAGLPA
data set available in the system search order.
v SEAGALT is provided in z/OS V1R9 and higher
v SEAGLPA is provided in the RIBM Library for REXX on IBM z Systems

products

REXX execs that are not compiled do not require the SEAGALT or SEAGLPA
libraries. For more information, see:
v IBM Compiler and Library for REXX on System z: User's Guide and Reference for

information about SEAGALT and SEAGLPA and writing compiled REXX code
v z/OS MVS Programming: Authorized Assembler Services Guide for information on

z/OS System REXX.

Creating and using data saved between restarts in a REXX check
Your check can use the HZSPDATA data set for persistent data. Persistent data is
data that you want to save between restarts of either the system or IBM Health
Checker for z/OS. When you issue the HZSLPDWR function to write persistent
data, the system saves data from two IPLs in HZSPDATA, the current IPL and the
IPL prior to the current. Then, for each IPL, HZSPDATA contains two instances of
data - one for the first iteration of the check and another for the most recent
iteration of the check that wrote data to HZSPDATA. The first instance does not
change for the life of the IPL, but the second instance is replaced each time a check
writes data to the HZSPDATA data set.

You can read data from the HZSPDATA data set using the REXX function
HZSLPDRD. Commonly, checks use HZSPDATA to compare current data to the
data saved in the HZSPDATA data set from one of the saved IPLs.

REXX checks

Chapter 8. Writing REXX checks 179

|

|
|
|
|
|
|
|
|
|

|
|
|

We have a couple of tips for you in using HZSLPDRD and HZSLPDWR macros to
read and write persistent data:
v Before you try to work with the persistent data that you read from the

HZSPDATA data set, make sure your code checks for the following HZSLPDRD
return codes:
– Return code 8, reason code X'082D0881' indicates that no persistent data exists

for this check.
– Return code 8, reason code X'08300881' indicates that there is persistent data

saved for this check, but not for the requested IPL.
v Tips for using HZSLPDWR:

– You cannot delete data from the HZSPDATA data set once you have written it
there. You can only replace the data in the current IPL instance in
HZSPDATA.

– You cannot write a null record to HZSPDATA.
– You can issue multiple HZSLPDWR requests in a single check iteration. If the

check iteration completes normally (returns to its caller), all of the data
accumulated by HZSLPDWR requests for that iteration are written to
HZSPDATA. If the check iteration does not complete normally, none of the
data provided on HZSLPDWR requests for that check iteration is written to
HZSPDATA.

Gotcha: After your check writes data to the HZSPDATA data set using
HZSLPDWR, it takes one hour before data is actually hardened. That means that if
the installation restarts IBM Health Checker for z/OS before an hour or re-IPL less
than an hour has elapsed since the last HZSLPDWR, the data will not be saved in
the HZSPDATA data set. IBM Health Checker for z/OS operates this way so that if
a problem such as the following occurs, the system does not retain the data in the
HZSPDATA data set:
v The check iteration completes with an abend
v A remote check iteration is unsuccessful
v An invocation of HZSLPDWR is unsuccessful

Note that an unsuccessful check iteration or HZSLPDWR invocation does not have
any correlation to whether or not the check detected one or more exceptions.

Planning for persistent data: Sample HZSALLCP in SYS1.SAMPLIB shows how to
allocate and initialize the HZSPDATA data set. When you are allocating space for
the HZSPDATA data set, keep in mind that in “Allocate the HZSPDATA data set to
save check data between restarts” on page 11, we tell customers to define the
HZSPDATA data set with a logical record length of 4096. You must plan for four
sets of data: for each of the two instances for both the current and previous IPLs.

Using ENF event code 67 to listen for check status changes
If your check is authorized, it can use the ENFREQ LISTEN service to detect check
status changes. On the ENFREQ service, specify theX'20000000' status change event
qualifier and the listener user exit routine that is to receive control after the
specified event occurs. The listener user exit specified receives control when IBM
Health Checker for z/OS comes up and notifies the check routine of the status
change.

To listen for ENF event code 67, you must specify the qualifying events on the
BITQUAL parameter, which specifies a 32-byte field, a hexadecimal constant, or a
register containing the address of a 32-byte field containing a bit-mapped qualifier

REXX checks

180 IBM Health Checker for z/OS User's Guide

|
|

|
|
|

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

that further defines the event. The qualifier is mapped by mapping macro
HZSZENF. The BITQUAL value for the status change event is
Enf067_BitQual_StatusChange in the HZSZENF mapping macro. This might mean
on eof the following:
v The check completed with a different result than the last time it ran. For

example, the check ran successfully after the previous check run issued an
exception or vice versa.

v The check was deactivated or deleted

The check then might want to issue the HZSQUERY macro to get information
about the check.

This event may not be presented if IBM Health Checker for z/OS is terminating
(indicated by a X'40000000' ENF 067 event for NotAvailable - see “Using ENF
event code 67 to listen for IBM Health Checker for z/OS availability” on page 139).

If the check routine decides it is no longer interested in knowing if IBM Health
Checker for z/OS is up or not, it can issue the ENFREQ REQUEST=DELETE
request to delete the listen request.

For information about ENFREQ and listener exits, see:
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v Listening for system events in z/OS MVS Programming: Authorized Assembler
Services Guide

Issuing messages from your REXX check with the HZSLFMSG function
This section covers issuing messages from your REXX check. REXX check messages
are important because they report the results of the check to an installation. See
“Planning your check messages” on page 201.

Each REXX check should issue at least:
v One or more messages for any exception found to the setting the check is

looking for.
v A message indicating that no exceptions were found, when appropriate.

You can issue messages for your REXX check in two ways:
v If you are creating a message table for your check, you issue the message using

HZSLFMSG, but the actual text and explanation for your check messages are
defined in your message table, see “Issuing messages in your local check routine
with the HZSFMSG macro” on page 117 and “HZSLFMSG function” on page
236.

v If you are writing a DIRECTMSG check that issues messages directly from the
check routine, use HZSLFMSG_REQUEST='DIRECTMSG'. See “Input variables
for HZSLFMSG_REQUEST='DIRECTMSG'” on page 238.

See “Issuing messages for your check - message table checks versus DIRECTMSG
checks” on page 102 for more information.

Issue WTO’s from your REXX check using only HZSLFMSG for an exception
message. HZSLFMSG produces data for the message buffer to create reports and
issue and exception message.

You'll use the HZSLFMSG function to:
v Issue one of the following requests:

REXX checks

Chapter 8. Writing REXX checks 181

– HZSLFMSG_REQUEST='CHECKMSG'- Indicates that you want to issue a
check specific message, such as an exception or report message. You use the
HZSLFMSG interface to issue a message and define variables, but the actual
text and explanation for your check messages are assembled by the
HZSMSGEN REXX exec from the message table. See “Issuing messages in
your local check routine with the HZSFMSG macro” on page 117.
You can indicate the message number you want to issue with a
HZSLFMSG_MESSAGENUMBER=msgnum input variable.

– HZSLFMSG_REQUEST='DIRECTMSG' indicates that you are issuing a
check specific message, such as an exception or report message directly from
the check routine, one that does not have a message table associated with it.
The message text for this message is provided in the
HZSLFMST_REQUEST='DIRECTMSG' input variables. See “Input variables
for HZSLFMSG_REQUEST='DIRECTMSG'” on page 238.

– HZSLFMSG_REQUEST='HZSMSG' - Indicates that you want to issue an
IBM Health Checker for z/OS message. IBM Health Checker for z/OS
provides the message text for an HZSMSG request. See “Input variables for
HZSLFMSG_REQUEST='HZSMSG'” on page 241.

– HZSLFMSG_REQUEST='STOP' - Indicates that the system should stop
calling this check . The message text is provided by IBM Health Checker for
z/OS. See “Input variables for HZSLFMSG_REQUEST='STOP'” on page 246

v Define the number of variables and the variables themselves for a message with
the HZSLFMSG_INSERT input variable.

v The HZSLFMSG_RC output variable reports the return code for the HZSLFMSG
function.

Example - Issuing a message for a REXX check with a message table: The
following example shows how a REXX check uses the HZSLFMSG function to
issue an exception message for a check with a message table associated with it.
Note that REXX variable values are processed as character text; the input values
for decimal and hexadecimal variables must be expressed in hexadecimal.
/*** ****************************/
/* Build and write exception message */
/* */
/* In the message source, message number 1, has 5 variables */
/* */
/* symbol output input */
/* name format format */
/* ------ ------ ------ */
/* num-avail hex a fullword hex value is expected */
/* num-inuse decimal a fullword hex value is expected */
/* num-avail hex a fullword hex value is expected */
/* num-inuse decimal a fullword hex value is expected */
/* summary char text (char) */
/* */
/***/
HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */
HZSLFMSG_MESSAGENUMBER = 1 /* write message 1 */
HZSLFMSG_INSERT.0 = 5 /* 5 input values are provided */
HZSLFMSG_INSERT.1 = ’0000000A’x /* a fullword hex value */
HZSLFMSG_INSERT.2 = ’0000000A’x /* a fullword hex value */
HZSLFMSG_INSERT.3 = ’00000020’x /* a fullword hex value */
HZSLFMSG_INSERT.4 = ’00000020’x /* a fullword hex value */
HZSLFMSG_INSERT.5 = ’My summary text’ /* a character string */
HZSLFMSG_RC = HZSLFMSG()
IF HZS_PQE_DEBUG = 1 THEN

DO
SAY "HZSLFMSG RC" HZSLFMSG_RC
SAY "HZSLFMSG RSN" HZSLFMSG_RSN

REXX checks

182 IBM Health Checker for z/OS User's Guide

SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG
IF HZSLFMSG_RC = 8 THEN

DO
SAY "USER RSN" HZSLFMSG_UserRsn
SAY "USER RESULT" HZSLFMSG_AbendResult

END
END

In this example:
v HZSLFMSG_INSERT.x is a message insert text. The text provided provided in

the insert should be compatible with the class attribute of the associated
message variable in the message table. A class attribute of hex, decimal or
timestamp in the message table will treat the insert data as a hexadecimal string.

v Variable HZSLFMSG_INSERT.1 expects to receive hexadecimal data. In the
message table, variable 1 has a class attribute of hex:
<mv class="hex">variable 1

Note that decimal text also converts hexadecimal values to decimal text. For
example, lets say that variable in the message table has a class attribute of:
<mv class=&odq;decimal">variable 1</mv>

In that case, the REXX check might use the following HZSLFMSG input variable:
HZSLFMSG_INSERT.1 = &csqg;0A’&csqg;X /* The decimal value 10 is displayed */

The example implies everything needs to be a fullword. A hex value is required.
Since this is a rexx and not assembler it makes more sense to make it look like a
rexx variable. Hex values must be bytes. So refer to the number of bytes. '1234'
when display as hex would appear as 'F1F2F3F4' '1234' '0A'x when displayed as
decimal variable with a fieldsize of 4 would appear as a left aligned 10

Message variables issued by REXX checks should be text (character) inserts, except
when the value is a true hexadecimal or decimal value, or when the value has
been converted to a hex value. Text variables do not require additional translation.
v '000000000A'x when displayed as hex variable would appear as '00000000 0A'
v '1234' when display as hex would appear as 'F1F2F3F4'
v '0A'x when displayed as decimal variable with a fieldsize of 4 would appear as a

left aligned 10

If an HZSLFMSG function call is incorrect, the system issues system abend X'290'
with a unique reason code and creates a logrec error record. The abend and reason
code are included in the check display output. The system checks the following for
each HZSLFMSG call:
v That the message is in the message table
v That the number of inserts provided on the call exactly matches the number

required to complete the message
v That each variable definition is between 1-256 characters long

The reason codes for system abend X'290' describe the message error. See z/OS
MVS System Codes.

Reporting check exceptions
When a check detects a system condition or setting that runs counter to the values
that the check is looking for, the check should issue an exception message to report
the exception. For an exception message, the system displays both the message text
and the entire message explanation in the message buffer. The message should

REXX checks

Chapter 8. Writing REXX checks 183

include a detailed explanation of the error and the appropriate action that the
installation should take to resolve the condition. If you are writing a check that
checks for a setting that conflicts with the default for the setting, you should
include in your check output information about why the check user is getting an
exception message for a default setting.

Along with an exception message, IBM Health Checker for z/OS will issue a line
showing the severity and the return code for the check. The check will continue to
run at the defined intervals, reporting the exception each time until the exception
condition is resolved.

The following example shows an exception message issued to the message buffer:
CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
START TIME: 05/25/2005 09:42:56.690844
CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or
more potential errors in the security controls on this system.

Explanation: The RACF security configuration check has found one or
more potential errors with the system protection mechanisms.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator and the system auditor.

System Programmer Response: Examine the report that was produced by
the RACF check. Any data set which has an "E" in the "S" (Status)
column has excessive authority allowed to the data set. That
authority may come from a universal access (UACC) or ID(*) access
list entry which is too permissive, or if the profile is in WARNING
mode. If there is no profile, then PROTECTALL(FAIL) is not in
effect. Any data set which has a "V" in the "S" (Status) field is
not on the indicated volume. Remove these data sets from the list
or allocate the data sets on the volume.

Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate
that there is no RACF profile protecting the data set. Data sets
which do not have a RACF profile are flagged as exceptions, unless
SETROPTS PROTECTALL(FAIL) is in effect for the system.

If a valid user ID was specified as a parameter to the check, that
user’s authority to the data set is checked. If the user has an
excessive authority to the data set, that is indicated in the USER
column. For example, if the user has ALTER authority to an
APF-authorized data set, the USER column contains "<Read" to
indicate that the user has more than READ authority to the data set.

Problem Determination: See the RACF System Programmer’s Guide and
the RACF Auditor’s Guide for information on the proper controls for
your system.

Source:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Reference Documentation:
RACF System Programmer’s Guide

REXX checks

184 IBM Health Checker for z/OS User's Guide

RACF Auditor’s Guide

Automation: None.

Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH
APF-authorized data set, the USER column contains "

The Check Reason: field display the default reason in an exception message
without installation parameter overrides.

See "Issuing a REXX check exception message" for an example of how to issue an
exception message from a REXX check.

Example - Issuing a DIRECTMSG message for a REXX check: For a check that has
no message table associated with it, you can issue a check message directly from
the check routine, as shown in the example below. REXX sample check
SYS1.SAMPLIB(HZSSXCHN) also shows DIRECTMSG calls.

/* Set up exception message input for HZSLFMSG */
/* Required input variables: */
HZSLFMSG_REQUEST=’DIRECTMSG’
HZSLFMSG_REASON=’CHECKEXCEPTION’
HZSLFMSG_DIRECTMSG_ID=’UTHH003E’
HZSLFMSG_DIRECTMSG_TEXT=’Brief exception summary’
/* Optional input variables: */
HZSLFMSG_DIRECTMSG.EXPL=’The exception explanation for UTHR003E’
HZSLFMSG_DIRECTMSG.AUTOMATION=’Automation text for UTHR003E’
HZSLFMSG_DIRECTMSG.SOURCE=’Source text for UTHR003E’
/* Call HZSLFMSG */
HZSLFMSG_RC = HZSLFMSG()

/* Set up report message input for HZSLFMSG */
HZSLFMSG_REQUEST=’DIRECTMSG’
HZSLFMSG_REASON=’CHECKREPORT’
HZSLFMSG_DIRECTMSG_TEXT=’Single line report message’
/* Call HZSLFMSG */
HZSLFMSG_RC = HZSLFMSG()

Writing a check with dynamic severity levels
You can create your check routine to issue check exception messages with a
dynamically varying severity level, giving users more control over how exception
messages are issued and handled. For example, you might use the dynamic
severity function for checks that inspect a system setting value and compare it
against a threshold. As the value approaches the high threshold, the check can
vary the severity of the exception, depending on how close to the threshold the
value is.

For information on how users work with checks enabled with dynamic severity,
see “Customizing check exceptions with dynamically varying severity” on page 31

How to enable a check for dynamic severity: In order to allow the customer to
use the dynamic severity function do the following:
1. Define check parameters that let the check know what severity exception to

issue. For example, if your check looks for parameter 'p', define the following
parameters:
v p_HIGH
v p_MED

REXX checks

Chapter 8. Writing REXX checks 185

v p_LOW
v p_NONE

In addition, define the corresponding short forms of the parameter, for example
for our case, you would define p_H, p_M, p_L, and p_N parameters. And,
because it's always likely that customers could forget the exact parameter
specifications, try to build in the obvious mistakes. For example, a customer
might try p_HI when the correct parameter is p_HIGH, so we recommend that
you also support p_HI and p_NO (as a short version of p_NONE).
We have the following tips for you in defining dynamic severity check
parameters: Note that the parameter names you create cannot exceed the 16
character parameter length limit for the ADD/UPDATE CHECK interface!
v Of course, the customer should not specify multiple forms for a given

severity, but it is not worth while enforcing that in your check routine.
Instead, program your check to accept the longest parameter. In other words,
if a customer specifies both p_HIGH and p_H parameters for a check, your
check should use the value from p_HIGH.

v If you are writing a new check that exploits dynamic severity, we
recommend that you use the suffixed parameters (p_HIGH, p_MED, p_LOW
and so on) and do not code a non-suffixed, non-dynamic version of the 'p'
parameter.
On the other hand, if you are upgrading an existing check to use dynamic
severity, keep the plain non-suffixed parameter and add the _HIGH, _MED,
_LOW, _NONE variants as well. Then make sure to code your check to use
the rule that if any of the dynamic severity variants are present, then the
non-dynamic severity variant is ignored. That way, you don't have to worry
about interpreting cases where the customer specifies both a non-dynamic 'p'
version of the parameter and a dynamic p_HIGH version.
If you are adding dynamic severity parameters for an old check, and none of
the existing parameters allow an underscore either within the parameter
name or value, you can code your check to assume that the customer is
using a dynamic severity specification if you find an underscore within the
parameter string.

v Code your check so that the customer does not need to specify a severity for
all parameters. They should be able to specify just the ones that they want.

2. Code your dynamic severity check to issue exception messages with the
SEVERITY parameter on the HZSFMSG service or using REXX function
HZSLFMSG_SEVERITY, as follows:
v If no dynamic severity parameter is provided and the criterion for an

exception based on the parameter is met, issue a severity-system message
v Else if a p_HIGH parameter is provided and the criterion for an exception

based on that parameter is met, issue a severity-high message
v Else if a p_MED parameter is provided and the criterion for an exception

based on that parameter is met, issue a severity-medium message
v Else if a p_LOW parameter is provided and the criterion for an exception

based on that parameter is met, issue a severity-low message
v Else if a p_NONE parameter is provided and the criterion for an exception

based on that parameter is met, issue a severity-none message

Note that the severity specified on HZSFMSG or HZSLFMSG_SEVERITY
overrides the default severity defined for the check when it was added.

REXX checks

186 IBM Health Checker for z/OS User's Guide

3. Add the check with ALLOWDYNSEV=YES specified. See the ADD or
ADDREPLACE CHECK paramters in “Syntax and parameters for HZSPRMxx
and MODIFY hzsproc” on page 69 or “HZSADDCK macro — HZS add a check”
on page 266.

How dynamic severity and the SEVERITY in the check definition interact: As
we mention above, a check using dynamic severity overrides the severity specified
in the check definition. So that was easy. But just to keep things interesting, note
that the implicit WTO handling of exception messages that is derived from the
severity in either the check definition or the dynamic check severity being used
can be overridden by a WTOTYPE specified in the check definition. See WTOTYPE
in “Syntax and parameters for HZSPRMxx and MODIFY hzsproc” on page 69.

Controlling check exception message WTOs and their automation
consequences

By default, IBM Health Checker for z/OS issues DOM requests to delete any check
exception message WTOs left behind from previous check iterations. It does this
DOMing right before the start of the new check iteration. That means that each
time the check generates an exception, it also sends a new exception WTO, which
also kicks off any automation actions you've set up for your installation.

So, what if you want more control over check exception WTOs and their
automation consequences? For example, let's say you have a check that runs every
hour. Now let's say that your check begins generating identical exceptions that
you've automated on to prompt a beeper call to your favorite system programmer.
You have not yet resolved the exception issue, and the installation policy is to not
disable checks generating exceptions. That's just good practice, right? And yet your
check might generate a lot of WTOs and beeper calls to that poor system
programmer while the issue gets resolved.

That's where DOM control comes in! Starting with z/OS V1R13, IBM Health
Checker for z/OS you can use the following functions that help you control
whether you want to suppress WTOs and any automation actions they trigger for
a check that is generating exceptions:
1. Add your check to the product using the DOM(CHECK) parameter on the

HZSPRMxx and MODIFY hzsproc command. See ADD or ADDREPLACE
CHECK parameters in “Syntax and parameters for HZSPRMxx and MODIFY
hzsproc” on page 69.

2. From your check you decide when to DOM WTOs from previous check runs
using the HZSFMSG REQUEST=DOM macro (“HZSFMSG macro — Issue a
formatted check message” on page 313) or the REXX
HZSLFMSG_REQUEST='DOM' function “HZSLFMSG function” on page 236.

Realizing the benefits of this function is all in the timing:
v If your check (added with DOM(CHECK)) is generating multiple identical

unresolved exceptions, your check can wait to DOM the exception WTO (with
HZSFMSG REQUEST=DOM or the REXX HZSLFMSG_REQUEST='DOM'
function) until the exception condition is resolved. This way, your check is still
running, but the exception WTOs from previous iterations of the check do not
get DOMed. That means that exception messages from this check are just
recorded in the message buffer and not sent as WTOs that set off automation
actions.

v If your check is running successfully and is not generating an exception in a
check iteration or is generating different check exceptions between iterations,

REXX checks

Chapter 8. Writing REXX checks 187

your check should issue HZSFMSG REQUEST=DOM or the REXX
HZSLFMSG_REQUEST='DOM' function to DOM WTOs from previous iterations.
That way any subsequent exception will be sent as a WTO and will kick off any
defined automation actions.

On the other hand, if you always want to delete WTOs for your check, and never
wish to suppress duplicate exception WTOs, you will want to specify or default to
DOM(SYSTEM) when you add your check, and let the system take care of
DOMing of check WTOs for you!

The well-behaved REXX check - recommendations and recovery
considerations

Follow the rules for REXX execs: A well behaved REXX check will adhere to all
the rules for writing a REXX exec. See:
v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS TSO/E REXX User's Guide

v z/OS TSO/E REXX Reference. See the topic on conditions and condition traps for
recovery information.

Release any system resources obtained: A REXX check should release any
resources it obtains, such as a data set, for example, before the REXX check stops
running. The REXX check must also include logic that releases resources when an
unexpected non-exception condition, such as a time-out or CANCEL, occurs. For
information about how System REXX manages unexpected conditions, see:
v System REXX in z/OS MVS Programming: Authorized Assembler Services Guide

v The section on conditions and condition traps in z/OS TSO/E REXX Reference.

The following example shows how our SYS1.SAMPLIB check, HZSSXCHK, frees
resources for an unexpected condition:
/***/
/* */
/* HZS_SAMPLE_REXXTSO_CHECK unexpected conditions: */
/* SYNTAX, ERROR, FAILURE, NOVALUE and HALT are specified by the */
/* SIGNAL function and receive control when an unexpected event */
/* occurs. */
/* */
/* - Report the line in error */
/* - Free the input data set if it is allocated */
/* - DISABLE the check and exit */
/* */
/***/
SYNTAX:
ERROR:
FAILURE:
NOVALUE:
HALT:
ERR1 = "An Error has occurred on line: "Sigl
ERR2 = sourceline(sigl)
Say Err1
Say "Line "Sigl" text: "Err2
ADDRESS TSO "FREE DSN("DataSetName")"
HZSLFMSG_REQUEST = "STOP" /* Disable the check */
HZSLFMSG_REASON = "ERROR"
HZSLFMSG_DIAG = Right(RC,16,0) /* report the decimal rc in the

HZS1002E message and the check
display detail */

HZSLFMSG_RC = HZSLFMSG()
IF HZS_PQE_DEBUG = 1 THEN

REXX checks

188 IBM Health Checker for z/OS User's Guide

DO /* Report debug detail in REXXOUT */
SAY "PARMS: "HZS_PQE_PARMAREA
SAY "HZSLFMSG RC" HZSLFMSG_RC
SAY "HZSLFMSG RSN" HZSLFMSG_RSN
SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

END
EXIT /* The check is not performed */

Have your REXX check stop itself when the environment is inappropriate: If
your check encounters an environmental condition that will prevent the check from
returning useful results, your check should stop itself and not run again until
environmental conditions change and your code requests it to run. Your check
should do the following to respond to an inappropriate environment:
1. Issue the HZSLFMSG function to stop itself:

HZSLFMSG_REQUEST = "STOP"
HZSLFMSG_REASON = "ENVNA"
HZSLFMSG_RC = HZSLFMSG()

2. Issue an information message to describe why the check is not running. For
example, you might issue the following message to let check users know that
the environment is not appropriate for the check, and when the check will run
again:
The server is down.
When the server is available, the check will run again.

3. Make sure that your product or check includes code that can detect a change in
the environment and start running the check again when appropriate. To start
running the check, issue the following HZSCHECK service:
HZSCHECK REQUEST=RUN,CHECKOWNER=checkowner,CHECKNAME=checkname

If the environment is still not appropriate when your code runs the check, it
can always stop itself again.

Save time, save trouble - test your check with these commands: When you have
written your check, test it with the following commands to find some of the most
common problems people make in writing checks:
F hzsproc,UPDATE,CHECK(check_owner,check_name),DEBUG=ON
F hzsproc,UPDATE,CHECK(check_owner,check_name),PARM=parameter,REASON=reason,DATE=date
F hzsproc,DELETE,CHECK(check_owner,check_name),FORCE=YES
F hzsproc,DISPLAY,CHECK(check_owner,check_name),DETAIL

Trap internal errors, so the exec routine is not terminated by System REXX

Debugging REXX checks
Naturally, we hope you'll never need this section and that all your checks will run
perfectly the very first time. However, if you do run into trouble, the following tips
can help:

Look at the documentation for System REXX errors: System REXX may put out
some clues to the problem you are having with your checks. Look at the following
documentation as appropriate:
v See System REXX abend code X'050' information in z/OS MVS System Codes.
v See the System REXX messages in AXR messages in z/OS MVS System Messages,

Vol 3 (ASB-BPX).
v See AXREXX Return and reason codes in z/OS MVS Programming: Authorized

Assembler Services Reference ALE-DYN.

REXX checks

Chapter 8. Writing REXX checks 189

Look for clues to any REXX check problems in the system console log, the logrec
data set, and the message buffer.

Make sure your REXX check writes debug information to REXXOUT when
running in debug mode: When your REXX check runs in debug mode, the system
will write information that can help in check debugging to a REXXOUT data set, if
allocated. Information includes TSO error messages, System REXX error messages,
and any information you write with the SAY keyword. See “Using REXXOUT data
sets” on page 175.

Turn on debug mode: Writing code to capture great debug information in
REXXOUT won't help if you don't put the REXX check in debug mode. When a
REXX check runs in debug mode the system invokes the REXX check with a
REXXOUT dataset. When a REXX check is not in debug mode, the system invokes
the REXX check with no REXXOUT dataset, and the debug mode output is not
saved

You can turn on debug mode for a REXX check using the DEBUG parameter in the
MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG field in
SDSF to ON.

Unexpected data in your REXXOUT data set? If your check is running in debug
mode, make sure the REXX check has exclusive access to the REXXOUT output
data set. See “Using REXXOUT data sets” on page 175.

REXX checks

190 IBM Health Checker for z/OS User's Guide

Chapter 9. Writing an HZSADDCHECK exit routine

For a local or REXX exec check, you can optionally add your check to the system
using an authorized HZSADDCHECK exit routine running in the IBM Health
Checker for z/OS address space. The HZSADDCHECK exit routine describes the
information about your local or REXX exec check or checks. The HZSADDCHECK
exit routine invokes the HZSADDCK macro to:
v Identify the check, providing values such as the check owner, check name, check

routine name, and message table name.
v Specifies the default values for the check, such as the check interval, check

parameter, and check severity.

You can write an HZSADDCHECK exit routine in either Metal C or assembler,
regardless of which language your check routine is written in.

Note that you can also add a check to the system using the ADD | ADDREPLACE
CHECK parameter in an HZSPRMxx parameter to define check defaults for a local
or REXX exec check. This is the method of choice for REXX exec check. See the
ADD or ADDREPLACE CHECK parameter in “Syntax and parameters for
HZSPRMxx and MODIFY hzsproc” on page 69.

You cannot add remote checks to the system with a HZSADDCHECK exit routine.
See “Issue the HZSADDCK macro to define a remote check to IBM Health Checker
for z/OS” on page 140.

To reduce system overhead and simplify maintenance, we suggest that you create
one HZSADDCHECK exit routine for all the checks for your component or
product.

Sample HZSADDCHECK exit routines

For a Metal C sample HZSADDCHECK exit routine, look for hzscadd.c in
/usr/lpp/bcp/samples.

For an assembler sample HZSADDCHECK exit routine, look for HZSSADCK in
SYS1.SAMPLIB.

Metal C or assembler?

As mentioned above, you can write an HZSADDCHECK exit routine in either
Metal C or assembler. The concepts in this section apply to either language. Metal
C lets you create a IBM Health Checker for z/OS compatible load module that
follows MVS linkage conventions, just as you would using assembler. You can also
easily use assembler macros, such as HZSFMSG or any other assembler macro,
using the _asm keyword. If you are writing in Metal C, IBM Health Checker for
z/OS provides generic C header files in SYS1.SIEAHDRV containing:
v Mappings of IBM Health Checker for z/OS structures and control blocks
v Commonly used Health Checker related constants

When the HZSADDCHECK exit calls the exit routines to add checks to the system,
the system processes the default values from the HZSADDCK macro call, and
applies any installation updates to the defaults.

© Copyright IBM Corp. 2006, 2015 191

Use the following guidelines in defining defaults for your check in the
HZSADDCHECK exit routine:
v Use the “HZSADDCK macro — HZS add a check” on page 266 in your

HZSADDCHECK exit routine to describe your check.
v The CHECKOWNER field should reflect both the company and component or

product name: For quick identification of checks, we suggest that the owner
field include a company identifier and component or product name. For
example, CHECKOWNER name IBMGRS reflects both the company and
component that owns the check.

v Define a meaningful CHECKNAME for your check: Create a meaningful,
descriptive name for your check. Your CHECKNAME should start with a
component or product prefix so that you can easily identify where a check
comes from. In addition, using the prefix ensures that all the checks for a
particular component or product will be grouped together in an SDSF check
display, if supported on your system. For example, IBM's virtual storage
management (VSM) checks all start with VSM. (See Chapter 13, “IBM Health
Checker for z/OS checks,” on page 389.)

v Using the DATE parameters: The HZSADDCK DATE parameter specifies when
the setting or value being checked was defined. This will alert customers to
check the installation updates for this check. An installation update also has an
associated date, and when the installation update date is older than the DATE
parameter specified on HZSADDCK, the system:
– Does not apply the update
– Issues a message to inform the installation of the circumstance.

If you change your check, you should update the HZSADDCK DATE parameter
only if you want to make sure that the installation takes a look at your check
again to make sure any installation updates are still appropriate.

v Assign a severity to your check based on the problems your check is looking
for and how critical they are. The severity you choose will determine how the
system handles the exception messages that your check routine issues with the
HZSFMSG service:
– SEVERITY(HIGH) indicates that the check routine is checking for

high-severity problems in an installation. All exception messages that the
check issues with the HZSFMSG service will be issued to the console as
critical eventual action messages.

– SEVERITY(MEDIUM) indicates that the check is looking for problems that
will degrade the performance of the system. All exception messages the check
issues with HZSFMSG will be issued to the console as eventual action
messages.

– SEVERITY(LOW) indicates that the check is looking for problems that will not
impact the system immediately, but that should be investigated. All exception
messages the check issues with HZSFMSG will be issued to the console as
informational messages.

Installations can update the SEVERITY value in the HZSADDCHECK exit
routine using either the SEVERITY or WTOTYPE parameter in an installation
update.

v Selecting an INTERVAL and EINTERVAL for your check: Keep the following
in mind when selecting an interval for a check:
– The INTERVAL parameter specifies how often the check will run. But you can

also specify an exception interval (EINTERVAL), which lets you specify a
more frequent interval for the check to run if it has raised an exception.

– A check INTERVAL must be 1 minute or longer.

192 IBM Health Checker for z/OS User's Guide

– The specified INTERVAL or EINTERVAL time starts ticking away when a
check finishes running.

v Specify parameters for your REXX exec check: For a REXX exec check, there are
some special HZSADDCK keywords:
– EXEC(execname) - This parameter, required for a REXX check defined in the

HZSPRMxx parmlib member, specifies the name of the REXX exec containing
the REXX check or checks. This parameter tells the system that you are
defining a REXX check. For an assembler check, you would specify the
CHECKROUTINE(checkname).
If you define your REXX check with the HZSADDCK macro in an
HZSADDCHECK exit routine, the equivalent of EXEC(execname) is the
REXX=YES,EXEC=execname parameters.

– REXXHLQ(hlq) - This parameter, required for a REXX check, specifies the
high level qualifier for any input or output data set for the check.

– REXXTIMELIMIT(timelimit) - This optional input parameter specifies the
number of seconds a check iteration is allowed to run before the system ends
it. A value of 0, which is the default, specifies that there is no time limit for
the check.

– REXXTSO(YES | NO) - This parameter, optional for a REXX check, specifies
whether the check runs in a TSO environment or a non-TSO environment.
The default is REXXTSO(YES).
- REXXIN(YES | NO) - This parameter, optional for a REXX check, specifies

whether or not a non-TSO check requires an sequential input data set. The
name of the REXXIN data set will consist of the high level qualifier
specified in the HLQ parameter, the exec name specified in the EXEC
parameter, and an optional entry code specified in the ENTRYCODE
parameter.
You can only specify REXXIN(YES) if you also specify REXXTSO(NO).

v Specify whether your check requires UNIX System Services: Use the USS
keyword to specify whether your check requires UNIX System Services. Any
check that uses UNIX System Services such as DUB should specify USS=YES. If
you specify USS=YES for a check, the system will run the check only when
UNIX System Services are available.

v Specify an ENTRYCODE for your check if there are multiple checks in a
check routine: Use the ENTRYCODE parameter to specify a unique entry code
for a specific check if multiple checks invoke the same check routine or REXX
check. The routine or REXX exec must contain logic to determine which check
the system is calling by checking the entrycode. The entrycode is passed to the
check routine in the field Pqe_EntryCode in the HZSPQE mapping macro.

v Making your HZSADDCHECK exit routine reentrant: Your HZSADDCHECK
exit routine will be reentrant, so you must use the LIST and EXECUTE forms of
the HZSADDCK macro and any other z/OS macros with parameter lists.

v HZSADDCHECK exit routine return codes less than eight indicate success: We
hate to say to ignore return codes, but in general there's really no need to worry
about HZSADDCHECK exit routine return codes. For any problem requiring
attention, the system issues an abend code. See “Debugging HZSADDCHECK
exit routine abends” on page 197.

Chapter 9. Writing an HZSADDCHECK exit routine 193

Programming considerations for the HZSADDCHECK exit routine

Environment
IBM Health Checker for z/OS calls the HZSADDCHECK exit routine in primary
mode from the IBM Health Checker for z/OS address space.
v Address space: IBM Health Checker for z/OS
v Dispatchable unit mode: Task
v Cross memory mode: PASN=SASN=HASN
v AMODE: 31
v ASC mode: Primary
v Key: System defined. The system will give control to the exit routine in the same

key in which it gives control to the check routine.
v State: Supervisor
v Interrupt status: Enabled for I/O and external interrupts
v Locks: No locks held
v Control parameters: Control parameters are in the IBM Health Checker for z/OS

address space

Note that HZSADDCHECK exit routines are loaded in common. The exit routine
should be a single csect load module.

The message table is loaded in Health Check private, it should be a single csect
load module.

Input Registers
When an HZSADDCHECK exit routine receives control, the contents of the
registers are as follows:

Register
Contents

Register 0 - 12
Not applicable

Register 13
Points to the address of a 72 byte save area

Register 14 - 15
Not applicable

When an HZSADDCHECK exit routine receives control, the contents of the access
registers (ARs) are as follows:

Register
Contents

Register 0 - 12
Not applicable

Register 13
Points to the address of a 72 byte save area

Register 14 - 15
Not applicable

194 IBM Health Checker for z/OS User's Guide

Output Registers
When a HZSADDCHECK exit routine returns control, the contents of the registers
must be:

Register
Contents

Register 0 - 1
The exit routine does not have to place any information in this register,
and does not have to restore its contents to what they were when the exit
routine received control

Register 2 - 13
Unchanged

Register 14 - 15
The exit routine does not have to place any information in this register,
and does not have to restore its contents to what they were when the exit
routine received control.

When a HZSADDCHECK exit routine returns control, the contents of the access
registers (ARs) must be:

Register
Contents

Register 0 - 1
The exit routine does not have to place any information in this register,
and does not have to restore its contents to what they were when the exit
routine received control

Register 2 - 13
Unchanged

Register 14 - 15
The exit routine does not have to place any information in this register,
and does not have to restore its contents to what they were when the exit
routine received control

Defining multiple local or REXX checks in a single HZSADDCHECK
exit routine

To reduce system overhead and simplify maintenance, you can and should define
multiple uniquely-named checks in a single HZSADDCHECK exit routine.
Defining multiple checks in one HZSADDCHECK exit routine will streamline the
identification and registration process for a component or product, so that you
need only one HZSADDCHECK exit routine and one check routine for your
checks.

If you put multiple checks in one check routine (which is recommended), use the
ENTRYCODE parameter on HZSADDCK to assign an entry code to each check.
For a non-REXX check, the entry code is passed to the check routine in the
PQE_ENTRY_CODE field in the HZSPQE mapping macro. For a REXX check, it is
passed to the check exec in REXX variable HZS_PQE_ENTRY_CODE.

Note that the IBM Health Checker for z/OS will not verify the uniqueness of the
entry codes you define for your checks.

Chapter 9. Writing an HZSADDCHECK exit routine 195

Dynamically adding local or REXX exec checks to IBM Health Checker
for z/OS

Once you've written the check routine and the HZSADDCHECK exit routine for
your checks, you must then add the checks to IBM Health Checker for z/OS so
that the system can run the check. To do this, you must add the HZSADDCHECK
exit routine to the HZSADDCHECK exit and then have the system call the exit to
run the exit routine. There are two approaches to this step:
v When your check is ready for production, you will add the code to your product

or component to activate your checks when your product starts. See “Creating
product code that automatically registers checks at initialization” on page 197.

v For testing purposes, you can add the HZSADDCHECK exit routine to the
system dynamically with either operator commands or in a program, as we will
show in this section. See:
– “Using operator commands to add checks to the system dynamically”
– “Using a routine to add checks to the system dynamically” on page 197
You can also simply define the check defaults and values directly in an
HZSPRMxx parmlib member and bypass the HZSADDCHECK exit routine
entirely. See the ADD or ADDREPLACE CHECK parameters in “Syntax and
parameters for HZSPRMxx and MODIFY hzsproc” on page 69.

Once you have added your check to the system using one of these methods, you
can use a command such as the following to verify that it is there:
F hzsproc,DISPLAY CHECK(checkowner,checkname),DETAIL

Once a check has been added to the system, it will remain active and will run at
the specified interval until:
v A user explicitly deactivates or deletes the check, issuing a MODIFY command

for example. See “Making dynamic, temporary changes to checks” on page 44.
v IBM Health Checker for z/OS disables a check because of check routine or

environmental problems. See “IBM Health Checker for z/OS controlled states”
on page 36.

Using operator commands to add checks to the system
dynamically

1. Make the check routine, HZSADDCHECK exit routine, and message table
available to either:
v The LNKLST set being used by the IBM Health Checker for z/OS address

space
v The current LNKLST if the IBM Health Checker for z/OS address space is

not currently active

If the check routine, HZSADDCHECK exit routine, and message table belong in
SYS1.LINKLIB, one way you can make them available to LNKLST is to:
a. Copy them into SYS1.LINKLIB
b. Update LLA to indicate that the new parts are available by adding a

statement to a CSVLLAxx parmlib member containing the name of the parts
for your check. For example, you might update a CSVLLAxx parmlib
member with the following statement:
LIBRARIES(SYS1.LINKLIB) MEMBERS(checkroutine,hzsaddcheckexitroutine,messagemod)

c. Issue the MODIFY LLA,UPDATE=xx command to have the system use the
updated CSVLLAxx parmlib member.

196 IBM Health Checker for z/OS User's Guide

2. Issue the SETPROG command to add the HZSADDCHECK exit routine to the
HZSADDCHECK exit. The following example shows how we add the exit
routine, HCEXIT, to the HZSADDCHECK exit:
SETPROG EXIT,ADD,EXITNAME=HZSADDCHECK,MODNAME=HCEXIT

Note that instead of using SETPROG, you can place the analogous EXIT
statement in a PROGxx parmlib member and issue the SET PROG=xx command.

3. Issue the MODIFY command to add all new checks to the system:
F hzsproc,ADDNEW

Using a routine to add checks to the system dynamically
You can create a routine to add checks dynamically to the system in either Metal C
or assembler.

The following examples show the logic of a routines that:
v �1� Add exit routine, HCEXIT, to the HZSADDCHECK exit.
v �2� Issue the HZSCHECK service to call the HZSADDCHECK exit to run the

exit routine and add checks.

Debugging HZSADDCHECK exit routine abends
If your HZSADDCHECK exit routine abends, the exit routine becomes inactive and
the system issues message CSV430I identifying the exit routine and the abend so
that you can debug the problem.

Creating product code that automatically registers checks at
initialization

In Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 191, we talked
about registering checks for testing purposes. Ultimately, however, you'll probably
want your component or product to automatically look for and activate any new
checks when it initializes. We're doing this for some of our IBM products by
making check registration part of the initialization processing for the product. Add
code similar to the following assembler example to define the HZSADDCHECK
exit routine to IBM Health Checker for z/OS and look for and activate new checks:
CSVDYNEX REQUEST=ADD

EXITNAME=HZSADDCHECK, /* HEALTH CHECKER name */
MODNAME=IBMHCADC, /* check defintition

exit routine */
MESSAGE=ERROR,

CSVDYNEX REQUEST=ADD,
�1�
EXITNAME==CL16’HZSADDCHECK’,
MODNAME==CL8’HCEXIT’,
MESSAGE=ERROR,
RETCODE=RC,
RSNCODE=RS

CHI R15,8
JNL NO_ADDNEW
�2�
HZSCHECK REQUEST=ADDNEW,

RetCode=RC,
RsnCode=RS

Figure 12. Assembler example: Defining the HZSADDCHECK exit routine adding checks

Chapter 9. Writing an HZSADDCHECK exit routine 197

RetCode=HCRetCode,
RsnCode=HCRsnCode

IF HCRetCode = 0 Then /* Tell Health Checker to */
HZSCHECK REQUEST=ADDNEW, /* Look for new checks */

RetCode=HCRetCode,
RsnCode=HCRsnCode

Creating product code that deletes checks as it goes down
If your component or product stays up for the life of the system (GRS, for
example), you do not need to do any check deletion or clean up. However, if your
product or component does occasionally come up and down you might want to
delete the checks as you come down. Code the exit routine to issue the
HZSADDCK macro to add the check or checks only if the product is up.

198 IBM Health Checker for z/OS User's Guide

Chapter 10. Creating the message input for your check

Check messages are the output of your check routine - they communicate the
results uncovered by a check to the user. Your check messages should:
v Report any exceptions to the values and settings the check is looking for and

convey recommendations for actions to take to correct the exception. Depending
on what the check is designed to do, an exception message may report risks to
system performance, function, availability, or integrity. A check should also
report dynamic changes since the last IPL that pose a potential problem, and
which might make the next IPL slower or error-prone.

v Report that the check found no exceptions, if appropriate.
v If the setting the check is looking for conflicts with existing default settings,

explain why the check user is getting an exception message for a default setting.
v Create report messages that displays data that the check collects.

This chapter covers how to create a message table for your check. However, you
can also omit the message table and issue messages directly from the check routine
as follows:
v For local or remote checks, use HZSFMSG REQUEST=DIRECTMSG, providing

the message text in the HZSFMSG REQUEST=DIRECTMSG request. See
“HZSFMSG macro — Issue a formatted check message” on page 313.

v For REXX checks, use HZSLFMSG_REQUEST='DIRECTMSG', providing the
message text right in the HZSLFMSG_REQUEST='DIRECTMSG' input variables.
See “Input variables for HZSLFMSG_REQUEST='DIRECTMSG'” on page 238.

For more information, see our fabulous Redpaper! For lots of details and
experience based information about creating messages for your check, see
Exploiting the Health Checker for z/OS infrastructure (REDP-4590-00).

To create a message table for your check, you must do the following:
1. Plan your check messages to be easy to understand, use, and automate. See

“Planning your check messages” on page 201.
2. Create a message table that contains both message texts and explanations for

checks. See “Creating the message table” on page 204.
3. Optionally create a setup data set customized for your checks. The setup data

set contains entries for symbols, frequently used text strings used in messages,
and for the books you reference in your message explanation. (Every message
must contain a reference to a book for more information.) See “Defining your
own symbols for check messages” on page 228

4. Generate the messages into a compilable assembler CSECT using a JCL
procedure using the HZSMSGEN REXX exec. The HZSADDCHECK exit
routine passes the name of the message table for a check to IBM Health
Checker for z/OS. See “Generating the compilable assembler CSECT for the
message table” on page 230.

5. Compile the message CSECT to create the message table module, which you
will ship with the compiled check routine and HZSADDCHECK exit routine, if
you have one for the check. Make sure that you link edit the message table as
reentrant. In addition, Make sure that the message table is in a single separate
module, rather than mainline code, to make maintenance and corrections easier.

© Copyright IBM Corp. 2006, 2015 199

For local and REXX checks, the system loads the message table into IBM Health
Checker for z/OS private storage. Remote checks must load their message table
into their own address space's storage.

6. From your check routine:

v Remote checks must load the message table into their own storage.

v Define the variables for your messages. In your check routine, you will
define and store message variable data into the HZSMGB data area. See
“Defining the variables for your messages” on page 120. You can have up to
20 message variables per message, each used one time only.

v Use the HZSFMSG macro to issue messages . See “Issuing messages in your
local check routine with the HZSFMSG macro” on page 117.

The following figure shows how all the parts fit together in the process of creating
a message table:

How messages and message variables are issued at check runtime
When a check runs, it issues messages using the HZSFMSG macro to relate the
results of the check. Most of the data for the messages comes from the generated
and compiled message table. However, if a message issues dynamic variables
(<mv></mv> tags), the variables work as follows:
v The values for the variables must be defined in the HZSMGB data area for the

check, which contains an array of pointers to variables.
v The address for the HZSMGB data area for a check is specified on the

MGBADDR parameter of the HZSFMSG macro. For example:
HZSFMSG REQUEST=CHECKMSG,MGBADDR=MGB_PTR

v The message table describes the attributes of the variable, which determine how
the variable is formatted. See "Variables for message text" in “Message text
(<msgtext>) and message variable (<mv>) tags” on page 217.

v At runtime, when the HZSFMSG macro is issued, the IBM Health Checker for
z/OS gets the text of the message variable from the address pointed to in the
MGB_MsgInsertAddr field in data area HZSMGB.

Figure 14 on page 201 shows how messages with variables get resolved at check
runtime.

Figure 13. Inputs and outputs for creating a complete message table

creating message input

200 IBM Health Checker for z/OS User's Guide

Planning your check messages
If you've used IBM Health Checker for z/OS, you know that the messages issued
by the check are the most important part of the check, because they notify
installations of potential problems and suggested fixes for those problems.

You can issue several types of messages in your check routine. Use the following
sections to plan for the types of messages your check will issue:
v “Planning your exception messages” on page 202
v “Planning your information messages” on page 202
v “Planning your report messages” on page 203
v “Planning your debug messages” on page 203

In addition, the system issues predefined environment and parameter error when
a check issues the HZSFMSG REQUEST=STOP service after finding a parameter or
environmental error that prevents the check from running. You do not have to
define these messages in your message table - when you issue the HZSFMSG
REQUEST=STOP service, the system issues an IBM Health Checker for z/OS
HZS100xE error message. See “The well-behaved local check routine -
recommendations and recovery considerations” on page 127 and
“Recommendations and recovery considerations for remote checks” on page 161
for information.

The system also issues parameter parser error messages - see the HZSFMSG
REASON=PARSnnnn parameters in “HZSFMSG macro — Issue a formatted check
message” on page 313.

You must decide the following when planning your messages:

Figure 14. Message and variable resolution at runtime

creating message input

Chapter 10. Creating the message input for your check 201

v “Decide what release your check will run on” on page 203
v “Decide whether to translate your check exception messages into other national

languages” on page 204
v “Rely on IBM Health Checker for z/OS to issue basic check information for

you” on page 204

Planning your exception messages
Your check will issue exception messages when a check detects a deviation from a
suggested setting. See “Understanding exception messages” on page 28 for how an
exception message looks to users.
v The message text of an exception message is a WTO and should be designed to

alert an installation to a condition that requires the attention of a system
programmer. The audience for this exception WTO is the operator, so it should
simply include enough information to identify the system resource that requires
attention. For example, the following exception message text explains just
enough to let operators know what kind of a problem the check has uncovered
and who they might need to contact:
IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or
more potential errors in the security controls on this system.

Both for quick identification and to facilitate automation, IBM Health Checker
for z/OS precedes the message text WTO with a HZS000xx message that
displays the check name and exception severity.

v The message details for an exception message, with its multiple categories such
as explanation, operator response, and system programmer response, is issued to
the message buffer. The explanation should provide details about what the check
was looking for, the exception condition it found, and the impact that the
condition might have on the system. The audience for the explanation is the
system programmer, who will appreciate very specific input on how to correct
the problem in the system programmer response. For example, your exception
system programmer response might include correct command syntax. You might
also include a pointer to documentation about a suggested solution, although
ideally you can outline a complete solution right in the system programmer
response in the check's message buffer.
See “Message Table” on page 222 for the categories you'll need to include in
your exception message details.

See “Exception message example” on page 205.

Planning your information messages
Your check can issue non-exception informational messages for the following
reasons:
v Every exception message requires an informational message for the clean-run,

no-exceptions-found case.
v Use an information message to report that the check cannot run because of

parameter errors, or because it is inappropriate for the current installation
environment. If you issue an informational message for a check that has stopped
itself because of parameter errors, describe the correct syntax of the parameters.

v Use an informational message as a report title. The report title informational
message should describe the report message, including the variables.

The explanation details that you code in your message table for informational
messages should be as complete possible, because no one wants to have to look

creating message input

202 IBM Health Checker for z/OS User's Guide

the message up to figure out what to do. Go ahead, you've got the whole message
buffer to explain your message! For example, you should include:
v The message explanation
v The product source of the message
v Any system action, even if it's just that the system continues processing
v The operator response, which is often to notify the system programmer.
v The system programmer response, with details on any problem with, for

example, parameters in error.
v The detecting module for the message, information that might be helpful for

your support people.

See “Information message example” on page 207.

Planning your report messages
A report message is a tabular form message issued to the message buffer, often to
display supplementary information for an exception message. A report message
give you more control over the formatted message output than any other check
message type. Use a report message if your check has a lot of data to display
about an exception to avoid issuing multiple exception WTO messages for a single
check iteration. (WTOs can be a performance/resource issue.)

Your check should issue a report message before the exception message it
supplements. In addition, your check should issue an informational title message
before the report that includes the entire explanation for the report, including the
meaning of variables, because a report message is not documented anywhere.
There is no message number associated with a report message in the message
buffer (except in debug mode viewed in SDSF).

The key rule for reports issued by checks is to make sure your report can stand on
its own. In other words, for the sake of IBM Health Checker for z/OS users, make
sure that your report is as clear and self-explanatory as possible.

See “Report message example” on page 208.

Planning your debug messages
Your check can issue debug messages to display extra information about the check
to aid in testing and diagnosis when the check is in debug mode. See “The
well-behaved local check routine - recommendations and recovery considerations”
on page 127 for information about using debug mode. For a debug message, only
the message text (<msgtext> field) is issued to the message buffer. See also “Debug
message example” on page 212.

Decide what release your check will run on
The release your check will run on determines a couple of things about how you
define your messages, particularly the message list, in the message table. So you
must determine in advance whether:
v If your check runs only on z/OS V1R10 or higher level systems, and you want

to use function that apply only to z/OS V1R10 systems or higher (see “Message
list tag - <msglist>” on page 214 for R8 enhancments), specify your message list
with a rules level of 3. Note that rules level 3 includes all the function of rules
level 2.
<msglist xreftext="csectname rules=3">

creating message input

Chapter 10. Creating the message input for your check 203

v If your check runs only on z/OS V1R8 or higher level systems, and you want to
use function that apply only to z/OS V1R8 systems or higher (see “Message list
tag - <msglist>” on page 214 for R8 enhancments), specify your message list
with a rules level of 2:
<msglist xreftext="csectname rules=2">

v If your check will run on z/OS V1R7 or lower level systems, you must specify a
rules level of:
<msglist xreftext="csectname rules=1">

You can also use a rules level of 1 on a z/OS V1R8 or higher system, as long as
you do not use V1R8 enhancements in your message list.

See “Message list tag - <msglist>” on page 214 for complete information.

Decide whether to translate your check exception messages
into other national languages

If you want to translate your check exception messages into other national
languages, there are a couple of things you will need to keep in mind as you code
your exception message texts. For example in order to be translated, message texts
must be 71 characters or less, so you must break up the WTO exception message
text lines with <lines></lines> tags. For complete information about calculating
line lengths for your exception message text and how to break up lines, see
“Message text (<msgtext>) and message variable (<mv>) tags” on page 217. For
information on using MMS, see Translating messages in z/OS MVS Programming:
Assembler Services Guide.

IBM Health Checker for z/OS can generate the skeletons for your messages at the
same time you generate the message table CSECT using the HZSMSGEN exec, see
“Support for translating messages to other languages” on page 232.

Rely on IBM Health Checker for z/OS to issue basic check
information for you

You should never need to issue basic information about your check such as check
name, because IBM Health Checker for z/OS will automatically issue this kind of
information about your check in both the message buffer and, for exception
messages, in the WTO.
v In the message buffer, IBM Health Checker for z/OS issues information for all

messages such as check owner and name, check date, start time, and end time.
An exception message also includes additional information about values defined
for the check, such as the check reason, check parameters in use (if any). See the
first example of an exception message in “Understanding exception messages”
on page 28 and “Exception message example” on page 205.

v

v In a WTO for the exception message, IBM Health Checker for z/OS prefixes the
exception with an HZS message stating the check owner and name:
SYS1 HZS0002E CHECK(IBMXCF,XCF_SFM_ACTIVE):
IXCH0514E The state of Sysplex Failure Management is NOT consistent
with the IBMXCF recommendation.

Creating the message table

For a sample message table, see sample HZSSMSGT in either SYS1.SAMPLIB.

creating message input

204 IBM Health Checker for z/OS User's Guide

In the message table, you'll provide both the message text and the explanation for
each message.
v For exception messages, the entire message, including text and detail (<msgtext>

and all the <msgitem> tags), will appear in the message buffer, viewable using
either HZSPRINT or SDSF. However, only the message text (<msgtext> tag) is
included in the WTO. In the message text, convey the potential problem
uncovered. In the detailed explanation, convey the suggested solution to the
problem.

v For non-exception messages, only the message text will appear in the message
buffer.

The finished message table will be an interface which installations can automate.

This section covers the following:
v “Examples of message input”
v “Syntax of message input” on page 214

– “Special formatting tags for the message table” on page 223
– “How messages are formatted in the message buffer” on page 225
– “Using symbols in the message table” on page 227

Examples of message input

Exception message example
The following shows an example of a complete check exception message formatted
as it would be in the message buffer. The suffix of E indicates it's an exception
message, and that the reported situation will require action.
CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
START TIME: 05/25/2005 09:42:56.690844
CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or
more potential errors in the security controls on this system.

Explanation: The RACF security configuration check has found one or
more potential errors with the system protection mechanisms.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator and the system auditor.

System Programmer Response: Examine the report that was produced by
the RACF check. Any data set which has an "E" in the "S" (Status)
column has excessive authority allowed to the data set. That
authority may come from a universal access (UACC) or ID(*) access
list entry which is too permissive, or if the profile is in WARNING
mode. If there is no profile, then PROTECTALL(FAIL) is not in
effect. Any data set which has a "V" in the "S" (Status) field is
not on the indicated volume. Remove these data sets from the list
or allocate the data sets on the volume.

Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate
that there is no RACF profile protecting the data set. Data sets
which do not have a RACF profile are flagged as exceptions, unless
SETROPTS PROTECTALL(FAIL) is in effect for the system.

message table

Chapter 10. Creating the message input for your check 205

If a valid user ID was specified as a parameter to the check, that
user’s authority to the data set is checked. If the user has an
excessive authority to the data set, that is indicated in the USER
column. For example, if the user has ALTER authority to an
APF-authorized data set, the USER column contains "<Read" to
indicate that the user has more than READ authority to the data set.

Problem Determination: See the RACF System Programmer’s Guide and
the RACF Auditor’s Guide for information on the proper controls for
your system.

Source:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Reference Documentation:
RACF System Programmer’s Guide
RACF Auditor’s Guide

Automation: None.

Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH

Note that fields such as START TIME:, CHECK DATE:, Check Reason: and END TIME:
are not part of the message input specified by the check developer. The system
issues these automatically, as appropriate. See “Extra fields issued to the message
buffer for exception messages” on page 226 for more information.

You must code your message input with tags. The following example shows how
the example message, IRRH204E, looks coded in the tag format. This example also
shows the use of a symbol, &hzsckname;, for the check name - see “Using
pre-defined system symbols” on page 227 for more information.
<msglist xreftext="csectname" rules="1">
<msg class="Exception">
<msgnum xreftext="204">IRRH204E</msgnum>
<msgtext>
The &hzsckname; check has found one or
<lines>
more potential errors in the security controls on this system.
</lines>
</msgtext>
<msgitem class="explanation"><p>
The RACF security configuration check has found one or more
potential errors with the system protection mechanisms.
</p></msgitem>
<msgitem class="sysact"><p>
The check continues processing. There is no effect on the system.
</p></msgitem>
<msgitem class="oresp"><p>
Report this problem to the system security administrator and the
system auditor.
</p></msgitem>
<msgitem class="spresp"><p>
Examine the report that was produced by the RACF check. Any data
set which has an "E" in the "S" (Status) column has excessive authority
allowed to the data set. That authority may come from a universal access
(UACC) or ID(*) access list entry which is too permissive, or if the
profile is in WARNING mode. If there is no profile, then
PROTECTALL(FAIL) is not in effect.
Any data set which has a "V" in the "S" (Status) field is not on
the indicated volume. Remove these data sets from the list or allocate

message table

206 IBM Health Checker for z/OS User's Guide

the data sets on the volume.
</p>
<p>Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate that
there is no RACF profile protecting the data set. Data sets which
do not have a RACF profile are flagged as exceptions, unless
SETROPTS PROTECTALL(FAIL) is in effect for the system.
</p>
<p>If a valid user ID was specified as a parameter to the check, that
user’s authority to the data set is checked. If the user has an
excessive authority to the data set, that is indicated in the USER
column. For example, if the user has ALTER authority to an
APF-authorized data set, the USER column contains
"<Read" to indicate
that the user has more than READ authority to the data set.
</p></msgitem>
<msgitem class="probd"><p>
See the RACF System Programmer’s Guide and the RACF Auditor’s
Guide for information on the proper controls for your system.
</p></msgitem>
<msgitem class="source"><p>
<lines>
RACF System Programmer’s Guide
RACF Auditor’s Guide
</lines>
</p></msgitem>
<msgitem class="refdoc"><p>
<lines>
RACF System Programmer’s Guide
RACF Auditor’s Guide
</lines>
</p></msgitem>
<msgitem class="automation"><p>
None.
</p></msgitem>
<msgitem class="module"><p>
IRRHCR00
</p></msgitem>
<msgitem class="rcode"><p>
</p></msgitem>
<msgitem class="dcode"><p>
</p></msgitem>
</msg>

.

.

.
</msglist>

Note that tags <msgitem class="rcode"> and <msgitem class="dcode"> are coded in
the message table, but are not displayed in the message buffer.

Information message example
The following example shows an information message text as it would appear in
the message buffer:
CHECK(IBMCNZ,CNZ_CONSOLE_MASTERAUTH_CMDSYS)
START TIME: 06/01/2005 09:43:42.219863
CHECK DATE: 20040816 CHECK SEVERITY: LOW

CNZHS0002I At least one active console has MASTER authority and command
association to system JA0.

END TIME: 06/01/2005 09:43:42.225214 STATUS: SUCCESSFUL

The following example shows how the example message looks coded in the tag
format. Note that the same message explanation tags are required in an
information message as are in an exception message, although they do not show

message table

Chapter 10. Creating the message input for your check 207

up in the message buffer and they do not appear in this example. This example
also shows the use of a symbol, &hzssysname;, for the system name - see “Using
pre-defined system symbols” on page 227 for more information.
<msglist xreftext="csectname" rules="1">
<msg class=information>
<msgnum xreftext=201>CNZHS0002I</msgnum>
<msgtext>
At least one active console has MASTER authority and command
association to system &hzssysname;.
</msgtext>
<msgitem class="explanation"><p>
n/a</p>
</msgitem>
<msgitem class="sysact"><p>
n/a</p>
</msgitem>
<msgitem class="oresp"><p>
n/a</p>
</msgitem>
<msgitem class="spresp"><p>
n/a</p>
</msgitem>
<msgitem class="probd"><p>
n/a</p>
</msgitem>
<msgitem class="source"><p>
n/a</p>
</msgitem>
<msgitem class="refdoc"><p>
n/a</p>
</msgitem>
<msgitem class="automation"><p>
n/a</p>
</msgitem>
<msgitem class="module"><p>
n/a</p>
</msgitem>
<msgitem class="rcode"><p>
n/a</p>
</msgitem>
<msgitem class="dcode"><p>
n/a</p>
</msgitem>
</msg>

.

.

.
</msglist>

Report message example
v A report message: The following example shows a report message text as it

would appear in the message buffer.
CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
START TIME: 06/01/2005 12:50:57.749916
CHECK DATE: 20040703 CHECK SEVERITY: HIGH

APF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
E SYS1.LINKLIB PETPB1 Updt No ****
E SYS1.SVCLIB PETPB1 Updt No ****
E SYS1.SIEALNKE PETPB1 Updt No ****

.

message table

208 IBM Health Checker for z/OS User's Guide

.

.
TCPIP.V3R2M0.SEZALINK D83AE8 Read No ****

This example shows that:
– The report actually consists of four messages, IRRH255R through IRRH258R.

However, unless you run the check in debug mode and use SDSF to display
messages, the message identifier is not displayed for report messages.

– The first three messages, IRRH255R through IRRH257R contain the report title
lines, with the report name supplied by a variable.

– The fourth message, IRRH258R, contains the report data as a series of
variables.

– The same message explanation tags are required in a report message as they
are in an exception message, although they do not show up in the message
buffer.

The following example shows how we coded the message:
<msglist xreftext="csectname" rules="1">
<!-- === -->
<!-- Message: IRRH255R -->
<!-- === -->
<msg class="report">
<msgnum xreftext="255">IRRH255R</msgnum>
<msgtext>
<lines class="center">

<mv>report-name</mv>Report

</lines>
</msgtext>
<msgitem class="explanation"><p>
Header line for the RACF_SENSITIVE_RESOURCES check.
</p></msgitem>
<msgitem class="sysact"><p>
Processing continues.
</p></msgitem>
<msgitem class="oresp"><p>
None.
</p></msgitem>
<msgitem class="spresp"><p>
None.
</p></msgitem>
<msgitem class="probd"><p>
None.
</p></msgitem>
<msgitem class="source"><p>
None.
</p></msgitem>
<msgitem class="refdoc"><p>
None.
</p></msgitem>
<msgitem class="automation"><p>
None.
</p></msgitem>
<msgitem class="module"><p>
IRRHCR00
</p></msgitem>
<msgitem class="rcode"><p>
</p></msgitem>

message table

Chapter 10. Creating the message input for your check 209

<msgitem class="dcode"><p>
</p></msgitem>
</msg>
<!-- === -->
<!-- Message: IRRH256R -->
<!-- === -->
<msg class="report">
<msgnum xreftext="256">IRRH256R</msgnum>
<msgtext>
S Data Set Name Vol UACC Warn ID* User
</msgtext>
<msgitem class="explanation"><p>
Header line for the RACF_SENSITIVE_RESOURCES check
</p></msgitem>
<msgitem class="sysact"><p>
Processing continues.
</p></msgitem>
<msgitem class="oresp"><p>
None.
</p></msgitem>
<msgitem class="spresp"><p>
None.
</p></msgitem>
<msgitem class="probd"><p>
None.
</p></msgitem>
<msgitem class="source"><p>
None.
</p></msgitem>
<msgitem class="refdoc"><p>
None.
</p></msgitem>
<msgitem class="automation"><p>
None.
</p></msgitem>
<msgitem class="module"><p>
IRRHCR00
</p></msgitem>
<msgitem class="rcode"><p>
</p></msgitem>
<msgitem class="dcode"><p>
</p></msgitem>
</msg>
<!-- === -->
<!-- Message: IRRH257R -->
<!-- === -->
<msg class="report">
<msgnum xreftext="257">IRRH257R</msgnum>
<msgtext>
- --------------------------------------- ------ ---- ---- ---- ----
</msgtext>
<msgitem class="explanation"><p>
Data set header line for the RACF_SENSITIVE_RESOURCES check
</p></msgitem>
<msgitem class="sysact"><p>
Processing continues.
</p></msgitem>
<msgitem class="oresp"><p>
None.
</p></msgitem>

message table

210 IBM Health Checker for z/OS User's Guide

<msgitem class="spresp"><p>
None.
</p></msgitem>
<msgitem class="probd"><p>
None.
</p></msgitem>
<msgitem class="source"><p>
None.
</p></msgitem>
<msgitem class="refdoc"><p>
None.
</p></msgitem>
<msgitem class="automation"><p>
None.
</p></msgitem>
<msgitem class="module"><p>
IRRHCR00
</p></msgitem>
<msgitem class="rcode"><p>
</p></msgitem>
<msgitem class="dcode"><p>
</p></msgitem>
</msg>
<!-- === -->
<!-- Message: IRRH258R -->
<!-- === -->
<msg class="report">
<msgnum xreftext="258">IRRH258R</msgnum>
<msgtext>
<mv>status</mv>
<mv>data-set-name</mv>
<mv>volume</mv>
<mv>UACC-access</mv>
<mv>idSplat-access</mv>
<mv>warning</mv>
<mv>userId-access</mv>
</msgtext>
<msgitem class="explanation"><p>
Data line for data set analysis report.
</p></msgitem>
<msgitem class="sysact"><p>
Processing continues.
</p></msgitem>
<msgitem class="oresp"><p>
None.
</p></msgitem>
<msgitem class="spresp"><p>
None.
</p></msgitem>
<msgitem class="probd"><p>
None.
</p></msgitem>
<msgitem class="source"><p>
None.
</p></msgitem>
<msgitem class="refdoc"><p>
None.
</p></msgitem>
<msgitem class="automation"><p>
None.

message table

Chapter 10. Creating the message input for your check 211

</p></msgitem>
<msgitem class="module"><p>
IRRHCR00
</p></msgitem>
<msgitem class="rcode"><p>
</p></msgitem>
<msgitem class="dcode"><p>
</p></msgitem>
</msg>

.

.

.
</msglist>

v A report message in debug mode: If you are running in debug mode and using
SDSF, the report message above displays with the message number on every
line:
HZS1098I CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
HZS1090I START TIME: 06/01/2005 13:29:16.860783
HZS1095I CHECK DATE: 20040703 CHECK SEVERITY: HIGH
IRRH255R
IRRH255R APF Dataset Report
IRRH255R
IRRH256R S Data Set Name Vol UACC Warn ID* User
IRRH257R - --------------------------------------- ------ ---- ---- ---- ----
IRRH258R E SYS1.LINKLIB PETPB1 Updt No ****
IRRH258R E SYS1.SVCLIB PETPB1 Updt No ****

The message number is not displayed on every line if you are looking at the
report message in the message buffer or with the print command. That is only a
feature of SDSF.

Debug message example
The following example shows a debug message text as it would appear in SDSF
output when the system is running in debug mode - a debug message only
appears when you are running in debug mode. (See “Debugging checks” on page
132 for how to turn on debug mode.)
HZS1098I CHECK(IBMSDUMP,SDUMP_AUTO_ALLOCATION)
HZS1090I START TIME: 06/01/2005 13:46:28.025111
HZS1095I CHECK DATE: 20050118 CHECK SEVERITY: MEDIUM

IEAH700I IEAH700I Build level 2005.045 15:49:09.60 FC= 2 EC= 2

Note that if you look at the debug message in the message buffer or with the print
command, you will not see the message number on every line.

The following example shows how we coded the debug message:
<msglist xreftext="csectname" rules="1">
<msg class=debug>
<msgnum xreftext=700>IEAH700I</msgnum>
<msgtext>
<mv>debug</mv>
</msgtext>
<msgitem class="explanation"><p>Checker debug information.</p>
</msgitem>
<msgitem class="sysact"><p>n/a</p>
</msgitem>
<msgitem class="oresp"><p>n/a</p>
</msgitem>
<msgitem class="spresp"><p>n/a</p>
</msgitem>

message table

212 IBM Health Checker for z/OS User's Guide

<msgitem class="probd"><p>n/a</p>
</msgitem>
<msgitem class="source"><p>SDUMP (SCDMP)</p>
</msgitem>
<msgitem class="refdoc"><p>n/a</p>
</msgitem>
<msgitem class="automation"><p>n/a</p>
</msgitem>
<msgitem class="module"><p>IEAVTSHG</p>
</msgitem>
<msgitem class="rcode"><p>n/a</p>
</msgitem>
<msgitem class="dcode"><p>n/a</p>
</msgitem>
</msg>

.

.

.
</msglist>

Message list tagging example
The following example shows how you would code the entire message list for
your messages, including the copyright and <msglist> tags:
<lines props="copyright">
* THE SOURCE CODE FOR THIS PROGRAM IS NOT PUBLISHED OR OTHERWISE
* DIVESTED OF ITS TRADE SECRETS, IRRESPECTIVE OF WHAT HAS BEEN
* DEPOSITED WITH THE U.S. COPYRIGHT OFFICE.
* OCO SOURCE MATERIALS
* 5650-ZOS (C) COPYRIGHT IBM CORP. 2005
</lines>
<msglist xreftext="hzshmtbl">
<!-- === -->
<!-- Message: IRRH201I -->
<!-- === -->
<msg class="information">
<msgnum xreftext="201">IRRH201I</msgnum>
<msgtext>The &hzsckname; check cannot be executed in a
GRS=NONE environment.
</msgtext>
<msgitem class="explanation"><p>
The RACF check &hzsckname; is not applicable to a
GRS=NONE environment.
</p></msgitem>
<msgitem class="sysact"><p>
The check stops processing. There is no effect on the system.
</p></msgitem>
<msgitem class="oresp"><p>
Report this problem to the system programmer.
</p></msgitem>
<msgitem class="spresp"><p>
Disable the &hzsckname; RACF check.
</p></msgitem>
<msgitem class="probd"><p>
</p></msgitem>
<msgitem class="source"><p>
RACF System Programmer’s Guide
</p></msgitem>
<msgitem class="refdoc"><p>
<lines>
RACF System Programmer’s Guide
MVS Planning: Global Resource Serialization
</lines>
</p></msgitem>
<msgitem class="automation"><p>
None.
</p></msgitem>

message table

Chapter 10. Creating the message input for your check 213

<msgitem class="module"><p>
IRRHCR00
</p></msgitem>
<msgitem class="rcode"><p>
</p></msgitem>
<msgitem class="dcode"><p>
</p></msgitem>
</msg>

.

.

.
</msglist>

Syntax of message input
You code the message input with tags. The following topics describe the syntax for
coding an IBM Health Checker for z/OS message in the message table:
v “Message input tags”
v “Special formatting tags for the message table” on page 223
v “How messages are formatted in the message buffer” on page 225
v “Using symbols in the message table” on page 227

Message input tags

Copyright information
<lines id="checkownername" props="copyright" > * copyright information * </lines>

The message table for every check must contain a copyright statement. For
example, a copyright statement might look as follows:
<lines id="IBMRACF" props="copyright">
* THE SOURCE CODE FOR THIS PROGRAM IS NOT PUBLISHED OR OTHERWISE
* DIVESTED OF ITS TRADE SECRETS, IRRESPECTIVE OF WHAT HAS BEEN
* DEPOSITED WITH THE U.S. COPYRIGHT OFFICE.
* OCO SOURCE MATERIALS
* 5650-ZOS (C) COPYRIGHT IBM CORP. 2005
</lines>

id="checkownername"
Specify the check owner, such as IBMRACF, for the messages in
this message list.

props="copyright"
Specify props="copyright" to indicate that this is your copyright
statement.

Message list tag - <msglist>
<msglist xreftext="csectname rules=ruleslevel"></msglist>:

The message list tag. You can only have one message list per message table. If
you include any data after the end message list tag, </msglist>, the message

Restrictions:

The following characters are tag characters, and you can only use them in tags in your message table. Note, however,
that IBM Health Checker for z/OS does support symbols in the message table.

v Do not use < (less-than) and > (greater-than) - You can use < and > as substitutes.

v Do not use & (ampersand) - You can use & as a substitute.

message table

214 IBM Health Checker for z/OS User's Guide

generation program will issue error message HZSM0009 and issue a return code of
8. See “Generating the compilable assembler CSECT for the message table” on
page 230.

csectname
Specify the name of the generated message table CSECT. csectname must be 1-8
alphanumeric characters. xreftext="csectname" is required.

ruleslevel
Use the rules attribute to indicate whether or not your check message input
table uses message elements that apply only to z/OS V1R8 and above systems.
If the message table does not conform to the rules level selected, the
HZSMSGEN exec will not be able to generate the message table.

rules="3"
Indicates that the check can run on systems at the z/OS V1R10 level or
above and use R10 and above functions, including all the rules="2" and
rules="1" functions. The z/OS V1R10 enhancement includes:
v When a message class of report is used, and the message output

requires more than one line, leading blanks are suppressed at the
beginning of the new line.

If you specify rules="3" on a message list for a check that runs on a
system below the z/OS V1R10 level, the check abends when the
system tries to add the check to the system.

rules="2"
Indicates that the check can run on systems at the z/OS V1R8 level or
above and use R8 and above functions:
v You can use maxlen and fieldsize attributes for variables - see

"Variables for message text" in “Message text (<msgtext>) and
message variable (<mv>) tags” on page 217.

v In rules="2" message list, you cannot enter leading blank characters
after the <p> and <msgtext> tags. If you need a blank in a rules="2"
messagelist, use symbol &rbl;, which inserts a required blank into
the formatted output. This is also useful for keeping words together
on one line. For example, to keep the words System A on one line
and together, code the following:
System&rbl;A

If you specify rules="2" on a message list for a check that runs on a
system below the z/OS V1R8 level, the check abends when the system
tries to add the check to the system.

In order to convert a message list from rules="1" to rules="2", you
must:
v Specify rules="2" on the message list tag
v Use a required blank symbol, &rbl; if you require a leading blank

after a <p> tag or <msgtext> tag.

rules="1"
Indicates that the check can run on any system where IBM Health
Checker for z/OS is available, depending on what releases the
individual check supports - see Chapter 13, “IBM Health Checker for
z/OS checks,” on page 389. At rules level 1, a check message table
cannot use z/OS V1R8 enhancements such as required blank symbols
or maxlen and fieldsize attributes for variables. For a rules="1"
message list, the system will ignore leading blank characters after the
paragraph tag, <p>, and message text tag, <msgtext>.

message table

Chapter 10. Creating the message input for your check 215

Message instance tag - <msg>
<msg class="msgtype"></msg>

The <msg> element defines a message in a message list. The
class="msgtype" attribute, which describes the type of message, is required
on the <msg> tag. The class describes z/OS Health Checker message
behavior. You can have the following values for class="msgtype":
v Exception: Messages notifying the installation that action is required

because a check routine found an exception to a suggested setting. The
message text, intended for the operator, is issued in a WTO. The
message text and full explanation are issued to the message buffer,
mainly for the system programmer.

v Information: Messages conveying general non-exception information, for
example the completion of the check without exceptions, or as the first
line of a report. Only the message text is issued to the message buffer.

v Report: Single lines of report data issued to the message buffer without
a message number (except in debug mode). Only the message text is
issued to the message buffer. The report message type gives you the
most control over the formatted output. A single report line should be 72
characters of formatted output or less. Because report messages do not
display with a message number, a report message with a line of report
data should be preceded by an information message containing the
report title.

v Debug: Messages issued to the message buffer when the check is placed
in debug mode to aid in testing and diagnosis. Only the message text is
issued to the message buffer.

The following table summarizes information for the different message
types:

Table 20. A summary of message types for IBM Health Checker for z/OS

Message type <msg class=msgtype> Message number
suffix

Where is message
text issued?

Exception <msg class=Exception> E v The message
buffer, including
the message text
and all details.

v WTO message
text only to
console, operlog,
or syslog

Information <msg
class=Information>

I Message buffer

Report <msg class=report> N/A - Message
number is not
displayed unless you
are running in debug
mode and use SDSF to
display the message.

Message buffer

Debug <msg class=debug> N/A - Message
number is not
displayed unless you
are running in debug
mode and use SDSF to
display the message.

Message buffer or
system hardcopy
log

message table

216 IBM Health Checker for z/OS User's Guide

Each <msg> element must contain the following elements:
v <msgnum> - See “Message number tag - <msgnum>.”
v <msgtext> - See “Message text (<msgtext>) and message variable

(<mv>) tags.”
v <msgitem> - See “Message item tag - <msgitem>” on page 221.

Restriction: You must code the following tags in consecutive lines without
comments or blank lines between them:

<msg class="msgtype"></msg>
<msgnum xreftext="nnnn">ccccHmmmms</msgnum>
<msgtext>....

Message number tag - <msgnum>
<msgnum xreftext="msgnumber">ccccHmmmms</msgnum>

The message is identified in two ways on the <msgnum> tag - both inputs
are required for all messages:

xreftext="messagenumber"
messagenumber is the decimal value used in the HZSFMSG macro to
uniquely identify the message. messagenumber is a decimal value
between 1 and 2147483647. The messagenumber you define will be
reflected in the MGB_MessageNumber field in the HZSMGB data
area.

ccccHmmmms
The text value that appears as the message identifier. In the
message identifier:

ccccH cccc is the component identifier, such as ISG for global
resource serialization. The required H represents IBM
Health Checker for z/OS.

mmmm
The message number. For example, in message identifier
ISGH101E, 101 is the message number.

s The severity code for the message. s is one of the
following:
v For an exception message, use E.
v For information and debug messages, use I.
v For report messages, you can use any suffix you like, or

no suffix at all - users will not see these message
numbers unless they're running IBM Health Checker for
z/OS in debug mode and viewing the message buffer
with SDSF. Because report messages do not display with
a message number, a report message with a line of
report data should be preceded by an information
message with the report title and the explanation for the
report.

Message text (<msgtext>) and message variable (<mv>) tags
<msgtext></msgtext>

Required element that contains the data issued to a message buffer when
IBM Health Checker for z/OS issues messages for a check.

For an exception message, the system uses data in the <msgtext> tags to
create a WTO. In many installations, the exception message WTOs (which

message table

Chapter 10. Creating the message input for your check 217

are issued to the operator’s console) require national language support
(NLS) translation using MVS message service (MMS). If you are going to
translate your messages, each message text line must be 71 characters or
less. See “Support for translating messages to other languages” on page
232 for guidelines on how to code the message text for translating
messages.

You can have message variables in a message text - see “Message text
(<msgtext>) and message variable (<mv>) tags” on page 217.

You cannot use paragraph (<p></p>) tags within the <msgtext> . If you
need to start a new line, <lines></lines>:
<msgtext>
I need a new line, but I can’t use a paragraph tag.
<lines></lines>
But I can get a new line with the lines tag.
</msgtext>

For information on how message text (<msgtext>) is formatted in the
message buffer, see “How messages are formatted in the message buffer”
on page 225.

<mv class="variable_class" xreftext="maxlen(nnn | fieldsize(nnn")></mv>
Specify <mv></mv> to define the variables in your message text
(<msgtext></msgtext>). You define each variable with a class="variable
_class", to specify the type of variable and xreftext="maxlen(nnn) |
fieldsize(nnn" to define the length of a variable after it is formatted.

class="variable_class"
Specify <mv class="variable_class"> to define different types of
variables. A message variable allows the check routine to issue the
HZSFMSG macro with dynamic variables in the message text. You
can have up to 20 message variables in a message, each used one
time only. When you develop a check, you'll provide the data for
the message variables in the HZSMGB data area in the
MGB_MsgInsert field. See “How messages and message variables
are issued at check runtime” on page 200.

The default for an <mv> variable (if you do not specify a class) is
text, which indicates that the variable is EBCDIC text with a
maximum length of 256 bytes.

Use a meaningful variable name. IBM Health Checker for z/OS
processes message variables positionally; it does not parse the
content. The following example shows a message text message
with two variables:
<msgtext>LNKLST
<mv class=compress xreftext=maxlen(16)>lnklst name</mv>
data set name :
<mv class=compress xreftext=maxlen(44)>dsname</mv><lines></lines>
has more extents than when it was
activated.
</msgtext>

The output of the message markup showing the dynamically
resolved variables might look as follows:
LNKLST LNKLST00 data set name: DATASET1.DATA.ABC has more extents than
when it was activated.

message table

218 IBM Health Checker for z/OS User's Guide

Note that although the variables are coded on separate lines, they
are all on the same line in the output. The system inserts a blank
between each variable because of the end of the line.

You can specify the following different types of variables:

<mv class="compress">
Specifies that data in the MGB_MsgInsertField of the
HZSMGB data area is text. The system removes leading
and trailing blanks within the variable in the message
output. class="compress" is the default behavior for
exception, information, and debug messages.

<mv class="nocompress>
Specifies that data in the MGB_MsgInsertField is text. The
system will not remove leading and trailing blanks or
suppress blanks within the variable in the message output
- the length of the variable will be same as the length
provided in the MGB_MsgInsertField for the variable.

Class="nocompress" is the default for report messages
because it gives you more control over the formatted
output. The system does not remove blanks in nocompress
variables..

You cannot specify xreftext="fieldsize(nnn)" for a
nocompress variable.

<mv class="condcompress>
Specifies that data in the MGB_MsgInsertField field for the
variable is text. The system leaves or removes leading and
trailing blanks, depending on the message type. For report
messages, the system does not remove blanks in the
variable. For exception, information, and debug messages,
the system does remove blanks within the variable. <mv
class="condcompress> is the default.

<mv class="decimal">
Specifies that the binary input described in the
MGB_MsgInsert field for the variable be converted to
decimal. Leading zeros are suppressed, and the field size is
set to the first significant digit. The largest generated
output length for decimal variable values up to 2147483647
(X'7FFFFFF') is 10 bytes. Values greater than 2147483647 are
expressed with multiplier notation and can be a maximum
of six characters. The following table shows the value of
multipliers:

Multiplier Abbreviation Value

Kilo K 1,024

Mega M 1,048,576

Giga G 1,073,741,824

Tera T 1,099,511,627,776

Peta P 1,125,899,906,842,624

<mv class="hex">
Specifies that the binary input described in the
MSB_MsgInsert field for the variable (up to 100 characters)

message table

Chapter 10. Creating the message input for your check 219

be translated to a hexadecimal value expressed in EBCDIC
characters. Hexadecimal output is formatted with an
underscore after every eighth character and the
underscores must be taken into account when calculating
the length of the output message text.

<mv class="gmttime">
Specifies that the value from the MGB_MsgInsert field is
not to be adjusted for local time. The input data for this
variable is an eight character field containing a 64-bit time
of day value in the format MM.DD.YY HH:MM:SS.ffffff.

<mv class="LocalTime">
Specifies that the value from the MGB_MsgInsert field is to
be adjusted to local time. The input data for this variable is
an eight character field containing a 64-bit time of day
value in the format MM.DD.YY HH:MM:SS.ffffff.

Maximum length values for variables are as follows:

Table 21. Variable input and output lengths and alignment:

Variable type Input length Output length

Class="compress",
"nocompress", or
"condcompress"

1-256 256

Class="hex" 1-100 256

Class="decmial" 1-8 10

Class="gmttime",
"localtime"

8 26

Note that if a variable has a zero input length at the time when the
message is issued, the field does not show up in the output
because all the nulls and blank are eliminated from the output.

xreftext=" maxlen(nnn) | fieldsize(nnn)"
Specify <mv class="variable_class" xreftext="maxlen(nnn | fieldsize(nnn" to
define the length a variable after it is formatted. You can only specify
maxlen and fieldsize on a rules="2" message list.

maxlen(nnn)
Maxlen allows you to specify the maximum length of formatted
output a variable should produce. Maxlen applies only to systems
at z/OS V1R8 or higher and the message list must specify
rules="2". Maxlen is particularly useful for calculating variable size
for NLS message translation, which requires message line text
length of 71 characters or less. See “Support for translating
messages to other languages” on page 232.

If variable resolution produces output greater length than the value
of maxlen, the HZSFMSG invocation abends with abend code
X'290', reason code X'4016'.

The following table shows which variables allow maxlen:

Table 22. Which variables allow maxlen?

Variable type Maxlen allowed? Maxlen value allowed

Class="compress",
"condcompress"

Yes 256 or less

message table

220 IBM Health Checker for z/OS User's Guide

Table 22. Which variables allow maxlen? (continued)

Variable type Maxlen allowed? Maxlen value allowed

Class="nocompress" Yes 256 or less

Class="hex" Yes 224 or less, because the
output is limited to 100
bytes.

Class="decmial" Yes 10 or less

Class="gmttime",
"localtime"

No –

fieldsize(nnn)
Fieldsize allows you to specify the exact length that the field
should always be in the formatted output. The output is expanded
to the specified length and padded with blanks. This is useful for
creating columns in report messages. When you specify fieldsize,
variables are aligned as follows:
v Decimal and hex variables are right aligned
v Hexadecimal and character variables that specify fieldsize are

left aligned.
v Compress and condcompress variables are left aligned
v gmltime and localtime variables are truncated on the right

The following example shows a report message that uses fieldsize
for variables:
<msg class=report>
<msgnum xreftext=0001>ReportL01</msgnum>
<msgtext><mv xreftext="fieldsize(6)">Volser</mv>
<mv xreftext="fieldsize(44)">data set name</mv>
<mv class="decimal" xreftext="fieldsize(6)">data set extents</mv>
</msgtext>

If variable resolution produces output greater length than the value
of fieldsize, the check abends with abend code X'290', reason code
X'4116'.

Message item tag - <msgitem>
<msgitem class="itemclass"></msgitem>

The <msgitem class="itemclass"> tag contains the message explanation
information that is usually included in a message reference document:
v For class="exception" messages, the information specified in the

<msgitem class="itemclass"> tags is also included in the message buffer,
where it is available for users to read and automate from. The first line
of the message explanation described with <msgitem> tags begins in
position 3. Lines following the first line of the explanation begin in
position 5. When a <msgitem> section ends, the system generates new
paragraph to put a blank line between each <msgitem>.

v For class="information", "report", and "debug" messages, information
specified in the <msgitem> tags will only be included in the
documentation for the message in message book for the check
component. The <msgitem> information is not included in the output in
the message buffer or elsewhere for non-exception messages.

message table

Chapter 10. Creating the message input for your check 221

You can optionally enclose the itemclass in quotes, either double or single.
Use <mv></mv> to list and explain all variables that appear in the
message. Use the following formatting elements to control the presentation
of text
v <p> (paragraph) - text in a message item must be within paragraph tags

(<p></p>).
v <lines> (lines) - allows you to control lines of text. Use <lines></lines>

to generate a blank line.

See “Special formatting tags for the message table” on page 223.

You will have multiple <msgitem class="itemclass"> tags for a message (see
“Examples of message input” on page 205 for an example). All of the
classes are required. If you do not have specific information for a class, you
can often use 'n/a'.

Message Table
Table 23. Description of <msgitem> classes required for all message explanations

Class Description

"explanation" Explains the message. Can include message variables, paragraphs and other formatted text - see “Special
formatting tags for the message table” on page 223.

For an exception message, the explanation should describe the exception condition found and its impact to
the system.

For the informational report title message, the explanation must include the meaning of the variables used in
the message text that are not self-explanatory within the explanation. For example, if you use
<mv>widget</mv> within the message text, you must then explain what the variable in the explanation, as
follows:

widget
An important device you need to buy for your computer. widget will be one of the following:

widgeta
Type a widget

widgetb
Type b widget

"sysact" The system action describes what the system, in particular the component that owns the check, is doing as a
result of the condition that caused the message to be issued. The system action must be specific - you cannot
enter a system action of 'n/a' or 'None'. The system always does something, even if it just continues
processing.

"oresp" Operator response describes the actions an operator should take in response to the message.

v For exception messages, this should direct the operator to the right person to evaluate the exception. for
example, "Contact the system programmer:"

v For other messages, which do not appear on the operators console, 'n/a' is the correct operator's response.

The operator response can also be 'n/a'.

"spresp" System programmer response describes the actions, if any, the system programmer should take to isolate and
correct an error, including diagnostic steps and reporting the problem to the IBM support center. Include
sample syntax and references for changing system parameters or issuing commands. Include a reference to
the problem determination category if you're using the probd class for additional information for the system
programmer. "Spresp" can also be 'n/a'.

"probd" Problem determination - communicates additional information or actions that a system programmer, system
administrator, security administrator, or database administrator may need to know to further diagnose a
problem discussed in the system programmer response, including trace or dump information. Provide cross
references (including links to other books) to procedures - different dumps use different allocations,
procedures, and resources. Probd can also be 'None'.

"source" The name of the component, subsystem, or product issuing the message.

"automation" Automation - Use this section to discuss automation concerns related to the check results. Specify 'n/a' if you
have no automation information for a message.

message table

222 IBM Health Checker for z/OS User's Guide

Table 23. Description of <msgitem> classes required for all message explanations (continued)

Class Description

"refdoc" Use the reference documentation class to reference books that provide additional detail regarding suggested
settings or interpreting results. Include the book title, chapter heading, and section heading.

Specify 'n/a' if you have no reference information.

"module" Module identifies the name of the detecting module, the component name, or N/A. This class is not
included in the message buffer for an exception message.

"rcode" Routing code. Specify N/A for this field, because Health Checker for z/OS does not use a routing code, so
this value is always zero unless the installation overrides the value in the HZSPRMxx parmlib member
values for the check. Rcode is not included in the message buffer for an exception message.

"dcode" Descriptor code.

For an exception message, document the default descriptor code based on the severity of the check:

v High severity checks use a descriptor code of 11

v Medium severity checks use a descriptor code of 3.

v Low severity checks use a descriptor code of 12.

See “Defining your own symbols for check messages” on page 228.The installation can override the severity
and descriptor code in the HZSPRMxx parmlib member. Dcode is not included in the message buffer for an
exception message.

For a non-exception message specify N/A for this field.

Special formatting tags for the message table
<mv ></mv>

For use in the message explanation, <msgitem> tags, specifies that the text
within the <mv></mv> tags are variables. The text within the tags will
generally format in italics. See “Message text (<msgtext>) and message
variable (<mv>) tags” on page 217 for complete information about
variables.

<!-- comment --> tags
The data placed between these tags is treated as a comment. Comment are
not supported within a <msgtext> or <msgitem> section. Comments put in
these sections will result in a syntax error and the HZSMSGEN REXX exec
cannot generate the messages into a compilable assembler CSECT. You
cannot place comments or blank lines inside the body of individual
messages, between the <msg> and </msg> tags. This will cause
unpredictable results. You should only place comments and blank lines:
v Before the copyright statement for the message table (<lines

id="ownername" props="copyright" > * copyright information * </lines>).
v Between the copyright statement and the message list tag, <msglist>
v Between the <msglist> tag and the message tag, <msg>
v Between individual messages, which would be between the message end

tag, </msg>, and the next message start tag, <msg>.

Comments must go on a separate line with no other data.

See “Defining your own symbols for check messages” on page 228 for
putting comments in an entity declaration.

<lines></lines>
The <lines> tag lets you control lines of text by keeping short lines of text
from flowing together or by generating blank lines. You can use the
<lines> tags to format text in the message text (<msgtext>) or explanation

message table

Chapter 10. Creating the message input for your check 223

(<msgitem> tags) for any type of message. The <lines class="center"> tag
lets you both control and center lines of text. Use <lines tags with the
following considerations:
v For exception messages, use <lines></lines> tags to define a new line

before you reach the WTO limit of 71 characters. Make sure you include
the message number in your count.

v The <lines> or <lines class="center"> beginning tag generates a new line.
Use <lines></lines> to create a blank line for messages in the message
buffers. Blank lines are suppressed for WTOs, so in the WTO message
text for an exception message <lines></lines> will just start a new line.

v If you specify too long a line of text within the <lines> tag to fit on the
line, the data wraps to a new line.

v The end of a line is broken on a word boundary and causes the next
word to begin a new line.

v You can put variables (<mv> tag) and symbols within <lines tags.
v You cannot use <p> tags within the <lines> markup.

<lines> example 1: The following example show a valid use of <lines>
tags to keep a group of short lines from flowing together:
<lines>
Short lines of data
that format exactly as I type them
in the generated output.
</lines>

<lines> example 2: You cannot use <p></p> tags within the message text
<msgtext> tags. If you need to start a new line, use <lines></lines>
instead. For example, you might want to break a line in an exception
message text before you reach the WTO limit of 71 characters.
<msgtext>
I need a new line, but I can’t use a paragraph tag.
<lines></lines>
But I can get a new line with the lines tag.
</msgtext>

For a WTO message text, <lines></lines> tagging starts a new line:
I need a new line, but I can’t use a paragraph tag.
But I can get a new line with the lines tag.

In the message buffer, <lines></lines> gives you a blank line:
I need a new line, but I can’t use a paragraph tag.

But I can get a new line with the lines tag.

<lines class="center"> example: Use <lines class="center"> to center your
lines of text:
<lines class="center">
Short lines of data
that format exactly as I type them
in the generated output
except centered
</lines>

You will get the following output:
Short lines of data

that format exactly as I type them
in the generated output

except centered

message table

224 IBM Health Checker for z/OS User's Guide

|

<p></p>
A paragraph contains text in paragraph form. Use paragraph tags to
format paragraph text as follows:
v Paragraph tags are required to enclose the text in all <msgitem> tags, for

any type of message.
v You cannot use paragraph tags in message text <msgtext>. Instead, use

<lines></lines> to create a blank line.
v The <p> beginning tag starts a new line and data begins at the start of

the next line.
v If your text in a paragraph hits the end of the line boundary, the line

splits on a word boundary. Leading and trailing blanks may be lost
when the line is split. See “How messages are formatted in the message
buffer.”

Example: The following example shows valid use of paragraph tags:
This is a line of text.
<p>Although the text flow of paragraph is the default behavior,
more rigid rules are observed.
</p>
<p>
Blank
lines are suppressed.
</p>

This example will format as follows:
This is a line of text.

Although the text flow of paragraph is the default behavior, more rigid
rules are observed.

Blank lines are suppressed.

How messages are formatted in the message buffer
For exception messages, both text (<msgtext>) and explanation (<msgitem
class="itemclass"> except rcode and dcode) are issued to the message buffer. For
information, report, and debug messages, only the text (<msgtext>) is issued to the
message buffer or log.

Default formatting for messages in the message buffer is as follows:
v Message processing for all messages and all the parts of a message use

paragraph flow unless <lines></lines> tags are used to break up lines.
v When a message is reformatted to fit in the message buffer, the system splits the

line on a word boundary. Blanks may be lost when the line is split. The system
suppresses blank lines.

v The system strips leading and trailing blanks from variables, except variables in
report messages or nocompress variables (<msgitem class="nocompress">.

v A character string with a length greater than the output line length will continue
on the following line without blanks added. This is referred to as wrap mode.

The table below shows how the different types of messages are formatted in the
message buffer:

message table

Chapter 10. Creating the message input for your check 225

Table 24. How messages are formatted in the message buffer

Message type Formatting in the message buffer

Exception A complete message, including both the message text and explanation are issued to the message buffer. The
message text is limited to 14 lines, 70 characters long (4 for indentation). In the check details, you can have lines
71 characters long. Check exception messages are imbedded in a IBM Health Checker for z/OS HZS prefix
message with a prefix of HZS and format as follows:

v The first line of the exception message contains the HZS message identifiers, either HZS003A, HZS002E, or
HZS001I, depending on the severity of the message as well as the check owner and check name. For example,
the following output would be issued to the operator console:

HZS002E (IBMCSV,LNKLST_SPACE)
CSVH951E LNKLST CZ INCLUDES DATA SETS WITH SECONDARY SPACE
DEFINED.

v The first line of the message explanation in the message buffer begins in position 3.

v The second line of the message begins with the message identifier assigned to the message in the <msgnum>
tag.

v The second and following lines of the message begin in position 5 and are 66 characters long.

v When the <msgtext> section ends, the system generates a new line.

Information The message text (<msgtext>) specified is formatted in paragraph format in the message buffer.

v The system splits the line on a word boundary and begins the new line with a non-blank character. The system
suppresses blank lines.

v When data exceeds the output line length, it will wrap to the next line.

v A line ends on a word boundary, and new lines begin in the 5th position on the following line.

Report The message text (<msgtext>) is a single line of data issued to the message buffer.

v Each line of text begins in position 1.

v When data exceeds the output line length, it will wrap to the next line.

v The system will not suppress leading and trailing blanks in the message text when you add dynamic variables
using the <mv> element. To compress leading and trailing blanks in a variable in a report message, use a <mv
class="compress> tag.

Debug The message text (<msgtext>) is issued to the message buffer or system hardcopy log when you place the check
in debug mode.

v The first line of text in a debug message begins in position 1, unless you format the lines differently, using
<lines>, for example.

v Lines end on a word boundary and new lines begin in the 5th position on the following line.

v When data exceeds the output line length, it will wrap to the next line.

v The system suppresses leading and trailing blanks in the message text of information messages unless
formatting tags override the default text flow.

v You can add dynamic variables using the <mv> element.

Extra fields issued to the message buffer for exception
messages
For exception messages issued to the message buffer, IBM Health Checker for
z/OS issues additional information automatically, including:
v Owner IBMcomp reason: This field displays the reason for running the check.

The reason displayed is specified by the check developer in the
HZSADDCHECK exit routine r. For example, for check GRS_MODE, the reason
defined in the HZSADDCHECK exit routine is as follows:
GRS should run in STAR mode to improve performance

See Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 191.
v Installation reason: This field is displayed if the installation overwrites the

HZSADDCHECK exit routine reason with a new reason value.
v Check Parameters: This field displays the parameters (defined in the

HZSADDCHECK exit routine) that are passed to the check routine when it runs.

message table

226 IBM Health Checker for z/OS User's Guide

Using symbols in the message table
You can specify symbols in your message table that resolve to meaningful values.
There are several types of symbols that you can use:
v Pre-defined system symbols set by IBM Health Checker for z/OS for use in an

exception message and that resolve at check runtime. (A very few resolve when
you generate your message table CSECT.) See “Using pre-defined system
symbols.”

v Symbols defined in the source message table or setup file that resolve when you
generate the CSECT for the message table. See “Defining your own symbols for
check messages” on page 228.

Using pre-defined system symbols
You can use the following predefined system symbols in an exception message.
These are set by IBM Health Checker for z/OS. For example, the following
message markup uses symbols (delimited by an ampersand and a semi-colon) for
the check and system names:
<msgtext>&hzsckname; Health Checker Report for z/OS
on system &hzssysname;
</msgtext>

IBM Health Checker for z/OS sets these symbols at registration and run time. That
means you do not have to define these symbols in a setup data set or in your
message table in order to use them. The system resolves the following pre-defined
symbols that resolve when the check runs:

Table 25. A summary of pre-defined symbols that resolve when the check runs

Predefined symbol Maximum
number of
characters

Symbol resolves to

&hzs; 38 IBM Health Checker for z/OS

&hzsproc; 8 The name of the start up procedure for IBM Health Checker for z/OS

&hzssysname; 8 System name

&hzssysplex; 8 Sysplex name

&hzsreason; 126 User or component reason from the HZSADDCHECK exit routine.

&hzsexitrtn; 8 The name of the HZSADDCHECK exit routine.

&hzsparmsource; 16 Resolves to 'installation' or 'owner' to indicate whether the default
PARMS from the HZSADDCHECK exit routine are in effect, or user
overrides are in effect." to "whether the default, check owner specified
PARMS string is in effect, or a user override of the check's PARMS
string is in effect.

&hzssev; 6 Resolves to a severity value of HIGH, MEDIUM, or LOW as
determined from the default severity specified when the check was
added, or from the severity specified on a check update, if any.
Note: Checks for which dynamic severity is allowed might issue
check exception messages with a different, dynamic severity

&hzsparms; 126 Active check parameters.

&hzsckname; 32 The check name, as defined in the HZSADDCHECK exit routine.

&hzsowner; 16 The check owner, which is the component or subsystem as defined in
the HZSADDCHECK exit routine. For example, &owner; might
resolve to OEM, IBMGRS, IBMRSM, IBMXCF, or IBMUSS.

&hzsdate; 10 The current system date in the form: dd mmm yyyy

message table

Chapter 10. Creating the message input for your check 227

|
|
|
|
|

|
|
|
|
|

Table 25. A summary of pre-defined symbols that resolve when the check runs (continued)

Predefined symbol Maximum
number of
characters

Symbol resolves to

&hzsgmttime; 16 The current system GMT time is displayed in the form:

mm/dd/yyyy hh:mm:ss.tttttt

&hzslocaltime; 16 The current system time is adjusted to local time and displayed in the
form :

mm/dd/yyyy hh:mm:ss.tttttt

The following table shows other pre-defined symbols that resolve when you
generate the CSECT for the message table:

Table 26. A summary of pre-defined symbols that resolve when you generate the CSECT for the message table

Predefined symbol Maximum
number of
characters

Symbol resolves to

&rbl; The ever useful required blank character for use in a rules="2"
message list. In rules="2" message list, you cannot enter leading blank
characters after the <p> and <msgtext> tags, so you must use symbol
&rbl;, which inserts a required blank into the formatted output, and
keeps the words on the same line. A required blank will not be
removed during formatting. This is also useful for keeping words
together on one line. For example, to keep the words System A on one
line and together, code the following:

System&rbl;A

You can also specify a required blank in a message variable using the
character X'44'. The system resolves this hex character as a blank
when the output data is formatted.

> Greater than symbol, >

< Less than symbol, <

& Ampersand symbol, &

&hzsnl; A tag to begin a new line

&hzsbl; A tag to insert a blank line.

If you want to use other symbols besides the predefined system symbols in your
message input, you must define them in the source message table (before the
<msglist> tag) or in the message setup data set, see “Defining your own symbols
for check messages.”

Defining your own symbols for check messages
Besides using the predefined system symbols, you can also define symbols specific
to the check messages in the message table or setup file. We'll call these local
symbols. Keep the following in mind as you plan whether to define local symbols
and which ones to define:
v You should only create a local symbol for a known constant that you use

multiple times in the message table.
v National language support (NLS) variables are not created for check specific

symbols, and they do not require special support at execution time.
v Local symbols can use symbols within symbols. In other words, the symbol

substitution text can include other local or system symbols.

message table

228 IBM Health Checker for z/OS User's Guide

Like system symbols, you specify the entity for your local symbol as a name
delimited by an ampersand (&) and a semi-colon. For example, you could specify
and use local symbols as follows:
v Create your own symbols for any text you use multiple times in the message

table. When you generate the message table, the symbols will resolve to your
text value. For example:
If I insert an entity, or symbol, &newsym;.

This would resolve to:
If I insert an entity, or symbol, the symbol resolves to this exciting text.

v Define your own symbols to make it easier to put accurate book titles in the
required <msgitem class="refdoc"> tag for check messages. For example:
For more information about the recommended settings, see &ieaa100t;.

This resolves to:
For more information about the recommended settings, see
z/OS MVS Auth Assm Services Reference ALE-DYN.

You can define symbols for your check using <!ENTITY> tags in either:
v The source message table, before the <msglist> tag. Here's an example of

defining symbols in the message table itself:
<!ENTITY PROD1 "Product ABC">
<!ENTITY PROD2 "Product DEF">
<!ENTITY NA "N/A">
<msglist xreftext="PRODABC Rules=2">

.

.

.

v A setup data set, which is a separate data set containing the symbol definitions
for your check. This is a handy way to make symbols available for multiple
checks. Here's an example of a setup data set with both a copyright statement
and some symbols we find very useful for multiple users and multiple checks:

Using either of these methods, the symbols are resolved in the CSECT when you
generate the message table.

Syntax for defining your symbols - the <!ENTITY> tag: The following shows the
syntax of the <!ENTITY> tag you use to define your own symbols in the message
table or setup data set:

<!ENTITY cunu100t "z/OS Support for Unicode: Using Conversion Service">
<!ENTITY ieaa100t "z/OS MVS Auth Assm Services Reference ALE-DYN">
<!ENTITY ieaa200t "z/OS MVS Auth Assm Services Reference ENF-IXG">
<!ENTITY ieaa300t "z/OS MVS Auth Assm Services Reference LLA-SDU">
<!ENTITY ieae200t "z/OS MVS Initialization and Tuning Reference">

.

.

.
<!ENTITY act " The system continues processing.">
<!ENTITY bugmsg " This message only appears when you are running in debug mode.">
<!ENTITY repsysp "Report this problem to the system programmer.">
<!ENTITY lvl2 "Search problem reporting data bases for a fix for the problem.">
<!ENTITY diagdoc "Provide the messages, the logrec data set record, the SYSLOG output, and dump if one was taken."
-- The following symbols are defined for routing codes. -- >
<!ENTITY hisevdc "11 is the default set by this check.">
<!ENTITY medsevdc "3 is the default set by this check.">
<!ENTITY losevdc "12 is the default set by this check.">
<!ENTITY success "This check ran successfully and found no exceptions.">

Figure 15. Example of a setup data set that defines symbols used in the message table

message table

Chapter 10. Creating the message input for your check 229

<!ENTITY entity-name "replacement text" -- comment -- >
An ENTITY identifies an entity declaration, which just means it's how you
define a symbol. An entity statement breaks down as follows:

entity-name
Specifies the name you select for your symbol. When you specify
the entity name in your message table, it will resolve to the
replacement text when you generate the message table.

"replacement text"
A single string specifying the text that you want your entity or
symbol name to resolve to.

Local symbols can use symbols within the replacement text. For
example, you could define a symbol as follows:
<!ENTITY good2 "&good1; is a good symbol, these are two good symbols">

Then in the message table, you code the following sentence:
If &good2; we can use in a message.

Will resolve into a complete sentence when the check runs:
If &good1; is a good symbol, these are two good symbols we can use in a message.

Neat huh? Don't get yourself tied in knots though!

-- comment -- >
Specifies a comment within an entity declaration. You can insert a
comment anywhere in an entity declaration between the < >
delimiters. Identify the start and end of the comment with two
hyphens (--). The following example shows a comment in an entity
declaration:
<!ENTITY newsym "the symbol resolves to this text" -- this is a comment -->

Generating the compilable assembler CSECT for the message table
The message table is loaded into private storage of the Health Checker address
space and should be a single CSECT load module.

You can generate the messages from the SGML message definition file into a
compilable assembler CSECT using the message generation exec HZSMSGEN. The
input and output DD names for HZSMSGGEN can be allocated to a data set, PDS
member or z/OS UNIX file.

A sample job invoking HZSMSGEN is contained in member HZSMSGNJ of
SYS1.SAMPLIB.

HZSMSGEN can also generate the national language support (NLS) message
skeletons for message translation of check message text, if desired. See “Support
for translating messages to other languages” on page 232.

To use the message generation JCL to generate check messages into a CSECT, do
the following:
1. Get the HZSMSGNJ message generation JCL from SYS1.SAMPLIB. Also in

SYS1.SAMPLIB, you will find the following files referenced in the HZSMSGNJ
JCL:
v Member HZSSMSGT containing a sample message definition file.
v Member HZSSSYMD containing a sample local symbol.

message table

230 IBM Health Checker for z/OS User's Guide

|
|

|
|

2. Customize your copy of HZSMSGNJ as indicated in the prolog.
Note that specifying NLSCHECK(Y) does not specify that message skeletons be
generated! NLSCHECK(Y) specifies that you want HZSMSGEN to enforce the
message translation guidelines that will make it possible to generate message
skeletons (see “Support for translating messages to other languages” on page
232). If you want to generate message skeletons for message translation, you
must uncomment the HZSNPSKE and HZSLNSKE DD statements:
v Set HZSNLSKE to the name of the NLS skeleton output data set. This data

set should be blocked variable with a record length of 259. After
HZSMSGEN runs, this data set contains the prolog from HZSNPSKE and the
completed message skeletons for the check messages.

v Set HZSNPSKE to the name of the NLS skeleton prolog input data set. This
data set must contain the version record required for MVS message service
(MMS) translation and should contain a copyright statement. The following
shows an example HZSNPSKE data set:
.VENUNHBB7730 5650-A010601
.*
.***
.*
.* COPYRIGHT -
.* 5650-ZOS
.* THIS MESSAGE INSTALL FILE IS "RESTRICTED MATERIALS OF IBM"
.* (C) COPYRIGHT IBM CORP. 1988, 2005
.* LICENSED MATERIALS - PROPERTY OF IBM
.*
.* STATUS = HBB7730
.*
.*
.*
.* NOTE: VERSION RECORD (.V IN COLS. 1-2) MUST APPEAR FIRST IN THIS
.* FILE. FOR UPDATES, REFER TO APPLICATION DEVELOPMENT GUIDE:
.* ASSEMBLER LANGUAGE PROGRAMS.
.*
.* CHANGE-ACTIVITY:
.* $L0=HCHECK HBB7730,050731,PD00ZJ: HCR8
.*
.***

The version record must be the first non-comment record in each install
message file identified by the '.v' in columns 1 and 2 of the HZSNLSKE data
set. See Creating a version record in z/OS MVS Programming: Assembler
Services Guide for the complete format of the version record.

3. To run the message generation JCL, Issue the following command from TSO:
SUB ’your.dataset.name(HZSMSGNJ)’

4. HZSMSGEN writes a message generation report to either the data set or UNIX
System Services file specified in HZSEDSN, if specified, or to the SYSTSPRT
file. The following shows an HZSMSGEN report for both CSECT and NLS
skeleton generation:
IBM Health Checker For Z/OS HBB7730 NLSCHECK(Y) SOURCE(ERROR)

10 May 2006

RulesLevel 2 (HBB7730 and up) was selected for processing

System execution level: z/OS 01.08.00 HBB7730 TSO/E 3060

Source data set ’SYS1.SAMPLIB(HZSSMSGT)’

Setup entity data set: ’SYS1.SAMPLIB(HZSSSYMD)’

message table

Chapter 10. Creating the message input for your check 231

Assembler source MSGTBL: ’userid.your.dsname(csect)’

NLS skeleton prologue: ’input.nls.version.record’

NLS skeleton source:’output.nls(skeleton)’

HZSM0133 The assembler source for the message table was created

Return Code: 0

HZSM0133 The NLS message skeleton source was created

Return Code: 0

Support for translating messages to other languages
In many installations, the text that appears in WTOs may need to be translated to
other languages using MVS Message Service (MMS). You can use the HZSMSGEN
exec to create the MMS source file, which is required input when translating
message to other languages. For information about using MMS for message
translation, see Translating messages in z/OS MVS Programming: Assembler Services
Guide. This section also includes details on how the system uses the NLS skeletons.

Guidelines for coding translatable exception message text
lines

If you want to generate skeletons for message translations for your check exception
WTO messages, it will impact the way you code the message text for your
messages in the message table. For example, if you want to generate NLS skeletons
for your messages, you must break up message text in the message table into lines
of 71 characters or less. The line length is calculated based on the total length of
the message text, and the maximum length that each insert is defined. When you
use HZSMSGEN, you can specify NLSCHECK(Y) to specify that the system
enforce the NLS length guideline. HZSMSGEN enforces these restrictions when
messages are created.

To make sure that you can generate your exception messages successfully, and that
messages will translate successfully at runtime, use the following guidelines to
help you calculate the length of each message line to make sure that each line is 71
characters or less:
v On the first line of the message text, remember that the message identifier, or

number, can require up to 11 characters.
v You must use “<lines></lines>” on page 223 to define a new line before you

reach the WTO limit of 71 characters.
v Specify <mv class="variable_class" xreftext="maxlen(nnn)>" for all the variables in

your exception messages to define the maximum length possible for each
variable. This will make it much easier for you to calculate where you need to
insert a <lines></lines> tag to break up a message text to avoid exceeding the
71 character limit. If you do not specify maxlen, you must allow for the
maximum space allowed for the type of variable when calculating where you
want to break your line with <lines></lines>. See Table 21 on page 220 for
specifics on variable lengths.

v For a predefined system symbol, which is resolved at check run time, you must
allow for the maximum space allowed for the element when calculating the
number of characters it will take up. See Table 25 on page 227.

message table

232 IBM Health Checker for z/OS User's Guide

v Both system symbols and variables can be longer than 71 characters themselves.
This is OK, as long as the lengthy item is followed by a new line indicator
(<lines></lines> tags together) or is the very last thing in the message text.

When you specify NLSCHECK(Y) and run the HZSMSGEN exec with he
HZSNPSKE and HZSNLSKE DD statements uncommented, your message
skeletons are generated in the output data set specified on the HZSNLSKE DD
statement.
v Set variable HZSNPSKE to the name of a sequential data set or a member of a

PDS that contains the NLS prologue. The product version record is required by
MMS and must be included in NLS prologue to produce a compilable NLS
skeleton.

v Set variable HZSNLSKE to the name of a sequential data set or a member of a
PDS to be used as output. It will contain the NLS message skeleton when
NLSCHECK(Y) is specified and message generation completes with a return
code of 0. This data set must have a variable record length of 259.

//HZSMSGEN JOB
//*
// SET SYSPROC=SYS1.SBLSCLI0(HZSMSGEN)
// SET HZSMDSN=SYS1.SAMPLIB(HZSSMSGT)
// SET HZSADSN=&SYSUID..TEMP.ASM;
// SET HZSSDSN=SYS1.SAMPLIB(HZSSSYMD)
// SET HZSNPSKE=&SYSUID..DUMMY.NLS.PROLOGUE;
// SET HZSNLSKE=&SYSUID..TEMP.SKEL;
//*
//HZSMSG EXEC PGM=IKJEFT01,REGION=32M,
// PARM=’%HZSMSGEN NLSCHECK(N) SOURCE(ERROR)’
//SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=FB)
//SYSPROC DD DISP=SHR,DSN=&SYSPROC;
//SYSTSIN DD DUMMY
//HZSMDSN DD DISP=SHR,DSN=&HZSMDSN;
//HZSSDSN DD DISP=SHR,DSN=&HZSSDSN;
//HZSADSN DD DSN=&HZSADSN;,DISP=(NEW,KEEP),
// SPACE=(TRK,(10,10)),UNIT=SYSDA,DCB=(LRECL=80,BLKSIZE=0,RECFM=FB)
//HZSNPSKE DD DSN=&HZSNPSKE;,DISP=SHR
//HZSNLSKE DD DSN=&HZSNLSKE;,DISP=(NEW,KEEP),
//* SPACE=(TRK,(10,10)),UNIT=SYSDA,DCB=(LRECL=259,BLKSIZE=0,RECFM=VB)
/*

When you use the HZSMSGEN exec to generate skeletons for the following
messages:
CSVH0970E New extents were detected in LNKLST set(s).
CSVH0980E Some LNKLST sets include data set(s) allocated
with secondary space defined.

You will get the following skeletons generated:
CSVH0970E New extents were detected in LNKLST set(s).
CSVH0980E 01001 Some LNKLST sets include data set(s) allocated with
CSVH0980E 01002 secondary space defined.

You can customize the timestamp, date, or day generated by timestamp symbols or
variables in your messages, by customizing the format for the symbols in the
system configuration SYS1.PARMLIB CNL members. See CNLcccxx (Time and date
format for translated messages) in z/OS MVS Initialization and Tuning Reference for
additional information.

For predefined system symbols &hzsgmttime; and &hzslocaltime; the format used
in the skeletons is as follows:
&DATE;=DATEMDY4. &TIME;=TIMEHMSCD6

message table

Chapter 10. Creating the message input for your check 233

Parmlib members CNLENU00 and CNLJPN00 now include symbol
TIMEHMSCD6.

Because the length of class=gmltime and localtime variables might vary (for
example, if you specify field size, <mv class="gmltime" xreftext=" fieldsize(11)"),
the format used in the skeletons will also vary by length as follows. Note that
using other lengths than those shown produces results that will not match a
date/time NLS skeleton.
Fieldsize Formatted date/time NLS skeleton
26 mm/dd/yyyy.hh.mm.ss.tttttt &DATE=DATEMDY4. &TIME=TIMEHMSCD6.
25 mm/dd/yyyy.hh.mm.ss.ttttt &DATE=DATEMDY4. &TIME=TIMEHMSCD5.
24 mm/dd/yyyy.hh.mm.ss.tttt &DATE=DATEMDY4. &TIME=TIMEHMSCD4.
23 mm/dd/yyyy.hh mm.ss.ttt &DATE=DATEMDY4. &TIME=TIMEHMSCD3.
22 mm/dd/yyyy.hh.mm.ss.tt &DATE=DATEMDY4. &TIME=TIMEHMSCD2.
21 mm/dd/yyyy.hh.mm.ss.t &DATE=DATEMDY4. &TIME=TIMEHMSCD1.
19 mm/dd/yyyy.hh.mm.ss &DATE=DATEMDY4. &TIME=TIMEHMSC.
16 mm/dd/yyyy.hh.mm &DATE=DATEMDY4. &TIME=TIMEHMC.
13 mm/dd/yyyy.hh &DATE=DATEMDY4. &hh.
10 mm/dd/yyyy &DATE=DATEMDY4.

message table

234 IBM Health Checker for z/OS User's Guide

Chapter 11. IBM Health Checker for z/OS System REXX
Functions

IBM Health Checker for z/OS includes the following System REXX functions:
v “HZSLSTRT function” on page 260 - The REXX check exec invokes HZSLSTRT

to notify IBM Health Checker for z/OS it is running. This call initializes multiple
variables defined in the HZSPQE macro.

v “HZSLFMSG function” on page 236 - The REXX check invokes HZSLFMSG to
issue messages.

v “HZSLSTOP function” on page 257 - The REXX check invokes HZSLSTOP to
notify IBM Health Checker for z/OS of check completion. This request will save
the user work area, HZS_PQE_ChkWork.

v “HZSLPDRD function” on page 250 - The REXX persistent data read function
for the check. This is the interface to the assembler HZSPREAD macro.

v “HZSLPDWR function” on page 254 - The REXX persistent data write function
for the check. This is the interface to the assembler HZSPWRIT macro.

© Copyright IBM Corp. 2006, 2015 235

HZSLFMSG function
Purpose: REXX write messages for the check. This is the interface to the assembler
HZSFMSG macro. See “HZSFMSG macro — Issue a formatted check message” on
page 313.

Invocation: CALL HZSLFMSG

Input variables
The following REXX variables are input to HZSLFMSG:

Table 27. HZSLFMSG input variables

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls
a REXX check. Your REXX check must not modify HZS_HANDLE. The
HZS_HANDLE is used to synchronize the check and IBM Health Checker for
z/OS, because they do not run in the same address space. If the HZSLFMSG
function is used within a REXX procedure, make sure you used for example the
EXPOSE procedure option to make HZS_HANDLE accessible to the procedure
code.

HZSLFMSG_REQUEST= { 'CHECKMSG' | 'DIRECTMSG' | 'HZSMSG' | 'STOP' | 'DOM'}

v CHECKMSG indicates that the message text is provided in the message table
identified by the MSGTBL parameter when the check was added to IBM
Health Checker for z/OS.

v DIRECTMSG indicates that the messages for this check are issued directly
from the check routine - this check does not have a message table associated
with it. The message text for this message is provided in the
HZSLFMSG_REQUEST='DIRECTMSG' input variables.

v HZSMSG indicates that the message text is provided by IBM Health Checker
for z/OS.

v STOP indicates that the system is to stop calling this check. The message text
is provided by IBM Health Checker for z/OS.

v DOM indicates that all the check exception WTOs from previous iterations of
this check be DOMed. HZSLFMSG_REQUEST=DOM for a check added as
DOM(CHECK) gives you control over when exception messages WTOs for a
check are DOMed. For information on using this function, see “Controlling
check exception message WTOs and their automation consequences” on page
126.

HZSLFMSG_REQUEST='DOM' is only allowed:

– From within a check routine

– Before any check exception messages have been sent in the current check
iteration

– For checks added with parameter DOM(CHECK).

There are no HZSLFMSG_REQUEST=DOM input variables.

Input variables for HZSLFMSG_REQUEST='CHECKMSG'
HZSLFMSG_REQUEST='CHECKMSG' indicates that the message text is provided
in the message table identified by the MSGTBL parameter when the check was
added to IBM Health Checker for z/OS.

The following REXX variables are required input when
HZSLFMSG_REQUEST='CHECKMSG' is specified:

HZSLFMSG function

236 IBM Health Checker for z/OS User's Guide

Table 28. HZSLFMSG_REQUEST='CHECKMSG' input variables

Variable name Description

HZSLFMSG_
MESSAGENUMBER

The message number for the message being issued. This is the value specified in
"XREFTEXT=MessageNumber" within the <msgnum> tag of the message source used to
create the message table identified by the MSGTBL parameter when the check was
added. Must be in the range between 1 and 999999999.

HZSLFMSG_INSERT REXX stem variable identifying the character variable message inserts.

HZSLFMSG_INSERT.0 The number of inserts or variables provided. This value must match the number of
inserts defined in the message and must be in the range between 0 and 20.

HZSLFMSG_INSERT.x The message insert text. The text provided in the insert should be compatible with the
class attribute of the associated message variable in the message table. A class attribute
of hex, decimal or timestamp in the message table will treat the insert data as a
hexadecimal string.

In the following example, variable HZSLFMSG_INSERT.1 expects to receive hexadecimal
data:

v Variable 1 in the message table has a class attribute of hex: <mv class="hex">variable
1</mv>

v The REXX check might use the following HZSLFMSG input variables:

HZSLFMSG_INSERT.1 = ’01234567’X /* A hex character string */
HZSLFMSG_INSERT.1 = x2c(020B140E) /* Text that is converted to hexadecimal */

Note that decimal text also converts hex values to decimal text. For example, lets say
that variable in the message table has a class attribute of:

<mv class=“decimal">variable 1</mv>

The REXX check use the following HZSLFMSG input variable:

HZSLFMSG_INSERT.1 = ’0A’X -> 10 /* The decimal value 10 is displayed */

In general, the REXX values you use will be text and usually do not require additional
translation.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 237

Table 28. HZSLFMSG_REQUEST='CHECKMSG' input variables (continued)

Variable name Description

HZSLFMSG_SEVERITY HZSLFMSG_SEVERITY={SYSTEM | LOW | MED | HI | NONE} specifies the severity
for the check, for checks that are set up to specify check severity dynamically.

HZSLFMSG_SEVERITY is only allowed for:

v Checks added with parameter ALLOWDYNSEV(YES) to allow the check to specify
check severity dynamically

v Check exception messages (not for information or report messages)

Note that the check is responsible to clear (with a DROP statement) or reset this variable
between calls to HZSLFMSG, to avoid having a consecutive HZSLFMSG call pick up the
severity specified previously.

v SYSTEM, which is the default, indicates that check exceptions be issued with the
severity defined for the check when the check was added or updated.

v LOW indicates that this check exception message is sent as a low severity message

v MED indicates that this check exception message is sent as a medium severity
message.

v HI indicates that the check exception message is sent as a high severity message.

v NONE indicates that the check has no severity.

The severity specified on HZSLFMSG_SEVERITY overrides the default severity defined
for the check when it was added.

The check writer can use specific criteria and check parameters to specify when to use
the different severities. See “Writing a check with dynamic severity levels” on page 124.
See also HZSPRMxx parameters SEVERITY and WTOTYPE in “Syntax and parameters
for HZSPRMxx and MODIFY hzsproc” on page 69.

Input variables for HZSLFMSG_REQUEST='DIRECTMSG'
HZSLFMSG_REQUEST='DIRECTMSG' indicates that the message text is provided
in the DIRECTMSG input variables, rather than in a message table. See “Issuing
messages for your check - message table checks versus DIRECTMSG checks” on
page 102. Each of these input variables can contain up to 65535 characters of data,
except for HZSLFMSG_DIRECTMSG_ID, which can contain up to 10 characters.

Note that the optional variables are named with a dot, to allow easy REXX DROP
of variable content between HZSLFMSG calls. For example, variables such as
HZSLFMSG_DIRECTMSG.EXPL and HZSLFMGS_DIRECTMSG.AUTOMATION
contain a dot rather than an underscore character. This allows you to use the
following statement to clear all the optional variables at one time:
DROP HZSLFMSG_DIRECTMSG.

Using symbols in DIRECTMSG message texts: You can use the same pre-defined
symbols for commonly used phrases in your DIRECTMSG message text as you can
in a message table. See “Using pre-defined system symbols” on page 227 for a list
of symbols.

Note that using a plain ampersand character (&) is not recommended outside of
the name of a supported predefined symbol. Use the symbol & instead. If you
use a plain ampersand in your DIRECTMSG text, HZSLFMSG issues warning,
RC=4 RSN=41A, but will still issue the DIRECTMSG message.

Required HZSLFMSG_REQUEST='DIRECTMSG' variables: The following
REXX variables are required input when HZSLFMSG_REQUEST='DIRECTMSG' is
specified:

HZSLFMSG function

238 IBM Health Checker for z/OS User's Guide

|

Table 29. HZSLFMSG_REQUEST='DIRECTMSG' required input variables

Variable name Description

HZSLFMSG_REASON=
{'CHECKEXCEPTION' | 'CHECKINFO' |
'CHECKREPORT'}

Specifies the type of message you are issuing with DIRECTMSG:

CHECKEXCEPTION specifies that you want to issue an exception message to notify the
installation that action is required because a check routine found an exception to a
setting. The message text, intended for the operator, is issued in a WTO. The message
text and full explanation are issued to the message buffer, mainly for the system
programmer.

REASON='CHECKEXEPTION' requires the following variables:

v HZSLFMSG_DIRECTMSG_ID

v HZSLFMSG_DIRECTMSG_TEXT

You can also specify the following optional variables on REASON='CHECKEXEPTION':

v HZSLFMSG_DIRECTMSG.EXPL

v HZSLFMSG_DIRECTMSG.SYSACT

v HZSLFMSG_DIRECTMSG.ORESP

v HZSLFMSG_DIRECTMSG.SPRESP

v HZSLFMSG_DIRECTMSG.PROBD

v HZSLFMSG_DIRECTMSG.SOURCE

v HZSLFMSG_DIRECTMSG.REFDOC

v HZSLFMSG_DIRECTMSG.AUTOMATION

v HZSLFMSG_SEVERITY={SYSTEM | LOW | MED | HI | NONE}

CHECKINFO specifies that you want to issue a general non-exception informational
message, such as a message about the completion of the check without exceptions or the
first line of a report. The message number and text are issued to the message buffer.

REASON='CHECKINFO' requires the following variables:

v HZSLFMSG_DIRECTMSG_ID

v HZSLFMSG_DIRECTMSG_TEXT

There are no optional variables for use with CHECKINFO.

CHECKREPORT specifies that you want to issue a report message. A report message
consists of a single line of report data issued to the message buffer without a message
number (except in debug mode). The report message type gives you the most control
over the formatted output. A single report line can be up to 65535 characters of
formatted output.

REASON='CHECKREPORT' requires the HZSLFMSG_DIRECTMSG_TEXT variable.
There are no optional variables for use with CHECKREPORT.

HZSLFMSG_DIRECTMSG_ID The message number for the text message being issued.

You can specify HZSLFMSG_DIRECTMSG_ID on a REASON=CHECKEXCEPTION or a
REASON=CHECKINFO request.

The recommended message identifier format is ccccHmmmms:

v cccc is the component identifier, such as ISG for global resource serialization.

v the required H represents IBM Health Checker for z/OS.

v mmmm is the message number. For example, in message identifier ISGH101E, 101 is
the message number.

v s is the severity code for the message: E for exception messages and I for information
messages

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 239

|
|

|
|
|
|
|
|
|

Table 29. HZSLFMSG_REQUEST='DIRECTMSG' required input variables (continued)

Variable name Description

HZSLFMSG_DIRECTMSG_TEXT Use this variable to specify the text issued in a WTO or to the message buffer when the
check issues a message using DIRECTMSG.

You can specify HZSLFMSG_DIRECTMSG_TEXT on a REASON=CHECKEXCEPTION,
CHECKINFO or CHECKREPORT request.

For information on how message text is formatted in the message buffer, see “How
messages are formatted in the message buffer” on page 225.

Optional HZSLFMSG_REQUEST='DIRECTMSG' variables: The following REXX
variables are optional and can only be specified on the
HZSLFMSG_REASON='CHECKEXCEPTION' request If you do not specify one of
these variables, the system does not display this field in the message buffer.

Table 30. HZSLFMSG_REQUEST='DIRECTMSG' optional input variables for
HZSLFMSG_REASON='CHECKEXCEPTION'

Variable name Description

HZSLFMSG_DIRECTMSG.EXPL Explanation for the exception message describing the exception condition.

HZSLFMSG_DIRECTMSG.SYSACT Describes what the system or component that owns the check does as a result of the
condition that caused the exception message to be issued.

HZSLFMSG_DIRECTMSG.ORESP Describes the actions an operator should take in response to the exception message.

HZSLFMSG_DIRECTMSG.SPRESP Describes the actions, if any, the system programmer should take to isolate and correct
an error.

HZSLFMSG_DIRECTMSG.PROBD Describes problem determination information.

HZSLFMSG_DIRECTMSG.SOURCE The name of the component, subsystem, or product issuing the exception message. For
IBM checks, this is used to direct service calls.

HZSLFMSG_DIRECTMSG.REFDOC Specifies reference information for the exception found by the check.

HZSLFMSG_DIRECTMSG.
AUTOMATION

Describes automation concerns related to the check results.

HZSLFMSG_SEVERITY={SYSTEM
| LOW | MED | HI | NONE}

Specifies the severity for the check, for checks that are set up to specify check severity
dynamically. HZSLFMSG_SEVERITY is only allowed for:

v Checks added with parameter ALLOWDYNSEV(YES) to allow the check to specify
check severity dynamically

v Check exception messages (not for information or report messages)

Note that the check is responsible to clear (with a DROP statement) or reset this variable
between calls to HZSLFMSG, to avoid having a consecutive HZSLFMSG call pick up the
severity specified previously.

v SYSTEM indicates that check exceptions be issued with the severity defined for the
check when the check was added or updated.

v LOW indicates that this check exception message is sent as a low severity message

v MED indicates that this check exception message is sent as a medium severity
message.

v HI indicates that the check exception message is sent as a high severity message.

v NONE indicates that the check has no severity.

For complete information on how the system handles check exception messages based
on the severity you specify, see SEVERITY and WTOTYPE in “Syntax and parameters
for HZSPRMxx and MODIFY hzsproc” on page 69.

HZSLFMSG function

240 IBM Health Checker for z/OS User's Guide

Input variables for HZSLFMSG_REQUEST='HZSMSG'
HZSLFMSG_REQUEST=HZSMSG' indicates that the message text is provided by
IBM Health Checker for z/OS.

The following REXX variables are required input when
HZSLFMSG_REQUEST='HZSMSG' is specified:

Table 31. HZSLFMSG_REQUEST='HZSMSG' input variables

Variable name Description

HZSLFMSG_REASON='ERROR' Indicates that the message is being issued because of an error situation. The
system is to issue HZS1002E. This message is also recorded in the check's
message buffer. The state of the check is changed to error. The check remains
active.

If you specify HZSFMSG_REASON='ERROR", you must also specify the following REXX input variables to
identify the error:

HZSLFMSG_DIAG Is set to the data to be displayed as hex data in the message output to provide
internal component diagnostic information for the error, which is included
when check detail is displayed.

The value in HZSLFMSG_DIAG must be either:

v An 8 character value that will be displayed as hexadecimal value.

v A 16 character hexadecimal value, that may contain valid hexadecimal
characters: 0-9 and A-F only.

Example: Lets say you want the following IBM Health Checker for z/OS
message:

HZS1002E CHECK(HZJVTT78,HZXVTT78_A_PARMLIB_EXEC):
AN ERROR OCCURRED, DIAG: 00000000_01234567

You would define the following input variables:

HZSLFMSG_DIAG = ’0000000001234567’ /* hexadecimal characters */
HZSLFMSG_DIAG = ’0000000001234567’X /* hexadecimal data */

HZSLFMSG_REASON='PARS1201' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1201E, parm IS REQUIRED BUT WAS NOT SPECIFIED.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1201':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert for HZS1201E.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 16 character name of the parameter in
error.

HZSLFMSG_REASON='PARS1202' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1202E, parm WAS SPECIFIED BUT IS NOT ALLOWED.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1202':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 16 character name of the parameter in
error.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 241

Table 31. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON='PARS1203' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1203E, PARAMETER parm VALUE value IS NOT VALID.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1203' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON='PARS1204' Indicates that the message is being issued for a parameter parsing error,
issuing message HZS1204E, UNEXPECTED END OF PARAMETER STRING.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1204':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 0 - Indicates that there are no inserts.

HZSLFMSG_REASON='PARS1205' Indicates that the message is being issued for a parameter parsing error,
issuing message HZS1205E, A PARAMETER WAS EXPECTED BUT string
WAS FOUND INSTEAD.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1205':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1 = value - 1 to 17 character string value in error.

HZSLFMSG_REASON='PARS1206' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1206E, A DELIMITER WAS EXPECTED BUT string WAS
FOUND INSTEAD.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1206':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1 = value - 1 to 17 character string value in error.

HZSLFMSG_REASON='PARS1207' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1207E, PARAMETER parm HAS TOO MANY VALUES, n.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1207' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = n - Number of values that were specified. The
maximum value that can be specified is 999999999.

HZSLFMSG function

242 IBM Health Checker for z/OS User's Guide

Table 31. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON='PARS1208' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1208E, PARAMETER parm HAS TOO FEW VALUES, In.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1208' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = n - Number of values that were specified. The
maximum value that can be specified is 999999999.

HZSLFMSG_REASON='PARS1209' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1209E, PARAMETER parm IS NOT RECOGNIZED.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1209':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 17 character name of the parameter in
error.

HZSLFMSG_REASON='PARS1210' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1210E, PARAMETER parm IS MISSING ITS VALUE.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1210':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 16 character name of the parameter in
error.

HZSLFMSG_REASON='PARS1211' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1211E, PARAMETER parm VALUE value IS TOO LARGE.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1211' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 243

Table 31. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON='PARS1212' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1212E, PARAMETER parm VALUE value IS TOO SMALL.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1212' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON='PARS1213' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1213E, PARAMETER parm VALUE value IS TOO LONG.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1213' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON='PARS1214' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1214E, PARAMETER parm VALUE value IS TOO SHORT.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1214' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON='PARS1215' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1215E, PARAMETER parm VALUE value IS NOT
DECIMAL.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1215' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG function

244 IBM Health Checker for z/OS User's Guide

Table 31. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON='PARS1216' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1216E, PARAMETER parm VALUE value IS NOT
HEXADECIMAL.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1216' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = parm - 1 to 16 character name of the parameter in
error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON='PARS1217' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1217E, PARAMETERS WERE SPECIFIED BUT NONE
ARE NOT ALLOWED.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1217':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert.

v HZSLFMSG_INSERT.0 =0 - Indicates that there are no inserts.

HZSLFMSG_REASON='PARS1218' indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1218E, PARAMETER NUMBER n WAS NOT
PROCESSED.

The following REXX variables are required input when
HZSLFMSG_REASON='PARS1218' is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert .

v HZSLFMSG_INSERT.0 = 1 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.1 = n - Number of the parameter that was not
processed, the maxamum value that can be specified is 999999999.

HZSLFMSG_REASON='PARS1219' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1219E, MIXING POSITIONAL AND KEYWORD
FORMATS IS NOT ALLOWED.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1219':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert.

v HZSLFMSG_INSERT.0 =0 - Indicates that there are no inserts.

HZSLFMSG_REASON='PARS1220' Indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1220E, parm1 IS NOT ALLOWED WITH parm2.

The following REXX variables are required input for
HZSLFMSG_REASON='PARS1220':

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the
message insert.

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts

v HZSLFMSG_INSERT.1 = parm1 - 1-24 character name of the parameter

v HZSLFMSG_INSERT.2 = parm2 - 1-24 character name of the parameter

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 245

Input variables for HZSLFMSG_REQUEST='STOP'
HZSLFMSG_REQUEST='STOP' indicates that the system is to stop calling this
check. The message text is provided by IBM Health Checker for z/OS.

The following REXX variables are required input when
HZSLFMSG_REQUEST='STOP' is specified:

Table 32. HZSLFMSG_REQUEST='STOP' input variables

Variable name Description

HZSLFMSG_REASON='BADPARM' Indicates that the parameters are not valid. The system issues message
HZS1001E. This message is also recorded in the check's message buffer. The
state of the check is changed to parameter error. The check remains disabled
until the PARMS are changed, presumably to address the error.

HZSLFMSG_REASON='ERROR' Indicates that the message is being issued because of error. The system is to
issue HZS1002E. The state of the check is changed to error. The check is
disabled. The check will not be called again until the check is refreshed.

The following REXX variable is required input for
HZSLFMSG_REASON='ERROR'':

v HZSLFMSG_DIAG - is set to the data to be displayed as hex data in the
message output to provide diagnostic information for the failure that is
being reported. There is no pre-defined format for this data; it may well
be internal component diagnostic data.

The value in HZSLFMSG_DIAG must be either:

– An 8 character value that will be displayed as hexadecimal value.

– A 16 character hexadecimal value, that may contain valid hexadecimal
characters: 0-9 and A-F only.

HZSLFMSG_REASON='ENVNA' Indicates that the check is not applicable in the current system environment.
Message HZS1003E is written as hardcopy-only and is also written to the
check's message buffer. The state of the check is changed to not applicable.
The check is disabled. The check will not be called again until the reason for
the condition is resolved and the check is refreshed (or its parameter is
changed).

HZSLFMSG function

246 IBM Health Checker for z/OS User's Guide

HZSLFMSG Output variables
The following REXX variable are returned by HZSLFMSG:

Table 33. HZSLFMSG output variables

Variable name Description

HZSLFMSG_RSN
The reason code explaining a return code of 4 or more. The reason codes
are as follows:

0000041A
Meaning: Unrecognized pre-defined symbol, or plain & in a
DIRECTMSG message.

Action: Use only supported symbols, or use pre-defined symbol &
amp ; for a plain & instead.

00000858
Meaning: HZS_HANDLE was not valid.

Action: Make sure that the HZSLFMSG function is only called from
a REXX exec called by IBM Health Checker for z/OS. The check
exec must not modify output variable HZS_HANDLE. If this
function is used within a procedure, make sure you used the
EXPOSE option to make HZS_HANDLE accessible to the procedure
code

00000890
Meaning: HZSLFMSG_REQUEST is not valid.

Action: Make sure HZSLFMSG_REQUEST is set to a valid value.
The valid values are 'CHECKMSG', 'HZSMSG' and 'STOP'.

00000891
Meaning: HZSLFMSG_DIAG is not valid.

Action: Make sure the HZSLFMSG_DIAG is set to a valid value:

v An 8 character value that will be displayed as a hexadecimal
value.

v A 16 character hexadecimal value, that may contain valid
hexadecimal characters: 0-9 and A-F only.

00000892
Meaning: HZSLFMSG_REASON is not valid .

Action: Make sure the HZSLFMSG_REASON is set to a valid value:

v When HZSLFMSG_REQUEST='HZSMSG', the valid values of
HZSLFMSG_REASON are: { 'ERROR' | 'PARS1201' | 'PARS1202' |
'PARS1203' | 'PARS1204' | 'PARS1205' | 'PARS1206' | 'PARS1207'
| 'PARS1208' | 'PARS1209' | 'PARS1210' | 'PARS1211' |
'PARS1212' | 'PARS1213' | 'PARS1214' | 'PARS1215' | 'PARS1216'
| 'PARS1217' | 'PARS1218' | 'PARS1219' }

v When HZSLFMSG_REQUEST='STOP', the valid values of
HZSLFMSG_REASON are: { 'BADPARM' | 'ERROR' | 'ENVNA' }

00000893
Meaning: HZSLFMSG_MESSAGENUMBER is not valid.

Action: Make sure the HZSLFMSG_MESSAGENUMBER is set to a
valid decimal number that identifies the desired message to be
written.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 247

|
|
|

|
|

Table 33. HZSLFMSG output variables (continued)

Variable name Description

00000894
Meaning: HZSLFMSG_INSERT 0 is not valid .

Action: Make sure the stem variable HZSLFMSG_INSERT 0 is set to
the number of message inserts defined for the message that is to be
written. The minimum number of message inserts that can be
defined for a message is zero (0). The maximum number of inserts
that can be defined for a message is twenty (20).

00000895
Meaning: HZSLFMSG_INSERT.xx is not valid .

Action: Make sure HZSLFMSG_INSERT.xx is valid. Each insert is
limited to 256 characters. Numeric inserts for PARS12yy messages
must be a decimal number between 0 and 999999999. The first 2
characters of HZSFMSG_RSN identifies which insert is not valid.

0000089F
Meaning: HZSLFMSG service issued a 290 ABEND .

Action: Look at the data returned in HZSLFMSG_USERRSN and
HZSLFMSG_ABENDRESULT to determine the problem:

HZSLFMSG_USERRSN
290 ABEND reason code (see “ABEND Codes” on page 338).

HZSLFMSG_ABENDRESULT
ABEND result string returned by HZSFMSG service.

000008A0
Meaning: HZSLFMSG_DIRECTMSG_ID is not valid.

Action: Make sure the required HZSLFMSG_DIRECTMSG_ID REXX
variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
NUM.

000008A1
Meaning: HZSLFMSG_DIRECTMSG_TEXT is not valid.

Action: Make sure the required HZSLFMSG_DIRECTMSG_TEXT
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
TEXT.

000008A2
Meaning: HZSLFMSG_DIRECTMSG.EXPLN is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.EXPLN
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
EXPL.

000008A3
Meaning: HZSLFMSG_DIRECTMSG.SYSACT is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.SYSACT
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
SYSACT.

HZSLFMSG function

248 IBM Health Checker for z/OS User's Guide

Table 33. HZSLFMSG output variables (continued)

Variable name Description

000008A4
Meaning: HZSLFMSG_DIRECTMSG.ORESP is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.ORESP
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
ORESP.

000008A5
Meaning: HZSLFMSG_DIRECTMSG.SPRESP is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.SPRESP
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
SPRESP.

000008A6
Meaning: HZSLFMSG_DIRECTMSG.PROBD is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.PROBD
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
PROBD.

000008A7
Meaning: HZSLFMSG_DIRECTMSG.SOURCE is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.SOURCE
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
SOURCE.

000008A8
Meaning: HZSLFMSG_DIRECTMSG.REFDOC is not valid.

Action: Make sure the optional HZSLFMSG_DIRECTMSG.REFDOC
REXX variable is set to a valid text string which does not exceed the
maximum length as documented for the HZSFMSG macro keyword
REFDOC.

000008A9
Meaning: HZSLFMSG_DIRECTMSG.AUTOMATION is not valid.

Action: Make sure the optional
HZSLFMSG_DIRECTMSG.AUTOMATION REXX variable is set to a
valid text string which does not exceed the maximum length as
documented for the HZSFMSG macro keyword AUTOMATION.

xxxx08xx
Meaning: HzsfmsgRc_EnvParm was returned by the HZSFMSG
macro.

Action: Refer to the action under “Return and Reason Codes” on
page 342 the HZSFMSG macro.

00000C16:
Meaning: The HZSLFMSG function has been invoked by a
non-SYSREXX caller.

Action: Ensure that HZSLFMSG is only called from a REXX health
check routine.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 249

Table 33. HZSLFMSG output variables (continued)

Variable name Description

xxxx0Cxx
Meaning: HzsfmsgRc_EnvError was returned by the HZSFMSG
macro.

Action: Refer to the action under “Return and Reason Codes” on
page 342 the HZSFMSG macro.

00001003
Meaning: A service used by HZSLFMSG failed.

Action: Retry the service, if HZSLFMSG continues to fail, obtain the
value of the REXX variable HZSLFMSG_SYSTEMDIAG, and contact
IBM service.

HZSLFMSG_SYSTEMDIAG Diagnostic data returned by the failed service.

HZSLFMSG return codes
The return code for the HZSLFMSG function. The possible return codes are as
follows:

0 Meaning: Service was invoked while the exec was running under System
REXX.

Action: RESULT will be set to the return code of the service.

4 Meaning: The HZSFMSG request specified an unrecognized pre-defined
symbol.

Action: Refer to action under the individual reason code returned in
HZSLFMSG_RSN.

8 Meaning: The HZSFMSG request specified incorrect parameters.

Action: Refer to action under the individual reason code returned in
HZSLFMSG_RSN.

12 (X'C')
Meaning: HZSLFMSG was not invoked from a System REXX environment.

Action: Make sure the HZSLFMSG service is only called from an exec that has
gotten control as a REXX check called by the IBM Health Checker for z/OS.

16 (X'10')
Meaning: HZSLFMSG did not completed because of an component error.

Action: Refer to action under the individual reason code returned in
HZSLFMSG_RSN.

20 (X'14')
Meaning: HZSLFMSG encountered problems when storing expected REXX
output variables.

Action: Refer to action under the individual reason code returned in
HZSLFMSG_RSN.

HZSLPDRD function
Purpose: REXX persistent data read function for the check. This is the interface to
the assembler HZSPREAD macro. See “HZSPREAD macro — Read Check
Persistent Data” on page 346.

HZSLFMSG function

250 IBM Health Checker for z/OS User's Guide

||
|

|
|

|

|
|
|

Invocation: CALL HZSLPDRD. HZSLPDRD uses REXX variables to accept input
and to return output instead of through a "Call Pgm(Parm)" syntax. Both input and
output variables for HZSLPDRD closely resemble the parameters of assembler
service HZSPREAD.

Input variables
The following REXX variables are input to HZSLPDRD:

Table 34. HZSLPDRD input variables

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls
a REXX check. Your REXX check must not modify HZS_HANDLE. The
HZS_HANDLE is used to synchronize the check and IBM Health Checker for
z/OS, because they do not run in the same address space. If the HZSLPDRD
function is used within a REXX procedure, make sure you used for example the
EXPOSE procedure option to make HZS_HANDLE accessible to the procedure
code.

Required HZSLPDRD variables
The following REXX variables are required input when HZSLPDRD is specified:

Table 35. HZSLPDRD input variables

Variable name Description

HZSLPDRD_CHECKOWNER="checkowner"
HZSLPDRD_CHECKNAME="checkname"

Identify the fully qualified name of the check whose persistent data is to be read.

HZSLPDRD_IPL={“CURRENT” | “PRIOR”} Indicates the read data for the current IPL or data from the previous IPL for the
identified check in the HZSPDATA set.

HZSLPDRD_INSTANCE={“FIRST” |
“MOSTRECENT”}

Indicates to read from the first data group or to read from the most recently stored
data group in the HZSPDATA dataset for the identified check. Relative to the
identified IPL (see HZSLPDRD_IPL).

Optional HZSLPDRD variables
The following REXX variables are optional and can only be specified on the
HZSLPDRD request. If you do not specify one of these variables, the system will
use the default.

Table 36. HZSLPDRD optional input variables

Variable name Description

HZSLPDRD_STARTBYTE={“FIRST_BYTE” |
“offset” }

v Indicates where to start copying the existing data in the HZSPDATA dataset. The
offset is zero based.

v FIRST_BYTE is a special value for offset zero.

v See the HYZPREAD STARTBYTE parameter description for additional
considerations for STARTBYTE.

v The offset value has to be less than 4G.

HZSLPDRD_DATALEN={“MAX” |
“datalen”}

v Indicates how much data should be returned, starting at the offset specified by
HZSLPDRD_STARTBYTE.

v See the HZSPREAD DATALEN parameter description for additional
considerations for DATALEN.

v MAX is a special value for "return all available data" (starting at the STARTBYTE
in effect) up to a maximum of 64K bytes.

v An explicitly specified DATALEN value has to be within 1 and 64k.

HZSLPDRD function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 251

|
|
|
|

|

|

||

||

||
|
|
|
|
|
|
|

|
|

||

||

|
|
|

||
|

|
|
|
|
|
|

|
|
|
|

||

||

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

HZSLPDRD Output variables
The following REXX variables are returned by HZSLPDRD:

Table 37. HZSLPDRD output variables

Variable name Description

HZSLPDRD_RSN The reason code explaining a return code of 8 or more. The reason codes are as
follows:

nnnn0881
Meaning: HZSPREAD reported an error.

Action: See the reason code for macro service HZSPREAD as indicated by
the first half (“nnnn”) of HZSLPDRD_RSN.

xxxx0882
Meaning: HZSLPDRD_IPL was not valid.

Action: Make sure that variable HZSLPDRD_IPL has been set to a valid
value.

xxxx0883
Meaning: HZSLPDRD_INSTANCE was not valid.

Action: Make sure that variable HZSLPDRD_INSTANCE has been set to a
valid value.

xxxx0884
Meaning: HZSLPDRD_STARTBYTE was not valid.

Action: Make sure that variable HZSLPDRD_STARTBYTE has been set to a
valid value, or let it default to zero.

xxxx0885
Meaning: HZSLPDRD_DATALEN was not valid.

Action: Make sure that variable HZSLPDRD_DATALEN has been set to a
valid value, or let it default to its maximum.

xxxx0886
Meaning: HZSLPDRD_CHECKOWNER was not valid.

Action: Make sure that variable HZSLPDRD_CHECKOWNER has been set
to a valid check owner name (only alphanumeric and national characters
and the underscore ('_') character are allowed).

xxxx0887
Meaning: HZSLPDRD_CHECKNAME was not valid.

Action: Make sure that variable HZSLPDRD_CHECKNAME has been set
to a valid check name (only alphanumeric and national characters and the
underscore ('_') character are allowed).

xxxx0C16
Meaning: The HZSLPDRD function has been invoked by a non-SYSREXX
caller.

Action: Ensure that HZSLPDRD is only called from a REXX health check
routine.

xxxx0C17
Meaning: The HZSLPDRD function has been invoked without an
EvalBlock.

Action: Ensure that HZSLPDRD is invoked as a regular function in a REXX
health check routine.

HZSLPDRD function

252 IBM Health Checker for z/OS User's Guide

|

|

||

||

||
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

Table 37. HZSLPDRD output variables (continued)

Variable name Description

nnnn0C81
Meaning: HZSPREAD reported an error.

Action: See the reason code for macro service HZSPREAD as indicated by
the first half (“nnnn”) of HZSLPDRD_RSN.

xxxxrryy with rr = “10” or higher
Meaning: An unexpected error occurred while executing function
HZSLPDRD.

Action: Retry the service. If HZSLPDRD continues to fail, obtain the value
of the REXX variables HZSLPDRD_RSN and HZSLPDRD_SYSTEMDIAG
and contact IBM service.

HZSLPDRD_BUFFER The system will create this variable and set its value to the requested data as
found in the persistent data set, up to the length specified via
HZSLPDRD_DATALEN. If no data is found, the variable will be of length zero.

HZSLPDRD_BYTESAVAIL The system will create this variable and set its value to the total number of
persistent data bytes available for the data record. The returned
HZSLPDRD_BUFFER variable might be of a shorter length, depending on what
HZSLPDRD_STARTBYTE and HZSLPDRD_DATALEN values were used.

HZSLPDRD_RETIPLTOD The system will create this variable and set its value to the IPL TOD of the
persistent data. This timestamp is in STCK format (for example, compare
BLSUXTOD to format this as human readable timestamp).

HZSLPDRD_RETPTIME The system will create this variable and set its value to the time the persistent
data record as identified on input was written. This timestamp is in STCK
format (for example, compare BLSUXTOD to format this as human readable
timestamp).

HZSLPDRD_SYSTEMDIAG Additional diagnostic information for non-zero return codes. An ABEND 290
will be issued for additional error cases, with the following hex reason codes:

xxxx0858
Meaning: HZS_HANDLE was not valid.

Action: Make sure that the HZSLPDRD function is only called from a
REXX exec called by IBM Health Checker for z/OS. The check must not
modify variable HZS_HANDLE. If this function is used within a
procedure, make sure you use the EXPOSE option to make HZS_HANDLE
accessible to the procedure code.

xxxxrryy with rr = “10” or higher
Meaning: An unexpected error occurred while executing function
HZSLPDRD.

Action: Retry the service. If HZSLPDRD continues to fail contact IBM
service.

HZSLPDRD return codes
The return code for the HZSLPDRD function can be caught via the standard REXX
return code variable RESULT, or by calling HZSLPDRD as a function, or via the
output variable HZSLPDRD_RC. For any non-zero return code, except two, the
system will also attempt to issue HZSFMSG REQUEST=STOP REASON=ERROR
DIAG=diag on behalf of the health check, besides setting the return and reason
code. The format of the diag value will be: 'A290mmmmrrrrrrrr' with
mmmm=0002, to distinguish HZSLPDRD from HZSLPDWR (which has
mmmm=0001) and rrrrrrrr=reason code (see HZSLPDRD_RSN). The two
exceptions are the typically harmless no match/no data cases bubbling up from

HZSLPDRD function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 253

|

||

|
|
|

|
|

|
|
|

|
|
|

||
|
|

||
|
|
|

||
|
|

||
|
|
|

||
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

service HZSPREAD. REXX function HZSLPDRD exposes those via
HZSLPDRD_RC=8, HZSLPDRD_RSN=nnnn0881 with nnnn one of 082D (see
HzspreadRsn_NoMatch) or 0830 (see HzspreadRsn_DataDoesNotExist).

The possible return codes are as follows:

0 - Success
Meaning: Function HZSLPDRD executed successfully.

Action: None.

8 - User Error
Meaning: An error occurred while executing function HZSLPDRD.

Action: Refer to the action under the individual reason code returned in
HZSLPDRD_RSN.

12 - Environment Error
Meaning: An error occurred while executing function HZSLPDRD.

Action: Refer to the action under the individual reason code returned in
HZSLPDRD_RSN.

16 or higher - Component error
Meaning: An unexpected error occurred while executing function HZSLPDRD.

Action: Retry the service. If HZSLPDRD continues to fail, obtain the value of
the REXX variables HZSLPDRD_RSN and HZSLPDRD_SYSTEMDIAG and
contact IBM service.

HZSLPDWR function
Purpose: REXX persistent data write function for the check. This is the interface to
the assembler HZSPWRIT macro. See “HZSPWRIT macro — Write Check
Persistent Data” on page 356.

Invocation: CALL HZSLPDWR. HZSLPDWR uses REXX variables to accept input
and to return output instead of through a "Call Pgm(Parm)" syntax. Both input and
output variables for HZSLPDWR closely resemble the parameters of assembler
service HZSPWRIT.

Input variables
The following REXX variables are input to HZSLPDWR:

Table 38. HZSLPDWR input variables.

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls
a REXX check. Your REXX check must not modify HZS_HANDLE. The
HZS_HANDLE is used to synchronize the check and IBM Health Checker for
z/OS, because they do not run in the same address space. If the HZSLPDWR
function is used within a REXX procedure, make sure you used for example the
EXPOSE procedure option to make HZS_HANDLE accessible to the procedure
code.

HZSLPDRD function

254 IBM Health Checker for z/OS User's Guide

|
|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|

|

||

||

||
|
|
|
|
|
|
|

Required HZSLPDWR variables
The following REXX variables are required input when HZSLPDWR is specified:

Table 39. HZSLPDWR input variables

Variable name Description

HZSLPDWR_BUFFER The full REXX variable content (as implied by the variable's REXX “length”) will be
written. The REXX variable can not be longer than 64K bytes.

HZSLPDWR output variables
The following REXX variable are returned by HZSLPDRD:

Table 40. HZSLPDRD output variables

Variable name Description

HZSLPDWR_RSN The reason code explaining a return code of 8 or more. The reason codes are as
follows:

xxxx0870
Meaning: HZSLPDWR_BUFFER was not valid.

Action: Make sure that variable HZSLPDWR_BUFFER has been set and its
length is between 1 and 64K.

nnnn0871
Meaning: HZSPWRIT reported an error

Action: See the reason code for macro service HZSPWRIT as indicated by
the first half (“nnnn”) of HZSLPDWR_RSN.

xxxx0C16
Meaning: The HZSLPDWR function has been invoked by a non-SYSREXX
caller.

Action: Ensure that HZSLPDWR is only called from a REXX health check
routine.

xxxx0C17
Meaning: The HZSLPDWR function has been invoked without an
EvalBlock.

Action: Ensure that HZSLPDWR is invoked as a regular function in a REXX
health check routine.

nnnn0C71
Meaning: HZSPWRIT reported an error

Action: See the reason code for macro service HZSPWRIT as indicated by
the first half (“nnnn”) of HZSLPDWR_RSN.

xxxxrryy with rr = “10” or higher
Meaning: An unexpected error occurred while executing function
HZSLPDWR.

Action: Retry the service. If HZSLPDWR continues to fail, obtain the value
of the REXX variables HZSLPDWR_RSN and HZSLPDWR_SYSTEMDIAG
and contact IBM service.

HZSLPDWR function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 255

|
|

||

||

||
|
|

|

|

||

||

||
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

Table 40. HZSLPDRD output variables (continued)

Variable name Description

HZSLPDWR_SYSTEMDIAG Additional diagnostic information for non-zero return codes. An ABEND 290
will be issued for additional error cases, with the following hex reason codes:

xxxx0858
Meaning: HZS_HANDLE was not valid.

Action: Make sure that the HZSLPDWR function is only called from a
REXX exec called by IBM Health Checker for z/OS. The check must not
modify variable HZS_HANDLE. If this function is used within a procedure,
make sure you use the EXPOSE option to make HZS_HANDLE accessible
to the procedure code.

xxxxrryy with rr = “10” or higher
Meaning: An unexpected error occurred while executing function
HZSLPDWR.

Action: Retry the service. If HZSLPDWR continues to fail contact IBM
service.

HZSLPDWR return codes
The return code for the HZSLPDWR function can be caught via the standard REXX
return code variable RESULT, or by calling HZSLPDWR as a function, or via the
output variable HZSLPDWR_RC. For any non-zero return code, the system will
also attempt to issue HZSFMSG REQUEST=STOP REASON=ERROR DIAG=diag
on behalf of the health check, besides setting the return and reason code. The
format of the diag value will be: 'A290mmmmrrrrrrrr' with mmmm=0001, to
distinguish HZSLPDWR from HZSLPDRD (which has mmmm=0002) and
rrrrrrrr=reason code (see HZSLPDWR_RSN).

The possible return codes are as follows:

0 - Success
Meaning: Function HZSLPDWR executed successfully.

Action: None.

8 - User Error
Meaning: An error occurred while executing function HZSLPDWR.

Action: Refer to the action under the individual reason code returned in
HZSLPDWR_RSN.

12 - Environment Error
Meaning: An error occurred while executing function HZSLPDWR.

Action: Refer to the action under the individual reason code returned in
HZSLPDWR_RSN.

16 or higher - Component error
Meaning: An unexpected error occurred while executing function HZSLPDWR.

Action: Retry the service. If HZSLPDWR continues to fail, obtain the value of
the REXX variables HZSLPDWR_RSN and HZSLPDWR_SYSTEMDIAG and
contact IBM service.

HZSLPDWR function

256 IBM Health Checker for z/OS User's Guide

|

||

||
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

HZSLSTOP function
Purpose: REXX function indicating that the check has finished running. This is the
interface to the assembler HZSCHECK REQUEST=OPCOMPLETE macro.

Invocation: CALL HZSLSTOP

Input variables
The following REXX variable is input to HZSLSTOP:

Table 41. HZSLSTOP input variable

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls
a REXX check. Your REXX check must not modify HZS_HANDLE. The
HZS_HANDLE is used to synchronize the check and IBM Health Checker for
z/OS, because they do not run in the same address space. If the HZSLSTOP
function is used within a REXX procedure, make sure you used for example the
EXPOSE procedure option to make HZS_HANDLE accessible to the procedure
code.

HZS_PQE_CHKWORK Current value of the PQE_CHKWORK area. Only a maximum of 2048 characters
HZS_PQE_CHKWORK will be saved and restored. HZS_PQE_CHCKWORK is
reset before the check is run for the following reasons:

v When the check is to run for the first time.

v When the check is REFRESHed.

v When the check becomes either INACTIVE or DISABLED for any reason
besides invalid parameters.

HZSLSTOP function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 257

Output variables
The following REXX variable are returned by HZSLSTOP:

Table 42. HZSLSTOP output variables

Variable name Description

HZSLSTOP_RSN The reason code explaining an RESULT value of 4 or more. The reason codes are
as follows:

00000401
Meaning: HZS_PQE_CHKWORK exceeded 2048 bytes. Only the first 2048
bytes of HZS_PQE_CHKWORK will be saved.

Action: Do not set HZS_PQE_CHKWORK to a character string longer the
2048 characters.

00000858
Meaning: HZS_HANDLE was not valid.

Action: Make sure that the HZSLSTOP service is only called from a REXX
exec called by IBM Health Checker for z/OS. The check must not modify
output variable HZS_HANDLE. If this function is used within a procedure,
make sure you used the EXPOSE option to make HZS_HANDLE accessible
to the procedure code

00000C01
Meaning: IBM Health Checker for z/OS is not active.

Action: Reissue the function when IBM Health Checker for z/OS is active.

00000C03
Meaning: The check issued the HZSLSTOP function for a check that was
not started.

Action: Ensure that an HZSLSTART function is issued before a HZSLFMSG
or HZSLSTOP function.

00000C05
Meaning: The system does not support System REXX checks.

Action: Run the check on a system at the z/OS R9 level or above.

00000C16
Meaning: The HZSLSTOP function has been invoked by a non-SYSREXX
caller.

Action: Ensure that HZSLSTOP is only called from a REXX health check
routine.

00001003
Meaning: A service used by HZSLSTOP failed.

Action: Retry the service. If HZSLSTOP continues to fail, obtain the value of
the REXX variable HZSLSTOP_SYSTEMDIAG, and contact IBM service.

HZSLSTOP_SYSTEMDIAG Diagnostic data returned by the failed service that HZSLSTRT uses.

HZSLSTOP return codes
The return code for the HZSLSTOP function. The possible return codes are as
follows:

0 Meaning: HZSLSTOP was invoked while the exec was running under System
REXX.

Action: RESULT will be set to the return code of the service.

4 Meaning: HZSLSTOP completed with a warning.

HZSLSTOP function

258 IBM Health Checker for z/OS User's Guide

Action: Refer to the action under the individual reason code returned in
HZSLSTOP_RSN

8 Meaning: The HZSLSTOP function did not complete because of an error.

Action: Refer to action under the individual reason code returned in
HZSLSTOP_RSN

12 (X'C')
Meaning: HZSLSTOP was not invoked from a System REXX environment.

Action: Make sure the HZSLSTOP service is only called from an exec that has
gotten control as a REXX check called by the IBM Health Checker for z/OS.

16 (X'10')
Meaning: HZSLSTOP did not completed because of an component error.

Action: Refer to action under the individual reason code returned in
HZSLSTOP_RSN.

20 (X'14')
Meaning: HZSLSTOP encountered problems when storing expected REXX
output variables.

Action: Refer to action under the individual reason code returned in
HZSLSTOP_RSN.

HZSLSTOP function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 259

HZSLSTRT function
Purpose: REXX function indicating that the check has started running. This is the
interface to the assembler HZSCHECK REQUEST=OPSTART macro.

Invocation: CALL HZSLSTRT

Input variables
The following REXX variable is input to HZSLSTRT:

Table 43. HZSLSTRT input variable

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls
a REXX check. Your REXX check must not modify HZS_HANDLE. The
HZS_HANDLE is used to synchronize the check and IBM Health Checker for
z/OS, because they do not run in the same address space. If the HZSLSTRT
function is used within a REXX procedure, make sure you used for example the
EXPOSE procedure option to make HZS_HANDLE accessible to the procedure
code.

HZSLSTRT function

260 IBM Health Checker for z/OS User's Guide

Output variables
The following REXX variable are returned by HZSLSTRT:

Table 44. HZSLSTRT output variables

Variable name Description

HZSLSTRT_RSN The reason code explaining a RESULT value of 8 or more. The reason codes are
as follows:

00000858
Meaning: HZS_HANDLE was not valid.

Action: Make sure that the HZSLSTRT service is only called from a REXX
exec called by IBM Health Checker for z/OS. The check must not modify
output variable HZS_HANDLE. If this function is used within a procedure,
make sure you used the EXPOSE option to make HZS_HANDLE accessible
to the procedure code

xxxx08xx
Meaning: HZSCHECK REQUEST=OPSTART returned the
HzscheckRC_InvParm reason code equate symbol.

Action: Refer to the action under the individual reason code for the
HZSCHECK macro.Meaning: Action:

00000C16
Meaning: The HZSLSTRT function has been invoked by a non-SYSREXX
caller.

Action: Ensure that HZSLSTRT is only called from a REXX health check
routine.

xxxx0Cxx
Meaning: HZSCHECK REQUEST=OPSTART returned the
HzscheckRC_EnvError reason code equate symbol.

Action: Refer to the action under the individual reason code for the
HZSCHECK macro.

00001003
Meaning: A service used by HZSLSTRT failed.

Action: Retry the service. If HZSLSTRT continues to fail, obtain the value of
the REXX variable HZSLSTRT_SYSTEMDIAG, and contact IBM service.

HZSLSTRT_SYSTEMDIAG Diagnostic data returned by the failed service that HZSLSTRT uses.

HZS_PQE_ENTRY_CODE Contains the numeric identifier (entry code) assigned for the REXX check in the
check definition. The entry code is used when a REXX exec contains multiple
checks. The system sets this field on entry to the REXX check.

HZS_PQE_DOM_CHECK Indicates how the DOM(SYSTEM | CHECK) parameter was set when the check
was added to IBM Health Checker for z/OS for the current check:

1 The check was added with DOM(CHECK).

0 The check was added with or defaulted to DOM(SYSTEM).
For information on how DOM=CHECK works, see “Controlling check exception
message WTOs and their automation consequences” on page 126.

HZS_PQE_AllowDynSev Indicates how the ALLOWDYNSEV(YES | NO) parameter was set when the
check was added to IBM Health Checker for z/OS for the current check:

1 The check was added with ALLOWDYNSEV(YES).

0 The check was added with or defaulted to ALLOWDYNSEV(NO).
For information on how ALLOWDYNSEV(YES) works, see “Writing a check
with dynamic severity levels” on page 124.

HZSLSTRT function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 261

Table 44. HZSLSTRT output variables (continued)

Variable name Description

HZS_PQE_FUNCTION_CODE Contains the function code in text form for the REXX check. The REXX check
receives control in response to either the "RUN" or "INITRUN"function code.
The system sets this field on entry to the REXX check.

HZS_PQE_VERSION The version of the HZSPQE that is used to represent this check.

HZS_PQE_CHECK_COUNT Number of times this check has been called since the check was initialized.

HZS_PQE_CUM_CHECK_COUNT The cumulative check iteration number since initialized. This differs from
HZS_PQE_CHECK_COUNT in that it is not reset when a refresh occurs. It is
updated just before calling the check function, but the check itself might not
have confirmed that it got control.

HZS_PQE_ENVIRONMENT
_XCFLOCAL

Indicates whether the system is in XCF local mode:

1 Boolean TRUE - System is XCF local mode.

0 Boolean FALSE - System is not XCF local mode.

HZS_PQE_ENVIRONMENT
_XCFMONOPLEX

Indicates whether the system is in XCF monoplex mode:

1 Boolean TRUE - System is XCF monoplex mode.

0 Boolean FALSE - System is not XCF monoplex l mode.

HZS_PQE_CHECKOWNER The product, component, or element that owns the check.

HZS_PQE_CHECKNAME Check name.

HZS_PQE_GLOBAL _CHECK Indicates whether the check is defined as global:

1 Boolean TRUE - check is defined as global.

0 Boolean FALSE - check is not defined as global.

HZS_PQE_DEBUG Indicates whether the check is running in debug mode:

1 Boolean TRUE - check is running in debug mode.

0 Boolean FALSE - check is running in debug mode,

HZS_PQE_LOOKATPARMS Indicates whether the check should look at the parameter values, either because
check parameter values have changed since the last time this check ran, or
because it is the first time the check has run after it was in a DISABLED or
INACTIVATED state.:

1 Boolean TRUE - The check should look at the parameter values.

0 Boolean FALSE - The check does not need to look at the parameter values.

HZS_PQE_VERBOSE Indicates whether the check is running in verbose mode:

1 Boolean TRUE - The check is running in verbose mod.

0 Boolean FALSE - The check is not is running in verbose mod.

HZS_PQE_REASON Current value of the check reason text.

HZS_PQE_PARMAREA Current check parameter(s). If LENGTH(HZS_PQE_PARMAREA)=0, then no
parameters are currently defined for this check.

HZS_PQE_CHKWORK Current value of the PQE_CHKWORK area saved by the HZSLSTOP service the
last time the check ran. Only a maximum of 2048 characters
HZS_PQE_CHKWORK will be saved and restored. HZS_PQE_CHCKWORK is
reset before the check is run for the following reasons:

v When the check is to run for the first time.

v When the check is REFRESHed.

v When the check becomes either INACTIVE or DISABLED for any reason
besides invalid parameters.

HZSLSTRT function

262 IBM Health Checker for z/OS User's Guide

HZSLSTRT return codes
The return code for the HZSLSTRT function. The possible return codes are as
follows:

0 Meaning: HZSLSTRT was invoked while the exec was running under System
REXX.

Action: RESULT will be set to the return code of the service.

8 Meaning: The HZSLSTRT function did not complete because of an error.

Action: Refer to action under the individual reason code returned in
HZSLSTRT_RSN

12 (X'C')
Meaning: HZSLSTRT was not invoked from a System REXX environment.

Action: Make sure the HZSLSTRT service is only called from an exec that has
gotten control as a REXX check called by the IBM Health Checker for z/OS.

16 (X'10')
Meaning: HZSLSTRT did not completed because of an component error.

Action: Refer to action under the individual reason code returned in
HZSLSTRT_RSN

20 (X'14')
Meaning: HZSLSTRT encountered problems when storing expected REXX
output variables, such as the HZS_PQE_ variables.

Action: Refer to action under the individual reason code returned in
HZSLSTRT_RSN

HZSLSTRT function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 263

HZSLSTRT function

264 IBM Health Checker for z/OS User's Guide

Chapter 12. IBM Health Checker for z/OS HZS macros
v Use “HZSADDCK macro — HZS add a check” on page 266 to define a check in

a HZSADDCHECK exit routine
v Use “HZSCHECK macro — HZS Check command request” on page 285 to

manage a check and in registration routines, to refresh a check
v Use “HZSCPARS macro — HZS Check Parameter Parsing” on page 300 to parse

check parameters
v Use “HZSFMSG macro — Issue a formatted check message” on page 313 to

issue messages in check routines
v Use “HZSPREAD macro — Read Check Persistent Data” on page 346 to read

data that has been preserved in IBM Health Checker for z/OS Persistent data
set.

v Use “HZSPWRIT macro — Write Check Persistent Data” on page 356 to write
persistent data in the IBM Health Checker for z/OS Persistent data set.

v Use “HZSQUERY macro — HZS Query” on page 364 to obtain information
about checks that are currently registered with IBM Health Checker For z/OS.

© Copyright IBM Corp. 2006, 2015 265

HZSADDCK macro — HZS add a check

Description
The HZSADDCK macro is used by HZSADDCHECK dynamic exit routines or by
remote, non-REXX check routines to add a check to IBM Health Checker for z/OS.
Adding a check includes defining default values, the parameters and routines
required to run the check. The exit routine runs in the IBM Health Checker for
z/OS address space.

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: Problem state and PSW key 8-15. When problem state and

key 8-15 and not APF authorized, the caller may not use
PETOKENAUTH=YES. When problem state and key 8-15
and not APF authorized, or when SECCHECK=ALL is
specified, the caller must be authorized for control access to
any of the following:

v XFACILIT class resource HZS.sysname.checkowner.ADD

v XFACILIT class resource
HZS.sysname.checkowner.checkname.ADD

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Control parameters must be below 2G.

Programming Requirements
v Unless specifying REMOTE=YES and REXX=NO, this macro must be invoked

from an exit routine associated with the HZSADDCHECK dynamic exit.
Otherwise, it must be invoked from the remote check routine task.

v The check routine and the message table must be in an APF-authorized library.
v The caller should include the HZSZCONS macro to get equate symbols for the

return and reason codes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information
Before issuing the HZSADDCK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

HZSADDCK macro

266 IBM Health Checker for z/OS User's Guide

|
|

|
|
|
|
|
|

Before issuing the HZSADDCK macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� HZSADDCK � CHECKOWNER = checkowner , CHECKNAME = checkname �

�
, REMOTE = NO

parameters-1
, REMOTE = YES parameters-2

, DATE = date �

� , REASON = reason , REASONLEN = reasonlen �

�
, PARMS = NO_PARMS , PARMSLEN = 0
, PARMS = parms , PARMSLEN = parmslen

, LOCAL
, GLOBAL

, ACTIVE
, INACTIVE

�

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 267

� , SEVERITY = LOW
, SEVERITY = MED
, SEVERITY = HI

, ALLOWDYNSEV = NO

, ALLOWDYNSEV = YES

, DOM = SYSTEM

, DOM = CHECK
�

�
, EIHOURS = 0 , EIMINUTES = 0

, INTERVAL = ONETIME
, EIHOURS = eihours , EIMINUTES = eiminutes

, INTERVAL = TIMER parameters-3

�

�
, VERBOSE = NO

, VERBOSE = YES , RETCODE = retcode , RSNCODE = rsncode
�

�
, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0
, PLISTVER = 1

, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

�� , CHECKROUTINE = checkroutine
, ENTRYCODE = entrycode

, EXITRTN = exitrtn �

� , MSGTBL = msgtbl
, USS = NO

, USS = YES
��

parameters-2

��
, SECCHECK = UNAUTH

, SECCHECK = ALL
�

�
, REXX = NO , USS = NO , PETOKENAUTH = NO

, HANDLE = handle , PETOKEN = petoken
, PETOKENAUTH = YES , USS = YES

, REXX = YES parameters-4

��

parameters-3

��
, HOURS = 0

, HOURS = hours

, MINUTES = 0

, MINUTES = minutes
�

�
, EINTERVAL = SYSTEM

, EINTERVAL = HALF
, EIHOURS = 0 , EIMINUTES = 0

, EINTERVAL = TIMER
, EIHOURS = eihours , EIMINUTES = eiminutes

��

HZSADDCK macro

268 IBM Health Checker for z/OS User's Guide

||||||||

parameters-4

�� , EXEC = exec
, ENTRYCODE = entrycode

, EXITRTN = exitrtn , MSGTBL = msgtbl �

�
, TIMELIMIT = NO_TIMELIMIT

, TIMELIMIT = timelimit
, REXXHLQ = rexxhlq �

�
, REXXTSO = YES , USS = NO

, USS = YES
, REXXIN = NO

, REXXTSO = NO
, REXXIN = YES

��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the HZSADDCK
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ACTIVE
An optional input parameter that indicates the check should run when it is
added to the system.

To code: Specify a value.

,ALLOWDYNSEV=NO
,ALLOWDYNSEV=YES

An optional parameter, which indicates if this check is allowed to use keyword
SEVERITY on an invocation of service HZSFMSG, to send check messages with
a dynamic severity. The default is ALLOWDYNSEV=NO.

,ALLOWDYNSEV=NO
indicates that the check is not allowed to specify a dynamic severity. This
is the default.

,ALLOWDYNSEV=YES
indicates that the check is allowed to specify a dynamic severity.

,CHECKNAME=checkname
A required input parameter that specifies the name of the check being added.
IBM recommends using the naming convention of a short component reference
followed by a descriptive title (e.g., GRS_MODE). Upper and lower case
alphabetic characters (a-z), numerics (0-9), national characters (@,$,#) and the
underscore ('_') are allowed. Lower case alphabetic characters are folded to
upper case and are treated as equivalent to their corresponding upper case
value.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

CHECKOWNER=checkowner
A required input parameter that specifies the owner of the check being added.
The check owner and check name identify the check. IBM recommends that
you use your company name followed by the short component name (i.e.,
IBMGRS) as the owner. Upper and lower case alphabetic characters (a-z),

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 269

numerics (0-9), national characters (@,$,#) and the underscore ('_') are allowed.
Lower case alphabetic characters are folded to upper case and are treated as
equivalent to their corresponding upper case value. Do not use as the
checkowner any of the following: QUERY, MESSAGES, ACTIVATE,
DEACTIVATE, UPDATE, RUN, REFRESH, DELETE, ADDNEW.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CHECKROUTINE=checkroutine
When REMOTE=NO is specified, a required input parameter that specifies the
module name of the check. The system gives control to the entry point of this
module to run the check. The check routine module must be in an
APF-authorized library. For a non-remote check, the system must be able to
locate the check routine within the joblib or steplib of the IBM Health Checker
for z/OS address space, the LPA, or the LNKLST, and the check routine's
AMODE is expected to be AMODE 31..

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,DATE=date
A required input parameter, date (its format is YYYYMMDD) that indicates
when the default values for the check were defined. When two HZSADDCK
requests are received with the same check owner and check name, the request
with the latest date will be honored. When the date provided on a matching
POLICY UPDATE or POLICY DELETE statement is older than this date, that
policy statement is not applied to this check.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,DOM=SYSTEM
,DOM=CHECK

An optional parameter that messages from previous check iterations via Delete
Operator Message (DOM) requests. The default is DOM=SYSTEM.

,DOM=SYSTEM
indicates that the system will, just before the start of a new check iteration,
execute the DOM requests for all check exception message WTOs from the
previous check iteration, if there are any. This is the default.

,DOM=CHECK
indicates that the check will use the HZSFMSG REQUEST=DOM service to
issue DOM requests for check exception WTOs from previous check
iterations. The system will take care of the DOM only in the following
cases:
v when a health check gets deactivated, disabled, deleted, or refreshed
v when Health Checker ends

,EIHOURS=eihours
,EIHOURS=0

When INTERVAL=ONETIME is specified, an optional input parameter that
specifies the number of hours in the exception interval. It must be in the range
0 through 999. If both EIHours and EIMinutes specify 0, no exception interval
is processed. The default is 0.

To code: Specify the RS-type address of a halfword field, or specify a literal
decimal value. eihours must be in the range 0 through 999.

,EIHOURS=eihours

HZSADDCK macro

270 IBM Health Checker for z/OS User's Guide

|
|

,EIHOURS=0
When EINTERVAL=TIMER and INTERVAL=TIMER are specified, an optional
input parameter that specifies the number of hours in the exception interval. It
must be in the range 0 through 999. The default is 0.

To code: Specify the RS-type address of a halfword field, or specify a literal
decimal value. eihours must be in the range 0 through 999.

,EIMINUTES=eiminutes
,EIMINUTES=0

When INTERVAL=ONETIME is specified, an optional input parameter that
specifies the number of minutes in the exception interval It must be in the
range 0 through 59. If both EIHours and EIMinutes specify 0, no exception
interval is processed. The default is 0.

To code: Specify the RS-type address of a halfword field, or specify a literal
decimal value. eiminutes must be in the range 0 through 59.

,EIMINUTES=eiminutes
,EIMINUTES=0

When EINTERVAL=TIMER and INTERVAL=TIMER are specified, an optional
input parameter that specifies the number of minutes in the exception interval
It must be in the range 0 through 59. The default is 0.

To code: Specify the RS-type address of a halfword field, or specify a literal
decimal value. eiminutes must be in the range 0 through 59.

,EINTERVAL=SYSTEM
,EINTERVAL=HALF
,EINTERVAL=TIMER

When INTERVAL=TIMER is specified, an optional parameter that specifies the
time exception interval for the next running of the check. If the previous
running of the check resulted in an exception, then this interval is to be used.
The default is EINTERVAL=SYSTEM.

,EINTERVAL=SYSTEM
indicates that the check should run according to system rules (namely,
according to the interval parameter).

,EINTERVAL=HALF
indicates that the check should run when one half of the interval according
to the interval parameter has expired. This value is rounded up to a whole
number of minutes.

,EINTERVAL=TIMER
indicates that a timer is used to reschedule the check. The number of hours
is combined with the number of minutes to determine how long after the
completion of the check routine's running the next running of the check
routine should occur. When both the hours and minutes values are zero,
the system treats this as if EINTERVAL=SYSTEM had been specified.

,ENTRYCODE=entrycode
When REMOTE=NO is specified, an optional input parameter that specifies a
unique check entry value when the same check routine will be accessed by
multiple checks. This value is passed to the check routine in the field
Pqe_Entry_Code.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ENTRYCODE=entrycode
When REXX=YES and REMOTE=YES are specified, an optional input

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 271

parameter that specifies a unique check entry value when the same check
routine will be accessed by multiple checks. This value is passed to the check
routine in the field Pqe_EntryCode.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,EXEC=exec
When REXX=YES and REMOTE=YES are specified, a required input parameter
that is the name of the REXX exec to be invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXITRTN=exitrtn
When REMOTE=NO is specified, a required input parameter that specifies the
name of the exit routine that invoked this HZSADDCK request.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXITRTN=exitrtn
When REXX=YES and REMOTE=YES are specified, a required input parameter
that specifies the name of the exit routine that invoked this HZSADDCK
request.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,GLOBAL
An optional input parameter that indicates the check should run on only one
system in a sysplex. The system on which the check runs is designated as the
global system for that check. Serialization for the global check is accomplished
via exclusive ownership of SCOPE=SYSTEMS ENQ with QNAME SYSZHZS
and RNAME checkowner.checkname.

To code: Specify a value.

,HANDLE=handle
When REXX=NO and REMOTE=YES are specified, a required output
parameter that is to hold a handle (token) that identifies the check. This handle
is to be used on the HANDLE parameter of the HZSCHECK and HZSFMSG
macros.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,HOURS=hours
,HOURS=0

When INTERVAL=TIMER is specified, an optional input parameter that
specifies the number of hours. It must be in the range 0 through 999. The
default is 0.

To code: Specify the RS-type address of a halfword field, or specify a literal
decimal value. hours must be in the range 0 through 999.

,INACTIVE
An optional input parameter that Indicates the check should not run until the
state is changed to active.

To code: Specify a value.

,INTERVAL=ONETIME

HZSADDCK macro

272 IBM Health Checker for z/OS User's Guide

,INTERVAL=TIMER
A required parameter that specifies the time interval for the next running of
the check.

,INTERVAL=ONETIME
indicates that the check should run once. It will not be rescheduled.

,INTERVAL=TIMER
indicates that a timer is used to reschedule the check. The number of hours
is combined with the number of minutes to determine how long after the
completion of the check routine's running the next running of the check
routine should occur. When both the hours and minutes values are zero,
the system treats this as if INTERVAL=ONETIME had been specified.

,LOCAL
An optional input parameter that indicates the check should run on this
system.

To code: Specify a value.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MINUTES=minutes

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 273

,MINUTES=0
When INTERVAL=TIMER is specified, an optional input parameter that
specifies the number of minutes. It must be in the range 0 through 59. The
default is 0.

To code: Specify the RS-type address of a halfword field, or specify a literal
decimal value. minutes must be in the range 0 through 59.

,MSGTBL=msgtbl
When REMOTE=NO is specified, a required input parameter that specifies the
module name of the message table that will be used when generating messages
for the check.
v The message table must be built using the HZSMSGEN REXX exec.
v The message table module must be in an APF-authorized library.
v The system must be able to locate the message table within the joblib or

steplib of the IBM Health Checker for z/OS address space, the LPA, or the
LNKLST.

A special text value of '*NONE ' indicates that you are adding a check that has
no associated message table and instead the check will be using service
HZSFMSG REQUEST=DIRECTMSG or REXX function HZSLFMSG with
HZSLFMSG_REQUEST='DIRECTMSG' to issue messages directly from the
check routine.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MSGTBL=msgtbl
When REXX=YES and REMOTE=YES are specified, a required input parameter
that specifies the module name of the message table that will be used when
generating messages for the check.
v The message table must be built using the HZSMSGEN REXX exec.
v The message table module must be in an APF-authorized library.
v The system must be able to locate the message table within the joblib or

steplib of the IBM Health Checker for z/OS address space, the LPA, or the
LNKLST.

A special text value of '*NONE ' indicates that you are adding a check that has
no associated message table and instead the check will be using service
HZSFMSG REQUEST=DIRECTMSG or REXX function HZSLFMSG with
HZSLFMSG_REQUEST='DIRECTMSG' to issue messages directly from the
check routine.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PARMS=parms
,PARMS=NO_PARMS

An optional input parameter that specifies the default parameters for the
check. The length of the parameter string is specified by the PARMSLEN
parameter. Alphanumeric or national characters separated by commas are the
standard form of expressing check parameters. IBM recommends that each
parameter be of the form "keyword(value)" and that multiple parameters be
separated from each other by a comma. An example of a parameter string
following that protocol is "MAXLEN(8),MINLEN(1)". Although the parameters
are not checked when the check is added, the check routine itself will likely do
so. The default is NO_PARMS.

HZSADDCK macro

274 IBM Health Checker for z/OS User's Guide

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,PARMSLEN=parmslen
,PARMSLEN=0

When PARMS=parms is specified, a required input parameter that contains the
length of the default parameters for each check. The length must be in the
range 1 through 256. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value. parmslen must be in the range
0 through 256.

,PETOKEN=petoken
When REXX=NO and REMOTE=YES are specified, a required input parameter
that is a pause element token obtained by the caller via the IEAVAPE service
using an authlvl of IEA_UNAUTHORIZED (even if the caller is authorized).
The caller, waiting to be told what to do by IBM Health Checker for z/OS,
should pause using that pause element token. IBM Health Checker for z/OS
will "release" using that pause element token to wake up the check processing.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PETOKENAUTH=NO
,PETOKENAUTH=YES

An optional keyword input that indicates whether the PEToken was allocated
as authorized. The default is PETOKENAUTH=NO.
v ,PETOKENAUTH=NO

– The PEToken was allocated as unauthorized.
v ,PETOKENAUTH=YES

– The PEToken was allocated as authorized.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 275

|
|
|
|

|

|

|

|

– EXEC
– HANDLE
– PETOKEN
– REXXHLQ
– TIMELIMIT

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, or 1

,REASON=reason
A required input parameter that indicates what the check routine validates.
The text is limited to 126 characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,REASONLEN=reasonlen
A required input parameter that contains the length of the Reason text. It must
be in the range 1 through 126.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,REMOTE=NO
,REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is
REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,REXX=NO
,REXX=YES

When REMOTE=YES is specified, an optional parameter, which identifies if
this is a REXX check The default is REXX=NO.

,REXX=NO
indicates that this is not a REXX check.

,REXX=YES
indicates that this is a REXX check

,REXXHLQ=rexxhlq
When REXX=YES and REMOTE=YES are specified, a required input parameter
that specifies the high level qualifier for data sets(s) to be made available to the
Rexx exec. The output data set (such as the one to which the 'say' function

HZSADDCK macro

276 IBM Health Checker for z/OS User's Guide

would send its output) is made available when the check is in debug mode
and not otherwise. When there is no entry code, or the entry code is 0, the
output data set name for a high level qualifier of HLQ will be
HLQ.execname.REXXOUT. When there is a non-0 entry code, the output data
set name will be HLQ.execname.REXXOUT.En where n is the decimal value of
the entry code. If the entry code exceeds 9999999, the value modulo 10000000
will be used. The system will not make any attempt to ensure that the data
sets are unique beyond this naming convention. If not already allocated, the
data set will be allocated by the system. If the data set is to be created, the IBM
Health Checker for z/OS address space identity must have the authority to
create the data set. If the system does attempt to create or use the data set and
is not successful, the check routine will not run successfully. The input data set
name will be formed using a similar protocol, changing only REXXOUT to
REXXIN. The use of the REXXIN data set is controlled by the REXXIN
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,REXXIN=NO
,REXXIN=YES

When REXXTSO=NO, REXX=YES and REMOTE=YES are specified, an optional
parameter that indicates if there is a REXX input data set. The default is
REXXIN=NO.

,REXXIN=NO
indicates that there is no REXX input data set.

,REXXIN=YES
indicates that the REXX input data set does exist and is to be made
available to the exec. Its naming convention is described under the
REXXHLQ parameter. If the data set does not exist, the exec will not
successfully be given control.

,REXXTSO=YES
,REXXTSO=NO

When REXX=YES and REMOTE=YES are specified, an optional parameter that
indicates if this REXX exec needs access to TSO functions. The default is
REXXTSO=YES.

,REXXTSO=YES
indicates that the REXX exec needs TSO functions. The exec will execute in
a TSO host command environment.

,REXXTSO=NO
indicates that the REXX exec does not need TSO functions. The exec will
execute in a MVS host command environment.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SECCHECK=UNAUTH
,SECCHECK=ALL

When REMOTE=YES is specified, an optional parameter that indicates whether
to do RACF security checks. The default is SECCHECK=UNAUTH.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 277

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases for remote checks. If
RACF does not grant authority, the request is rejected.

,SEVERITY=LOW
,SEVERITY=MED
,SEVERITY=HI

A required parameter that indicates the severity assigned to the check.

,SEVERITY=LOW
indicates that this is a low-severity check. When a low-severity check
detects an exception, an informational WTO is issued.

,SEVERITY=MED
indicates that this is a medium-severity check. When a medium-severity
check detects an exception, an eventual action WTO is issued.

,SEVERITY=HI
indicates that this is a high-severity check. When a high-severity check
detects an exception, a critical eventual action WTO is issued.

,TIMELIMIT=timelimit
,TIMELIMIT=NO_TIMELIMIT

When REXX=YES and REMOTE=YES are specified, an optional input
parameter that is the number of seconds to which the execution of an iteration
of the exec is to be limited. A value of 0 is treated the same as no time limit.
TIMELIMIT accepts a value between 0 and 21474536. The default is
NO_TIMELIMIT.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,USS=NO
,USS=YES

When REMOTE=NO is specified, an optional parameter that indicates whether
the check uses z/OS UNIX System Services. This information is used when
z/OS UNIX itself is shut down, at which time IBM Health Checker for z/OS
will wait for the completion of the running of any non-remote check that has
indicated it uses z/OS UNIX before allowing the z/OS UNIX shutdown to
complete. Also, when z/OS UNIX services are not available, checks that have
indicated they use those services are not run. Thus, indicating "YES" if the
check actually does not use z/OS UNIX system services could delay z/OS
UNIX shutdown and would result in the check's not being run when those
services are not available. The default is USS=NO.

,USS=NO
indicates the check does not use z/OS UNIX.

,USS=YES
indicates the check does use z/OS UNIX.

,USS=NO
,USS=YES

When REXX=NO and REMOTE=YES are specified, an optional parameter that
indicates whether the check uses z/OS UNIX System Services. When z/OS
UNIX services are not available, checks that have indicated they use those

HZSADDCK macro

278 IBM Health Checker for z/OS User's Guide

services are not run. Thus, indicating "YES" if the check actually does not use
z/OS UNIX would result in the check's not being run when those services are
not available. The default is USS=NO.

,USS=NO
indicates the check does not use z/OS UNIX.

,USS=YES
indicates the check does use z/OS UNIX.

,USS=NO
,USS=YES

When REXXTSO=YES, REXX=YES and REMOTE=YES are specified, an
optional parameter that indicates whether the check uses z/OS UNIX System
Services. When z/OS UNIX are not available, checks that have indicated they
use those services are not run. Thus, indicating "YES" if the check actually does
not use z/OS UNIX would result in the check's not being run when those
services are not available. The default is USS=NO.

,USS=NO
indicates the check does not use z/OS UNIX.

,USS=YES
indicates the check does use z/OS UNIX.

,VERBOSE=NO
,VERBOSE=YES

An optional parameter that identifies the initial verbose mode for the check.
The default is VERBOSE=NO.

,VERBOSE=NO
indicates that verbose mode is not to be in effect.

,VERBOSE=YES
indicates that verbose mode is to be in effect.

ABEND Codes
058 The IBM Health Checker for z/OS address space terminated while this call

was in process.

290 The HZSADDCK service failed.

The format for reason codes is xxxxyyyy where yyyy is the reason code. The
reason codes are in hexadecimal.

Reason Code (Hex)
Explanation

xxxx4007
HZSADDCK could not load the specified check routine.

xxxx4008
HZSADDCK could not load the specified message table.

xxxx4009
HZSADDCK found a message table containing functions that are not
supported on this release or the message table was not created by
HZSMSGEN.

xxxx400A
HZSADDCK found an AMODE 64 check routine. AMODE 64 is not
supported for local check routines.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 279

|
|
|

Return and Reason Codes
When the HZSADDCK macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 45. Return and Reason Codes for the HZSADDCK Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzsaddckRc_OK

Meaning: The check was added to IBM Health Checker for z/OS.

Action: None required

4 — Equate Symbol: HzsaddckRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: HzsaddckRsn_CheckReplaced

Meaning: The check replaced an active check that had an earlier
date.

Action: None required.

4 xxxx0402 Equate Symbol: HzsaddckRsn_CheckInactive

Meaning: The check was added but will not run until its state is
changed to active.

Action: None required

4 xxxx0414 Equate Symbol: HzsaddckRsn_CheckIdentical

Meaning: Check was not activated because a check with the
specified name is already active.

Action: None required

8 — Equate Symbol: HzsaddckRc_InvParm

Meaning: HZSADDCK request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HzsaddckRsn_CheckOld

Meaning: The check was not added because a check with the
same name is already being added. That other check has a more
recent date than the date provided for this request.

Action: Avoid adding the same check twice, or make sure that the
single version of the check that you want to run has the most
current date.

HZSADDCK macro

280 IBM Health Checker for z/OS User's Guide

Table 45. Return and Reason Codes for the HZSADDCK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0804 Equate Symbol: HzsaddckRsn_BadCheckRoutine

Meaning: This reason code is not part of the programming
interface.

Action: None.

8 xxxx0805 Equate Symbol: HzsaddckRsn_BadMessageTable

Meaning: This reason code is not part of the programming
interface.

Action: None.

8 xxxx0808 Equate Symbol: HzsaddckRsn_BadENV

Meaning: HZSADDCK for a REMOTE=NO, or a REXX=YES
check must be called only from an exit routine associated with the
HZSADDCHECK exit.

Action: Issue HZSADDCK only from a supported environment.

8 xxxx0809 Equate Symbol: HzsaddckRsn_BadCheckName

Meaning: The check name contained invalid characters.

Action: Specify a valid check name.

8 xxxx080A Equate Symbol: HzsaddckRsn_BadOwnerName

Meaning: The check owner contained invalid characters.

Action: Specify a valid check owner.

8 xxxx080B Equate Symbol: HzsaddckRsn_BadDate

Meaning: The date was not in the format YYYYMMDD or is after
today's date.

Action: Specify a valid date.

8 xxxx080C Equate Symbol: HzsaddckRsn_BadReasonLen

Meaning: The REASONLEN value is either 0 or exceeds the
maximum of 126.

Action: Specify a valid value for the REASONLEN parameter.

8 xxxx080D Equate Symbol: HzsaddckRsn_BadExitRoutine

Meaning: The exit routine name was all zeroes or all blanks.

Action: Specify a valid exit routine.

8 xxxx080E Equate Symbol: HzsaddckRsn_BadTime

Meaning: The hours value exceeded 999 or the minutes value
exceeded 60.

Action: Specify valid hours and minutes values.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 281

|
|

Table 45. Return and Reason Codes for the HZSADDCK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx080F Equate Symbol: HzsaddckRsn_BadCheckRoutine64

Meaning: This reason code is not part of the programming
interface. See message HZS0406I or ABEND 290 RSN=xxxx400A
instead.

Action: None.

8 xxxx0818 Equate Symbol: HzsaddckRsn_BadParmlist

Meaning: Error accessing parameter list.

Action: Make sure that the provided parameter list is valid.

8 xxxx0838 Equate Symbol: HzsaddckRsn_BadParmListVersion

Meaning: The specified version of the macro is not compatible
with the current version of IBM Health Checker for z/OS.

Action: Avoid requesting parameters that are not supported by
this version of IBM Health Checker for z/OS.

8 xxxx0841 Equate Symbol: HzsaddckRsn_BadParmsArea

Meaning: Error accessing the PARMS area.

Action: Make sure that the provided PARMS area is valid.

8 xxxx0842 Equate Symbol: HzsaddckRsn_BadReasonArea

Meaning: Error accessing the REASON area.

Action: Make sure that the provided REASON area is valid.

8 xxxx084F Equate Symbol: HzsaddckRsn_BadParmsLen

Meaning: The PARMSLEN value is either 0 or exceeds the
maximum of 256.

Action: Specify a valid value for the PARMSLEN parameter.

8 xxxx0859 Equate Symbol: HzsaddckRsn_NotAuthorized

Meaning: Caller is not authorized

Action: Avoid calling HZSADDCK when not authorized.

8 xxxx0862 Equate Symbol: HzsaddckRsn_BadExceptionInterval

Meaning: The EIHOURS value exceeded 999 or the EIMINUTES
value exceeded 60.

Action: Specify valid hours and minutes values.

8 xxxx0863 Equate Symbol: HzsaddckRsn_BadPEToken

Meaning: The PEToken is not one obtained using authlvl of
IEA_UNAUTHORIZED.

Action: Specify a valid PEToken.

HZSADDCK macro

282 IBM Health Checker for z/OS User's Guide

|||

|
|
|

|

Table 45. Return and Reason Codes for the HZSADDCK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0868 Equate Symbol: HzsaddckRsn_BadPETOKENAUTH

Meaning: PETOKENAUTH=YES is not allowed for unauthorized
callers.

Action: Do not specify PETOKENAUTH=YES when running in
problem state, key 8-15, and not APF-authorized.

8 xxxx086A Equate Symbol: HzsaddckRsn_BadPETokenHome

Meaning: The PEToken is not one obtained in the HOME address
space.

Action: Action: Specify a valid PEToken.

8 xxxx086B Equate Symbol: HzsaddckRsn_BadPETokenState

Meaning: The PEToken is not in a state ready to be used for a
PAUSE.

Action: Specify a valid PEToken.

8 xxxx086C Equate Symbol: HzsaddckRsn_BadPETokenValue

Meaning: The PEToken appears corrupted.

Action: Specify a valid PEToken.

0C — Equate Symbol: HzsaddckRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HzsaddckRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: Re-issue the request when the service is available

10 — Equate Symbol: HzsaddckRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzsaddckRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

16 xxxx106D Equate Symbol: HzsaddckRsn_BadPETokenService

Meaning: Unexpected error.

Action: Ensure a valid PEToken has been specified. If this error
repeats, contact IBM Support.

Examples

Example 1: See SAMPLIB(HZSSADCK) for a sample routine which uses the
HZSADDCK service and which is intended to be registered with the
HZSADDCHECK dynamic exit.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 283

|||

|
|

|
|

Example 2: Add a low severity check that is to run once. The check shares a
check routine with other checks, so provides an entry code.

The code is as follows.

* Add a low severity check that is to run once. *

HZSADDCK CHECKOWNER=LOWNER,CHECKNAME=LNAME, *
CHECKROUTINE=LCHECKRTN,EXITRTN=LEXITRTN, *
MSGTBL=LMSGTBL,DATE=LDATE, *
REASON=LREASON,REASONLEN=LREASONLEN, *
ENTRYCODE=LENTRYCODE, *
SEVERITY=LOW,INTERVAL=ONETIME, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,ADDCKL)

*
* Place code to check return/reason codes here
*
LOWNER DC CL16’MYCOMPANY’
LNAME DC CL32’MYCOMPONENT_CHECK_WIDGETS’
LCHECKRTN DC CL8’MYMODULE’
LEXITRTN DC CL8’MYEXITRT’
LMSGTBL DC CL8’MYMSGTBL’
LDATE DC CL8’20050601’
LREASON DC CL26’Verify widgets are present’
LREASONLEN DC A(L’LREASON)
LENTRYCODE DC F’1’

HZSZCONS Return code information
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

HZSADDCK MF=(L,ADDCKL),PLISTVER=MAX

HZSADDCK macro

284 IBM Health Checker for z/OS User's Guide

HZSCHECK macro — HZS Check command request

Description
The HZSCHECK macro provides the interface to manage checks that are currently
registered with IBM Health Checker For z/OS.

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: Problem state. PSW key 8-15 When problem state and key

8-15 and not APF authorized, or when SECCHECK=ALL is
specified, the caller's authorization requirements depend on
the input specification.

v The caller must be authorized for access to any of the
following:

– when the check owner has wildcard character(s),
XFACILIT class resource HZS.sysname.reqtype

– when the check owner has no wildcard characters and
the check name has wildcard character(s), XFACILIT
class resource HZS.sysname.checkowner.reqtype

– when the check owner has no wildcard characters and
the check name has no wildcard characters, XFACILIT
class resource
HZS.sysname.checkowner.checkname.reqtype or
XFACILIT class resource
HZS.sysname.checkowner.reqtype

v The values for reqtype are as follows:

– When REQUEST=ACTIVATE is specified, reqtype is
ACTIVATE and update authority is needed.

– When REQUEST=UPDATE is specified, reqtype is
UPDATE and update authority is needed.

– When REQUEST=DELETE is specified, reqtype is
DELETE and control authority is needed.

– When REQUEST=DEACTIVATE is specified, reqtype is
DEACTIVATE and update authority is needed.

– When REQUEST=REFRESH is specified, reqtype is
REFRESH and control authority is needed.

– When REQUEST=ADDNEW is specified, reqtype is
ADDNEW and update authority is needed.

– When REQUEST=RUN is specified, reqtype is RUN
and authority for update is needed.

– When REQUEST=OPSTART is specified, the authority
to have added the check is all that is needed.

– When REQUEST=OPCOMPLETE is specified, the
authority to have added the check is all that is needed.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 285

Requirement Description
ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Control parameters must be below 2G.

Programming Requirements
The caller should include the HZSZCONS macro to get equate symbols for the
return and reason codes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information
Before issuing the HZSCHECK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the HZSCHECK macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

HZSCHECK macro

286 IBM Health Checker for z/OS User's Guide

Performance Implications
None.

Syntax

main diagram

��
name

� HZSCHECK �
REMOTE = ANY

parameters-1
REMOTE = YES parameters-2

�

�
, SECCHECKONLY = NO , SECCHECK = UNAUTH

, SECCHECK = ALL
, SYSNAME = CURRENT

, SECCHECKONLY = YES
, SYSNAME = sysname

�

�
, CART = NO_CART

, CART = cart

, CONSID = NO_CONSID

, CONSID = consid
�

�
, RETCODE = retcode , RSNCODE = rsncode

�

�
, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0
, PLISTVER = 1

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

�� , REQUEST = DELETE parameters-3
, REQUEST = ADDNEW
, REQUEST = RUN parameters-4

��

parameters-2

�� , HANDLE = handle �

�
, REXX = NO

, REQUEST = OPSTART , PETOKEN = petoken
, PQE = pqe

, REXX = NO
, REQUEST = OPCOMPLETE

, PQECHKWORK = NO_PQECHKWORK
, PQECHKWORK = pqechkwork

��

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 287

parameters-3

�� , CHECKOWNER = checkowner , CHECKNAME = checkname
, EXITRTN = ANY_EXITRTN

, EXITRTN = exitrtn
�

�
, CATEGORY = ANY_CATEGORY , NUMCAT = numcat , CATRULE = DEFAULT
, CATEGORY = category , CATRULE = ONLY

, CATRULE = ANY
, CATRULE = EVERY
, CATRULE = EXCEPT

��

parameters-4

�� , CHECKOWNER = checkowner , CHECKNAME = checkname
, EXITRTN = ANY_EXITRTN

, EXITRTN = exitrtn
�

�
, CATEGORY = ANY_CATEGORY , NUMCAT = numcat , CATRULE = DEFAULT
, CATEGORY = category , CATRULE = ONLY

, CATRULE = ANY
, CATRULE = EVERY
, CATRULE = EXCEPT

��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the HZSCHECK
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CART=cart
,CART=NO_CART

An optional input parameter that specifies the Command And Response Token
(CART) to be used if any messages are issued while processing the
HZSCHECK request. The default is NO_CART. which indicates that messages
issued while processing the HZSCHECK will be issued without a CART.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,CATEGORY=category
,CATEGORY=ANY_CATEGORY

When REQUEST=DELETE and REMOTE=ANY are specified, an optional input
parameter that specifies an array of 1 to 16 contiguous 16 character entries
each of which contains a category. The categories are used as filters. Each
category can include wildcard characters. Checks that belong to categories that
match according to the rules of the CATRULE parameter and according to the
other filtering parameters (CHECKOWNER, CHECKNAME, and EXITRTN) are
processed. The number of categories is specified by the NUMCAT parameter.
The default is ANY_CATEGORY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,CATEGORY=category
,CATEGORY=ANY_CATEGORY

When REQUEST=RUN and REMOTE=ANY are specified, an optional input
parameter that specifies an array of 1 to 16 contiguous 16 character entries

HZSCHECK macro

288 IBM Health Checker for z/OS User's Guide

each of which contains a category. The categories are used as filters. Each
category can include wildcard characters. Checks that belong to categories that
match according to the rules of the CATRULE parameter and according to the
other filtering parameters (CHECKOWNER, CHECKNAME, and EXITRTN) are
processed. The number of categories is specified by the NUMCAT parameter.
The default is ANY_CATEGORY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,CATRULE=DEFAULT
,CATRULE=ONLY
,CATRULE=ANY
,CATRULE=EVERY
,CATRULE=EXCEPT

When CATEGORY=category, REQUEST=DELETE and REMOTE=ANY are
specified, a required parameter that indicates how to process the category
filters.

,CATRULE=DEFAULT
indicates to apply the default (which is CATRULE=ONLY).

,CATRULE=ONLY
indicates to match only if all the categories match the categories to which
the target check belongs, and if the target check belongs to exactly the
number of categories specified by the NUMCAT parameter.

,CATRULE=ANY
indicates to match if any of the categories provided match any of the
categories to which the target check belongs.

,CATRULE=EVERY
indicates to match if every one of the categories provided matches any of
the categories to which the target check belongs.

,CATRULE=EXCEPT
indicates to match except when one of the categories provided matches
any of the categories to which the target check belongs.

,CATRULE=DEFAULT
,CATRULE=ONLY
,CATRULE=ANY
,CATRULE=EVERY
,CATRULE=EXCEPT

When CATEGORY=category, REQUEST=RUN and REMOTE=ANY are
specified, a required parameter that indicates how to process the category
filters.

,CATRULE=DEFAULT
indicates to apply the default (which is CATRULE=ONLY).

,CATRULE=ONLY
indicates to match only if all the categories match the categories to which
the target check belongs, and if the target check belongs to exactly the
number of categories specified by the NUMCAT parameter.

,CATRULE=ANY
indicates to match if any of the categories provided match any of the
categories to which the target check belongs.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 289

,CATRULE=EVERY
indicates to match if every one of the categories provided matches any of
the categories to which the target check belongs.

,CATRULE=EXCEPT
indicates to match except when one of the categories provided matches
any of the categories to which the target check belongs.

,CHECKNAME=checkname
When REQUEST=DELETE and REMOTE=ANY are specified, a required input
parameter that specifies the name of the check to be used as a filter.
CHECKNAME can include wildcard characters. All checks with names that
match the specified name and that match the other filtering parameters
(CHECKOWNER, EXITRTN, CATEGORY) are processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,CHECKNAME=checkname
When REQUEST=RUN and REMOTE=ANY are specified, a required input
parameter that specifies the name of the check to be used as a filter.
CHECKNAME can include wildcard characters. All checks with names that
match the specified name and that match the other filtering parameters
(CHECKOWNER, EXITRTN, CATEGORY) are processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,CHECKOWNER=checkowner
When REQUEST=DELETE and REMOTE=ANY are specified, a required input
parameter that specifies the owner of the check to be used as a filter.
CHECKOWNER can include wildcard characters. All checks with owners that
match the specified owner and that match the other filtering parameters
(CHECKNAME, EXITRTN, CATEGORY) are processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CHECKOWNER=checkowner
When REQUEST=RUN and REMOTE=ANY are specified, a required input
parameter that specifies the owner of the check to be used as a filter.
CHECKOWNER can include wildcard characters. All checks with owners that
match the specified owner and that match the other filtering parameters
(CHECKNAME, EXITRTN, CATEGORY) are processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CONSID=consid
,CONSID=NO_CONSID

An optional input parameter that specifies the console ID to be used if any
messages are issued while processing the HZSCHECK request. The default is
NO_CONSID. If the CONSID parameter is not specified, no messages will be
issued while processing the HZSCHECK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,EXITRTN=exitrtn
,EXITRTN=ANY_EXITRTN

When REQUEST=DELETE and REMOTE=ANY are specified, an optional input
parameter that specifies the name of the exit routine that was provided via the

HZSCHECK macro

290 IBM Health Checker for z/OS User's Guide

EXITRTN parameter on the HZSADDCK macro that added the check. The exit
routine is EXITRTN can include wildcard characters. All checks with names
that match the specified name and that match the other filtering parameters
(CHECKOWNER, CHECKNAME, CATEGORY) are processed. The default is
ANY_EXITRTN.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXITRTN=exitrtn
,EXITRTN=ANY_EXITRTN

When REQUEST=RUN and REMOTE=ANY are specified, an optional input
parameter that specifies the name of the exit routine that was provided via the
EXITRTN parameter on the HZSADDCK macro that added the check. The exit
routine is EXITRTN can include wildcard characters. All checks with names
that match the specified name and that match the other filtering parameters
(CHECKOWNER, CHECKNAME, CATEGORY) are processed. The default is
ANY_EXITRTN.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,HANDLE=handle
When REMOTE=YES is specified, a required input parameter that specifies a
handle (token) that identifies the check. This handle was returned via the
HANDLE parameter of the HZSADDCK macro for a REMOTE=YES
REXX=NO check. The handle is in REXX variable hzs_handle for a
REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 291

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NUMCAT=numcat
When CATEGORY=category, REQUEST=DELETE and REMOTE=ANY are
specified, a required input parameter that specifies the number of categories
contained in the array specified by the CATEGORY parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,NUMCAT=numcat
When CATEGORY=category, REQUEST=RUN and REMOTE=ANY are
specified, a required input parameter that specifies the number of categories
contained in the array specified by the CATEGORY parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,PETOKEN=petoken
When REXX=NO, REQUEST=OPSTART and REMOTE=YES are specified, a
required input parameter that is the updated pause element token returned by
the IEAVPSE service (the pause element token was originally obtained via the
IEAVAPE service and then was provided as input to the IEAVPSE service
which returned an updated token). The caller, waiting to be told what to do by
IBM Health Checker for z/OS, should pause using this pause element token.
IBM Health Checker for z/OS will "release" using that pause element token to
wake up the check processing.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are

HZSCHECK macro

292 IBM Health Checker for z/OS User's Guide

assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:
– REXXTIMELIM

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, or 1

,PQE=pqe
When REQUEST=OPSTART and REMOTE=YES are specified, an optional
output parameter that specifies the area into which to place the information
mapped by HZSPQE that is associated with this check. This area should begin
on a doubleword boundary.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4096-character field.

,PQECHKWORK=pqechkwork
,PQECHKWORK=NO_PQECHKWORK

When REQUEST=OPCOMPLETE and REMOTE=YES are specified, an optional
input parameter that specifies the PQECHKWORK area which is to be saved
and which is to be provided on the next running of the check. This area should
begin on a doubleword boundary. The default is NO_PQECHKWORK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
2048-character field.

REMOTE=ANY
REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is
REMOTE=ANY.

REMOTE=ANY
indicates that the check may either be Remote (runs remotely, in an
address space other than that of IBM Health Checker for z/OS) or not
Remote (runs locally in the address space of IBM Health Checker for
z/OS).

REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,REQUEST=DELETE
,REQUEST=ADDNEW
,REQUEST=RUN

When REMOTE=ANY is specified, a required parameter, which identifies the
type of request.

,REQUEST=DELETE
indicates to delete the specified check(s) from IBM Health Checker for
z/OS.

,REQUEST=ADDNEW
indicates to call the HZSADDCHECK dynamic exit, which results in
running exit routines associated with that exit to add checks that are not

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 293

currently added to IBM Health Checker for z/OS. When a check is added,
the current policy is processed to obtain any modifications to the new
check(s).

The system runs checks when they are added, unless they are inactive.

REQUEST(ADDNEW) is not allowed from within a HZSADDCHECK
dynamic exit routine.

,REQUEST=RUN
indicates to run the specified check(s) registered with IBM Health Checker
for z/OS. Checks that are inactive will not be run.

,REQUEST=OPSTART
,REQUEST=OPCOMPLETE

When REMOTE=YES is specified, a required parameter, which identifies the
type of request.

,REQUEST=OPSTART
indicates that the current operation is starting

,REQUEST=OPCOMPLETE
indicates that the current operation is now complete for the check.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,REXX=NO
When REQUEST=OPSTART and REMOTE=YES are specified, an optional
parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is a REXX check.

,REXX=NO
When REQUEST=OPCOMPLETE and REMOTE=YES are specified, an optional
parameter, which indicates if the check is a REXX check. The default is
REXX=NO.

,REXX=NO
indicates that the check is a REXX check.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SECCHECK=UNAUTH
,SECCHECK=ALL

When SECCHECKONLY=NO is specified, an optional parameter that indicates
whether to do RACF security checks. The default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

HZSCHECK macro

294 IBM Health Checker for z/OS User's Guide

,SECCHECK=ALL
that indicates to do RACF security checks in all cases. If RACF does not
grant authority, the request is rejected.

,SECCHECKONLY=NO
,SECCHECKONLY=YES

An optional parameter that indicates whether to do full processing or only
security checks. The default is SECCHECKONLY=NO.

,SECCHECKONLY=NO
that indicates to do full processing.

,SECCHECKONLY=YES
that indicates to do only the security check to see if the requesting user has
RACF authority to access the data. When this option is specified, the
security check is done regardless of the caller's key or state.

,SYSNAME=sysname
,SYSNAME=CURRENT

When SECCHECKONLY=YES is specified, an optional input parameter that
specifies the system name to be used when doing the security check. Note that
this specification is used only when the caller is supervisor state, system key,
or APF-authorized. The default is CURRENT. which indicates to use the name
of the system on which this request was issued.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
058 The IBM Health Checker for z/OS address space terminated while this call

was in process.

Return and Reason Codes
When the HZSCHECK macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 46. Return and Reason Codes for the HZSCHECK Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzscheckRc_OK

Meaning: SECCHECKONLY=YES was requested and the request passed the
security check.

Action: None required.

4 — Equate Symbol: HzscheckRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 295

Table 46. Return and Reason Codes for the HZSCHECK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx0400 Equate Symbol: HzscheckRsn_CommandQueued

Meaning: The specified HZSCHECK will be completed asynchronously

Action: None needed

8 — Equate Symbol: HzscheckRc_InvParm

Meaning: HZSCHECK request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HzscheckRsn_NotAuthorized

Meaning: Caller is not authorized

Action: Avoid calling HZSCHECK when not authorized.

8 xxxx0818 Equate Symbol: HzscheckRsn_BadParmlist

Meaning: Error accessing the parameter list

Action: Make sure that the provided parameter list is valid.

8 xxxx0829 Equate Symbol: HzscheckRsn_BadAddRepcatArea

Meaning: Error while reading the AddCat or RepCat array

Action: Make sure that the provided area is valid.

8 xxxx082A Equate Symbol: HzscheckRsn_BadRemcatArea

Meaning: Error while reading the RemCat array

Action: Make sure that the provided area is valid.

8 xxxx0838 Equate Symbol: HzscheckRsn_BadParmListVersion

Meaning: The specified version of the macro is not compatible with the current
version of IBM Health Checker for z/OS.

Action: Avoid requesting parameters that are not supported by this version of
IBM Health Checker for z/OS.

8 xxxx0847 Equate Symbol: HzscheckRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure that the ALET associated with the parameter list is valid. The
access register might not have been set up correctly.

8 xxxx084B Equate Symbol: HzscheckRsn_BadParmlistValue

Meaning: A parameter list field contains an unsupported value.

Action: Check for possible storage overlay

8 xxxx084C Equate Symbol: HzscheckRsn_BadCategoryALET

Meaning: Bad category ALET.

Action: Make sure that the ALET associated with the category area is valid. The
access register might not have been set up correctly.

HZSCHECK macro

296 IBM Health Checker for z/OS User's Guide

Table 46. Return and Reason Codes for the HZSCHECK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx084D Equate Symbol: HzscheckRsn_BadCategoryArea

Meaning: Error accessing category area.

Action: Make sure that the provided category area is valid.

8 xxxx0853 Equate Symbol: HzscheckRsn_BadAddRepcatALET

Meaning: Bad ALET for AddCat or RepCat array.

Action: Make sure that the ALET associated with the AddCat or RepCat array is
valid. The access register might not have been set up correctly.

8 xxxx0854 Equate Symbol: HzscheckRsn_BadRemcatALET

Meaning: Bad ALET for RemCat array.

Action: Make sure that the ALET associated with the RemCat array is valid. The
access register might not have been set up correctly.

8 xxxx0855 Equate Symbol: HzscheckRsn_BadNumCat

Meaning: Value provided by NUMCAT exceeds the limit of 16.

Action: Avoid specifying more than the allowable number of categories.

8 xxxx0856 Equate Symbol: HzscheckRsn_BadNumAddRepRemCat

Meaning: The total value provided by NUMADDCAT, NUMREPCAT, and
NUMREMCAT exceeds the limit of 16.

Action: Avoid specifying more than the allowable number of categories.

8 xxxx0858 Equate Symbol: HzscheckRsn_BadHandle

Meaning: The handle provided with the HANDLE parameter is not valid.

Action: Specify the handle that was returned by the HZSADDCK macro if this is
a REMOTE=YES REXX=NO check, or the handle in REXX variable hzs_handle if
this is a REMOTE=YES REXX=YES check.

8 xxxx0863 Equate Symbol: HzscheckRsn_BadPEToken

Meaning: The PEToken is not one obtained using authlvl of
IEA_UNAUTHORIZED.

Action: Specify a valid PEToken.

8 xxxx0864 Equate Symbol: HzscheckRsn_BadPqeArea

Meaning: Error while writing to the PQE area

Action: Make sure that the provided area is valid.

8 xxxx0865 Equate Symbol: HzscheckRsn_BadPqeALET

Meaning: Bad ALET for the PQE area.

Action: Make sure that the ALET associated with the PQE area is valid. The
access register might not have been set up correctly.

8 xxxx0866 Equate Symbol: HzscheckRsn_BadPqeChkWorkArea

Meaning: Error while reading from the PqeChkWork area

Action: Make sure that the provided area is valid.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 297

Table 46. Return and Reason Codes for the HZSCHECK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0867 Equate Symbol: HzscheckRsn_BadPqeChkWorkALET

Meaning: Bad ALET for the PqeChkWork area.

Action: Make sure that the ALET associated with the PqeChkWork area is valid.
The access register might not have been set up correctly.

8 xxxx086A Equate Symbol: HzscheckRsn_BadPETokenHome

Meaning: The PEToken is not one obtained in the HOME address space.

Action: Specify a valid PEToken.

8 xxxx086B Equate Symbol: HzscheckRsn_BadPETokenState

Meaning: The PEToken is not in a state ready to be used for a PAUSE.

Action: Specify a valid PEToken.

8 xxxx086C Equate Symbol: HzscheckRsn_BadPETokenValue

Meaning: The PEToken appears corrupted.

Action: Specify a valid PEToken.

0C — Equate Symbol: HzscheckRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HzscheckRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: For REQUEST=ADDNEW, no action is needed. For any other REQUEST
option, re-issue the request when the service is available

0C xxxx0C02 Equate Symbol: HzscheckRsn_BadCommandEnv

Meaning: The specified command cannot be specified from a HZSADDCHECK
dynamic exit

Action: Do Not issue a ADDNEW or REFRESH command from a
HZSADDCHECK dynamic exit routine

0C xxxx0C03 Equate Symbol: HzscheckRsn_BadRemoteEnv

Meaning: For REQUEST=OPSTART or REQUEST=OPCOMPLETE, the call must
be done only once after having been awakened to process a remote function. For
that function, the call may be done only once. For REQUEST=OPSTART, the call
must be done before the REQUEST=OPCOMPLETE call.

Action: Avoid using REQUEST=OPSTART or REQUEST=OPCOMPLETE in an
incorrect environment.

10 — Equate Symbol: HzscheckRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

HZSCHECK macro

298 IBM Health Checker for z/OS User's Guide

Table 46. Return and Reason Codes for the HZSCHECK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 xxxx1001 Equate Symbol: HzscheckRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

16 xxxx106D Equate Symbol: HzscheckRsn_BadPETokenService

Meaning: Unexpected error.

Action: Ensure a valid PEToken has been specified. If this error repeats, contact
IBM Support.

Examples
None.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 299

HZSCPARS macro — HZS Check Parameter Parsing

Description
The HZSCPARS macro provides functions dealing with parsing the check
parameter string. It is intended to help only with parsing the parameter area for
the check (as opposed to some general area) and it is of help only for parameter
area syntaxes that follow a simple style, namely a combination of "PositionalValue"
or "keyword=value" or "keyword=value1,...,valuen" or "keyword(value1,...,valuen)"
items separated from each other by one or more blanks or a comma. If
"PositionalValue" is found, all items must be of that positional format. If
keyword/value format is found, no values of positional format are allowed. You
should avoid extra separating commas, as two consecutive commas indicates a null
positional value.

When HZSCPARS finds a parameter syntax error, as indicated by a return code 0C
and reason code HZSCPARSRsn_SyntaxError (xxxx0C01), it issues an appropriate
error message for you using one of the REASON=PARSxxxx reason values on the
HZSFMSG macro. This means that your check routine does not have to issue error
messages for these parameter errors. Note that your check routine must still issue a
final HZSFMSG REQUEST=STOP,REASON=BADPARM service call for any such
parameter error.

A typical sequence would consist of
v REQUEST=PARSE
v For each known parameter

– REQUEST=CHECKPARM with further checking as needed using one of
- REQUEST=CHECKDEC
- REQUEST=CHECKHEX
- REQUEST=CHECKCHAR

v REQUEST=CHECKNOTPROC
v REQUEST=FREE

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: For local checks, supervisor state and the key of the check

routine. For remote checks, problem state and PSW key 8-15.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
This service is supported only when it is called from a check routine invoked by
IBM Health Checker for z/OS. The caller must include the HZSZCPAR macro to
get mappings for the areas.

HZSCPARS macro

300 IBM Health Checker for z/OS User's Guide

|
|
|
|
|
|
|

|
|

All HZSCPARS services called after the parse service must be called in the same
PSW key in which you called the parse service.

Restrictions
The caller may not have an FRR established.

Input Register Information
Before issuing the HZSCPARS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the HZSCPARS macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� � REQUEST = PARSE parameters-1
REQUEST = CHECKPARM parameters-2
REQUEST = CHECKNOTPROC , CPARAREA = cpararea
REQUEST = CHECKDEC parameters-3
REQUEST = CHECKHEX parameters-4
REQUEST = CHECKCHAR parameters-5
REQUEST = FREE , CPARAREA = cpararea

�

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 301

�
, REMOTE = NO

, REMOTE = YES , HANDLE = handle , RETCODE = retcode
�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

�� , PARM = parm , PARMLEN = parmlen , TOUPPER = YES
, TOUPPER = NO

�

� , CPARAREAADDR = cparareaaddr
, PARMFORMAT = EITHER

, PARMFORMAT = KEYWORD
��

parameters-2

�� , CPARAREA = cpararea �

�
, PARMPOS = NOT_POS

, PARMNAME = parmname
, PARMPOS = parmpos

�

�
, KEYENTRYADDR = keyentryaddr

�

�
, FIRSTVALUEADDR = firstvalueaddr

, MINVALUES = minvalues �

� , MAXVALUES = maxvalues ��

parameters-3

�� , PARMNAME = parmname �

� , KEYENTRY = keyentry
, KEYVALUEENTRY = keyvalueentry , NEXTVALUEADDR = nextvalueaddr

�

HZSCPARS macro

302 IBM Health Checker for z/OS User's Guide

� , MINVALUEDEC = minvaluedec , MAXVALUEDEC = maxvaluedec �

�
, PERCENT10000 = NO , PERCENTVALUE = NOT_USED

, PERCENTOK = YES
, PERCENT10000 = YES , PERCENTVALUE = percentvalue

, PERCENTOK = NO

�

� , KEYINFOAREA = keyinfoarea ��

parameters-4

�� , PARMNAME = parmname �

� , KEYENTRY = keyentry
, KEYVALUEENTRY = keyvalueentry , NEXTVALUEADDR = nextvalueaddr

�

� , MINVALUEHEX = minvaluehex , MAXVALUEHEX = maxvaluehex �

� , KEYINFOAREA = keyinfoarea ��

parameters-5

�� , PARMNAME = parmname �

� , KEYENTRY = keyentry
, KEYVALUEENTRY = keyvalueentry , NEXTVALUEADDR = nextvalueaddr

�

� , MINLEN = minlen , MAXLEN = maxlen , KEYINFOAREA = keyinfoarea ��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the HZSCPARS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CPARAREA=cpararea
When REQUEST=CHECKPARM is specified, a required input parameter that is
the check parse area (CParArea), the address of which was returned by the
PARSE request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,CPARAREA=cpararea
When REQUEST=CHECKNOTPROC is specified, a required input parameter
that is the check parse area (CParArea), the address of which was returned by
the PARSE request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,CPARAREA=cpararea
When REQUEST=FREE is specified, a required input parameter that is the
check parse area (CParArea) to be freed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 303

,CPARAREAADDR=cparareaaddr
When REQUEST=PARSE is specified, a required output parameter that is to
contain the address of the check parse area (CParArea).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,FIRSTVALUEADDR=firstvalueaddr
When REQUEST=CHECKPARM is specified, an optional output parameter that
is to contain the address of the first CParKeywordValueEntry area of the
parameter, or 0 if there are none. A value of 0 is expected when the format is
positional (bit CparAreaFormatPositional is on. This should be used except
when you are verifying that the number of values that can be specified is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,HANDLE=handle
When REMOTE=YES is specified, a required input parameter that specifies a
handle (token) that identifies the check. This handle was returned via the
HANDLE parameter of the HZSADDCK macro for a REMOTE=YES
REXX=NO check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,KEYENTRY=keyentry
When REQUEST=CHECKDEC is specified, a required input parameter that is
the CParKeywordEntry of the value to be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYENTRY=keyentry
When REQUEST=CHECKHEX is specified, a required input parameter that is
the CParKeywordEntry of the value to be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYENTRY=keyentry
When REQUEST=CHECKCHAR is specified, a required input parameter that
is the CParKeywordEntry of the value to be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYENTRYADDR=keyentryaddr
When REQUEST=CHECKPARM is specified, an optional output parameter that
is to contain the address of the CParKeywordEntry of the parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,KEYINFOAREA=keyinfoarea
When REQUEST=CHECKDEC is specified, a required input/output parameter,
of the KeywordInfo area that is built. It need not be initialized prior to the call

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYINFOAREA=keyinfoarea
When REQUEST=CHECKHEX is specified, a required input/output parameter,
of the KeywordInfo area that is built. It need not be initialized prior to the call

HZSCPARS macro

304 IBM Health Checker for z/OS User's Guide

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYINFOAREA=keyinfoarea
When REQUEST=CHECKCHAR is specified, a required input/output
parameter, of the KeywordInfo area that is built. It need not be initialized prior
to the call. At this time, there is no output information within this area that
you will need.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYVALUEENTRY=keyvalueentry
When REQUEST=CHECKDEC is specified, a required input parameter that is
the CParKeywordValueEntry of the value to be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYVALUEENTRY=keyvalueentry
When REQUEST=CHECKHEX is specified, a required input parameter that is
the CParKeywordValueEntry of the value to be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,KEYVALUEENTRY=keyvalueentry
When REQUEST=CHECKCHAR is specified, a required input parameter that
is the CParKeywordValueEntry of the value to be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MAXLEN=maxlen
When REQUEST=CHECKCHAR is specified, a required input parameter that
is the maximum length allowed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,MAXVALUEDEC=maxvaluedec
When REQUEST=CHECKDEC is specified, a required input parameter that is
the maximum decimal value allowed. This is a numeric value. When the
number has a percent suffix, a value in the range 1-100 is accepted regardless
of what is specified with this parameter. The value is treated as an unsigned
number, and a value >= 2**63 will be treated as 2**63-1.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MAXVALUEHEX=maxvaluehex
When REQUEST=CHECKHEX is specified, a required input parameter that is
the maximum hexadecimal value allowed. This is a numeric value.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MAXVALUES=maxvalues
When REQUEST=CHECKPARM is specified, a required input parameter that
indicates the maximum number of values that can be specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 305

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MINLEN=minlen
When REQUEST=CHECKCHAR is specified, a required input parameter that
is the minimum length allowed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,MINVALUEDEC=minvaluedec
When REQUEST=CHECKDEC is specified, a required input parameter that is
the minimum decimal value allowed. This is a numeric value. When the
number has a percent suffix, a value in the range 1-100 is accepted regardless
of what is specified with this parameter. The value is treated as an unsigned
number.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MINVALUEHEX=minvaluehex
When REQUEST=CHECKHEX is specified, a required input parameter that is
the minimum hexadecimal value allowed. This is a numeric value.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

HZSCPARS macro

306 IBM Health Checker for z/OS User's Guide

,MINVALUES=minvalues
When REQUEST=CHECKPARM is specified, a required input parameter that
indicates the minimum number of values that can be specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,NEXTVALUEADDR=nextvalueaddr
When KEYVALUEENTRY=keyvalueentry and REQUEST=CHECKDEC are
specified, a required output parameter that is to contain the address of the next
CParKeywordValueEntry area of the parameter, or 0 if there are none.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,NEXTVALUEADDR=nextvalueaddr
When KEYVALUEENTRY=keyvalueentry and REQUEST=CHECKHEX are
specified, a required output parameter that is to contain the address of the next
CParKeywordValueEntry area of the parameter, or 0 if there are none.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,NEXTVALUEADDR=nextvalueaddr
When KEYVALUEENTRY=keyvalueentry and REQUEST=CHECKCHAR are
specified, a required output parameter that is to contain the address of the next
CParKeywordValueEntry area of the parameter, or 0 if there are none.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,PARM=parm
When REQUEST=PARSE is specified, a required input parameter that is the
input parameter. The input parameter has a limited acceptable character set:
v Alphanumeric
v Special ('@', '#', '$')
v Additional ('.', '*', '?', '_', '/', '-', '%')
v Delimiters ('=', '(', ')', ',', blank)
v Single quote (within a quoted string, any character is accepted)

A null parameter can be denoted by consecutive commas with no non-blank
non-comment text in between (or by a leading comma). For example, the string
"A,,B" represents 3 positional parameters, the first being "A", the second being
null, and the third being "B".

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,PARMFORMAT=EITHER
,PARMFORMAT=KEYWORD

When REQUEST=PARSE is specified, an optional parameter, which identifies
the allowed format of the input. The default is PARMFORMAT=EITHER.

,PARMFORMAT=EITHER
indicates that either positional or keyword format is OK. An example of
positional format is ("Val1,...,ValN"). Examples of keyword format are
"key1(val1),...,keyN(valN)" and "Key1=val1,...,keyN=valN". Note that
within an input string there cannot be a mixture of keyword and positional
format.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 307

,PARMFORMAT=KEYWORD
indicates that only keyword format is allowed.

,PARMLEN=parmlen
When REQUEST=PARSE is specified, a required input parameter that is the
length of the input parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,PARMNAME=parmname
When REQUEST=CHECKPARM is specified, a required input parameter that is
the name of the parameter to be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PARMNAME=parmname
When REQUEST=CHECKDEC is specified, a required input parameter that is
the name of the parameter being processed

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PARMNAME=parmname
When REQUEST=CHECKHEX is specified, a required input parameter that is
the name of the parameter being processed

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PARMNAME=parmname
When REQUEST=CHECKCHAR is specified, a required input parameter that
is the name of the parameter being processed

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PARMPOS=parmpos
,PARMPOS=NOT_POS

When REQUEST=CHECKPARM is specified, an optional input parameter that
indicates to return the Nth parameter. The default is NOT_POS. that indicates
the parameter is not positional, so use the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,PERCENTOK=YES
,PERCENTOK=NO

When REQUEST=CHECKDEC is specified, a required parameter that indicates
if a percent suffix is to be accepted

,PERCENTOK=YES
indicates that a percent suffix is OK.

,PERCENTOK=NO
indicates that a percent suffix is not OK.

,PERCENTVALUE=percentvalue
,PERCENTVALUE=NOT_USED

When PERCENTOK=YES and REQUEST=CHECKDEC are specified, an
optional input parameter that is the value to which the specified decimal
parameter value when it ends with "%" will be applied. This is a numeric

HZSCPARS macro

308 IBM Health Checker for z/OS User's Guide

value. This value is multipled by the percentage and the result is returned
(multiply by N and then divide by 100). The default is NOT_USED.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PERCENT10000=NO
,PERCENT10000=YES

When PERCENTOK=YES and REQUEST=CHECKDEC are specified, an
optional parameter that indicates if the percentage may be up to 10000. The
default is PERCENT10000=NO.

,PERCENT10000=NO
indicates that the percentage value has a maximum value of 100.

,PERCENT10000=YES
indicates that the percentage value may be up to 10000.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,REMOTE=NO
,REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is
REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

REQUEST=PARSE

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 309

REQUEST=CHECKPARM
REQUEST=CHECKNOTPROC
REQUEST=CHECKDEC
REQUEST=CHECKHEX
REQUEST=CHECKCHAR
REQUEST=FREE

A required parameter, which identifies the type of request.

REQUEST=PARSE
Parse the input string. Note that if the return code from this function is not
zero, you should avoid using the other request types, as no valid data will
have been returned.

REQUEST=CHECKPARM
Check a particular parameter for number of values

REQUEST=CHECKNOTPROC
Check for parameters that were not processed

REQUEST=CHECKDEC
Check a particular parameter value as a decimal number. The parameter
can be a decimal number or a decimal number followed by a suffix of K
(multiply by 2**10), M (multiply by 2**20), G (multiply by 2**30), T
(multiply by 2**40) P (multiply by 2**50), E (multiply by 2**60). The
decimal number is limited to a length of 10 characters and a maximum
value of 2147483647. The value that is checked against is the decimal
number multiplied by (when a suffix is provided) the value indicated by
the suffix.

REQUEST=CHECKHEX
Check a particular parameter value as a hexadecimal number

REQUEST=CHECKCHAR
Check a particular parameter value as character data

REQUEST=FREE
Free the storage area. Note that, for a REMOTE=NO check if you do not
use this function, the system will free this area for you upon return from
the check routine call in which the area was obtained. Thus for a
REMOTE=NO check you must use REQUEST=FREE from the check
routine call that issued REQUEST=PARSE only.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,TOUPPER=YES
,TOUPPER=NO

When REQUEST=PARSE is specified, a required parameter, which indicates if
the input parameter string is to be translated to upper case before processing.

HZSCPARS macro

310 IBM Health Checker for z/OS User's Guide

,TOUPPER=YES
indicates to translate to upper case.

,TOUPPER=NO
indicates not to translate to upper case.

ABEND Codes
290 HZSCPARS service failed a request.

xxx Various abends can occur if an invalid handle or parse area is provided.

An abend 290 will be issued if an error in the request is detected.

In the following HZSCPARS abend reason codes, the bytes designated "xx" are for
diagnostic purposes and have no significance to the external interface.

Reason Code (Hex)
Explanation

xxxx002D
A parse area already exists, indicating that parsing has already been done.
Use HZSCPARS REQUEST=FREE prior to beginning a new parse.

Return and Reason Codes
When the HZSCPARS macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 47. Return and Reason Codes for the HZSCPARS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HZSCPARSRc_OK

Meaning: Requested information returned

Action: None required

4 — Equate Symbol: HZSCPARSRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: HZSCPARSRsn_NotLocated

Meaning: For the CHECKPARM request, the parameter was not found.

Action: None required.

4 xxxx0402 Equate Symbol: HZSCPARSRsn_NoParms

Meaning: For the PARSE request, the input parameter length was 0.

Action: None required.

8 — Equate Symbol: HZSCPARSRc_InvParm

Meaning: HZSCPARS request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 311

Table 47. Return and Reason Codes for the HZSCPARS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: HZSCPARSRsn_BadParmLen

Meaning: The parameter length exceeded the maximum of 4096.

Action: Specify a valid parameter length.

0C — Equate Symbol: HZSCPARSRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HZSCPARSRsn_SyntaxError

Meaning: A syntax error was detected. A message was issued about the problem.

Action: Use HZSFMSG REQUEST=STOP,REASON=BADPARM to indicate that the
check cannot proceed because of a parameter error.

Examples
See SAMPLIB(HZSSRCHC) for a sample remote check routine which uses service
HZSCPARS.

HZSCPARS macro

312 IBM Health Checker for z/OS User's Guide

|
|

HZSFMSG macro — Issue a formatted check message

Description
HZSFMSG is used by a check routine to format and process a check message
(using the message table identified by the MSGTBL parameter of the HZSADDCK
macro) or to report a functional issue such as a parameter error.

Both check-defined and system-defined messages can be issued.

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: Problem state. PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Control parameters must be below 2G.

Programming Requirements
This service is supported only when it is called from a check routine invoked by
IBM Health Checker for z/OS.

The check routine must include macro HZSMGB to get a mapping of the MGB
which is input to HZSFMSG.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information
Before issuing the HZSFMSG macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the HZSFMSG macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 313

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� HZSFMSG � �

� REQUEST = CHECKMSG parameters-1
REQUEST = DIRECTMSG parameters-2
REQUEST = HZSMSG parameters-3
REQUEST = STOP parameters-4

, REMOTE = NO
REQUEST = DOM

, REXX = NO
, REMOTE = YES , HANDLE = handle

�

�
, ABENDRESULT = abendresult

, MGBFORMAT = 0

, MGBFORMAT = 1 , RETCODE = retcode
�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 1
, PLISTVER = 2

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

HZSFMSG macro

314 IBM Health Checker for z/OS User's Guide

�� , MGBADDR = mgbaddr
, MGB = mgb

�

�
, REMOTE = NO , MSGTABLE = HZSADDCK

, MSGTABLE = msgtable
, REXX = NO

, REMOTE = YES , HANDLE = handle , MSGTABLE = msgtable

�

�
, SEVERITY = SYSTEM

, SEVERITY = NONE
, SEVERITY = LOW
, SEVERITY = MED
, SEVERITY = HI
, SEVERITY = VALUE , SEVERITYVAL = severityval

��

parameters-2

�� , REASON = CHECKEXCEPTION parameters-5
, REASON = CHECKINFO parameters-6
, REASON = CHECKREPORT , TEXT = text , TEXTLEN = textlen

�

�
, REMOTE = NO

, REXX = NO
, REMOTE = YES , HANDLE = handle

��

parameters-3

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 315

�� , REASON = ERROR , DIAG = diag
, REASON = PARS1201 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1202 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1203 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1204
, REASON = PARS1205 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1206 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1207 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1208 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1209 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1210 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1211 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1212 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1213 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1214 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1215 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1216 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1217
, REASON = PARS1218 , MGBADDR = mgbaddr

, MGB = mgb
, REASON = PARS1219
, REASON = PARS1220 , MGBADDR = mgbaddr

, MGB = mgb

�

�
, REMOTE = NO

, REMOTE = YES , HANDLE = handle
��

parameters-4

�� , REASON = BADPARM
, REASON = ERROR , DIAG = diag
, REASON = ENVNA

�

�
, REMOTE = NO

, REXX = NO
, REMOTE = YES , HANDLE = handle

��

HZSFMSG macro

316 IBM Health Checker for z/OS User's Guide

parameters-5

��
, SEVERITY = SYSTEM

, SEVERITY = NONE
, SEVERITY = LOW
, SEVERITY = MED
, SEVERITY = HI
, SEVERITY = VALUE , SEVERITYVAL = severityval

, ID = id �

� , IDLEN = idlen , TEXT = text , TEXTLEN = textlen �

�
, EXPL = NO_EXPL , EXPLLEN = 0
, EXPL = expl , EXPLLEN = expllen

�

�
, SYSACT = NO_SYSACT , SYSACTLEN = 0
, SYSACT = sysact , SYSACTLEN = sysactlen

�

�
, ORESP = NO_ORESP , ORESPLEN = 0
, ORESP = oresp , ORESPLEN = oresplen

�

�
, SPRESP = NO_SPRESP , SPRESPLEN = 0
, SPRESP = spresp , SPRESPLEN = spresplen

�

�
, PROBD = NO_PROBD , PROBDLEN = 0
, PROBD = probd , PROBDLEN = probdlen

�

�
, SOURCE = NO_SOURCE , SOURCELEN = 0
, SOURCE = source , SOURCELEN = sourcelen

�

�
, REFDOC = NO_REFDOC , REFDOCLEN = 0
, REFDOC = refdoc , REFDOCLEN = refdoclen

�

�
, AUTOMATION = NO_AUTOMATION , AUTOMATIONLEN = 0
, AUTOMATION = automation , AUTOMATIONLEN = automationlen

��

parameters-6

�� , ID = id , IDLEN = idlen , TEXT = text , TEXTLEN = textlen ��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the HZSFMSG
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 317

,ABENDRESULT=abendresult
An optional output parameter, which is to contain diagnostic information
about this invocation, when the result is Abend s290. The information is in
"readable" EBCDIC.

Macro action
Result value returned

RC=0 OK

RC>0 HZSFMSG RC=rc RSN=rsn

ABEND
HZSFMSG ABEND 290/rsn Message=msgnum Insert=insertnum
MsgTbleOffset=offset MsgSegmentData='hex data'X
AbendData1=datafield1 AbendDatan=datafieldn

To code: Specify the RS-type address, or address in register (2)-(12), of a
256-character field.

,AUTOMATION=automation
,AUTOMATION=NO_AUTOMATION

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the automation information for
the message request. The length of the automation information text is specified
by the AUTOMATIONLEN parameter. The default is NO_AUTOMATION.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,AUTOMATIONLEN=automationlen
,AUTOMATIONLEN=0

When AUTOMATION=automation, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the automation information text with a maximum of
65535. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. automationlen must be in the
range 1 through 65535.

,DIAG=diag
When REASON=ERROR and REQUEST=HZSMSG are specified, a required
input parameter, which is displayed as hex data in message output to provide
diagnostic information for the failure that is being reported. There is no
pre-defined format for this data; it may well be internal component diagnostic
data.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,DIAG=diag
When REASON=ERROR and REQUEST=STOP are specified, a required input
parameter, which is displayed as hex data in message output to provide
diagnostic information for the failure that is being reported. There is no
pre-defined format for this data; it may well be internal component diagnostic
data.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXPL=expl

HZSFMSG macro

318 IBM Health Checker for z/OS User's Guide

,EXPL=NO_EXPL
When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the explanation text for the
message request. The length of the explanation text is specified by the
EXPLLEN parameter. The default is NO_EXPL.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,EXPLLEN=expllen
,EXPLLEN=0

When EXPL=expl, REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG
are specified, a required input parameter that contains the length of the
explanation text with a maximum of 65535. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. expllen must be in the range 1
through 65535.

,HANDLE=handle
When REMOTE=YES and REQUEST=CHECKMSG are specified, a required
input parameter that specifies a handle (token) that identifies the check. This
handle was returned via the HANDLE parameter of the HZSADDCK macro
for a REMOTE=YES REXX=NO check. The handle is in REXX variable
hzs_handle for a REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,HANDLE=handle
When REMOTE=YES and REQUEST=DIRECTMSG are specified, a required
input parameter that specifies a handle (token) that identifies the check. This
handle was returned via the HANDLE parameter of the HZSADDCK macro
for a REMOTE=YES REXX=NO check. The handle is in REXX variable
hzs_handle for a REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,HANDLE=handle
When REMOTE=YES and REQUEST=HZSMSG are specified, a required input
parameter that specifies a handle (token) that identifies the check. This handle
was returned via the HANDLE parameter of the HZSADDCK macro for a
REMOTE=YES REXX=NO check. The handle is in REXX variable hzs_handle
for a REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,HANDLE=handle
When REMOTE=YES and REQUEST=STOP are specified, a required input
parameter that specifies a handle (token) that identifies the check. This handle
was returned via the HANDLE parameter of the HZSADDCK macro for a
REMOTE=YES REXX=NO check. The handle is in REXX variable hzs_handle
for a REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,HANDLE=handle
When REMOTE=YES and REQUEST=DOM are specified, a required input
parameter that specifies a handle (token) that identifies the check. This handle

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 319

was returned via the HANDLE parameter of the HZSADDCK macro for a
REMOTE=YES REXX=NO check. The handle is in REXX variable hzs_handle
for a REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,ID=id
When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, a required input parameter that is an up to 10 character text value
that appears as the message identifier. The length of the message identifier is
specified by the IDLEN parameter. The recommended message identifier
format is ccccHmmmms:
v cccc is the component identifier, such as ISG for global resource

serialization.
v the required H represents IBM Health Checker for z/OS
v mmmm is the message number. For example, in message identifier

ISGH101E, 101 is the message number
v s is the severity code for the message: E for exception messages and I for

information messages

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ID=id
When REASON=CHECKINFO and REQUEST=DIRECTMSG are specified, a
required input parameter that is an up to 10 character text value that appears
as the message identifier. The length of the message identifier is specified by
the IDLEN parameter. The recommended message identifier format is
ccccHmmmms:
v cccc is the component identifier, such as ISG for global resource

serialization.
v the required H represents IBM Health Checker for z/OS
v mmmm is the message number. For example, in message identifier

ISGH101E, 101 is the message number
v s is the severity code for the message: E for exception messages and I for

information messages

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,IDLEN=idlen
When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, a required input parameter that contains the length of the message
identifier.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. idlen must be in the range 1
through 10.

,IDLEN=idlen
When REASON=CHECKINFO and REQUEST=DIRECTMSG are specified, a
required input parameter that contains the length of the message identifier.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. idlen must be in the range 1
through 10.

,MF=S

HZSFMSG macro

320 IBM Health Checker for z/OS User's Guide

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MGB=mgb
When REQUEST=CHECKMSG is specified, a required input parameter that is
the MGB control block used to describe the message request. The contents of
the MGB are as described under the MGBADDR parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1201 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1202 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 321

,MGB=mgb
When REASON=PARS1203 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1205 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1206 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1207 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1208 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1209 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1210 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

HZSFMSG macro

322 IBM Health Checker for z/OS User's Guide

,MGB=mgb
When REASON=PARS1211 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1212 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1213 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1214 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1215 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1216 and REQUEST=HZSMSG are specified, a required
input parameter that is the MGB control block used to describe the message
request. The contents of the MGB are as described under the MGBADDR
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MGB=mgb
When REASON=PARS1218 or REASON=PARS1220 and REQUEST=HZSMSG
are specified, a required input parameter that is the MGB control block used to
describe the message request. The contents of the MGB are as described under
the MGBADDR parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 323

,MGBADDR=mgbaddr
When REQUEST=CHECKMSG is specified, a required input parameter of the
MGB control block used to describe the message request. The MGB identifies
which message in the check's message table is requested and describes inserts
to be used in that message. The HZSMGB macro maps the MGB (structure
name HZSMGB or HZSMGB1, according to the MGBFORMAT parameter of
HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1201 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1202 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1203 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1205 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1206 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

HZSFMSG macro

324 IBM Health Checker for z/OS User's Guide

,MGBADDR=mgbaddr
When REASON=PARS1207 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1208 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1209 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1210 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1211 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1212 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1213 and REQUEST=HZSMSG are specified, a required

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 325

input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1214 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1215 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1216 and REQUEST=HZSMSG are specified, a required
input parameter of the MGB control block used to describe the message
request. The MGB describes inserts to be used in the message. The HZSMGB
macro maps the MGB (structure name HZSMGB or HZSMGB1, according to
the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBADDR=mgbaddr
When REASON=PARS1218 or REASON=PARS1220 and REQUEST=HZSMSG
are specified, a required input parameter of the MGB control block used to
describe the message request. The MGB describes inserts to be used in the
message. The HZSMGB macro maps the MGB (structure name HZSMGB or
HZSMGB1, according to the MGBFORMAT parameter of HZSFMSG).

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MGBFORMAT=0
,MGBFORMAT=1

An optional parameter, which indicates the format of the MGB provided by the
MGBADDR or MGB parameter. The default is MGBFORMAT=0.

,MGBFORMAT=0
indicates that the format 0 MGB (mapped by dsect HZSMGB in macro
HZSMGB is used).

,MGBFORMAT=1
indicates that the format 1 MGB (mapped by dsect HZSMGB1 in macro
HZSMGB is used).

,MSGTABLE=msgtable

HZSFMSG macro

326 IBM Health Checker for z/OS User's Guide

,MSGTABLE=HZSADDCK
When REMOTE=NO and REQUEST=CHECKMSG are specified, an optional
input parameter that is the message table for the processing to use. This is
intended to be used by "service routines" not owned by the check itself that are
called by a check routine and write messages on behalf of the check, and that
do not want their messages within the check's msgtable. The default is
HZSADDCK. which indicates that the Msgtable provided on the HZSADDCK
call is to be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MSGTABLE=msgtable
When REXX=NO, REMOTE=YES and REQUEST=CHECKMSG are specified, a
required input parameter that is the message table for the processing to use.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ORESP=oresp
,ORESP=NO_ORESP

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the operator response for the
message request. The length of the operator response text is specified by the
ORESPLEN parameter. The default is NO_ORESP.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ORESPLEN=oresplen
,ORESPLEN=0

When ORESP=oresp, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the operator response text with a maximum of 65535.
The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. oresplen must be in the range
1 through 65535.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 327

assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, which supports all parameters except those specifically referenced in
higher versions.

v 2, which supports both the following parameters and those from version 1:

Parameters for PLISTVER=2
AUTOMATION ORESPLEN SPRESP
AUTOMATIONLEN PROBD SPRESPLEN
EXPL PROBDLEN SYSACT
EXPLLEN REFDOC SYSACTLEN
ID REFDOCLEN TEXT
IDLEN SOURCE TEXTLEN
ORESP SOURCELEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1, or 2

,PROBD=probd
,PROBD=NO_PROBD

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the problem description for the
message request. The length of the problem description text is specified by the
PROBDPLEN parameter. The default is NO_PROBD.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,PROBDLEN=probdlen
,PROBDLEN=0

When PROBD=probd, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the problem description text with a maximum of 65535.
The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. probdlen must be in the range
1 through 65535.

,REASON=CHECKEXCEPTION
,REASON=CHECKINFO
,REASON=CHECKREPORT

When REQUEST=DIRECTMSG is specified, a required parameter that indicates
the class of the message being issued.

,REASON=CHECKEXCEPTION
indicates that an exception message is being issued.

,REASON=CHECKINFO
indicates that an information message is being issued.

,REASON=CHECKREPORT
indicates that a report message is being issued.

,REASON=ERROR
,REASON=PARS1201
,REASON=PARS1202

HZSFMSG macro

328 IBM Health Checker for z/OS User's Guide

,REASON=PARS1203
,REASON=PARS1204
,REASON=PARS1205
,REASON=PARS1206
,REASON=PARS1207
,REASON=PARS1208
,REASON=PARS1209
,REASON=PARS1210
,REASON=PARS1211
,REASON=PARS1212
,REASON=PARS1213
,REASON=PARS1214
,REASON=PARS1215
,REASON=PARS1216
,REASON=PARS1217
,REASON=PARS1218
,REASON=PARS1219
,REASON=PARS1220

When REQUEST=HZSMSG is specified, a required parameter that indicates the
type of situation being reported.

,REASON=ERROR
indicates that the message is being issued because of an error. The system
is to issue message HZS1002E. This message is also recorded in the check's
message buffer.

The state of the check is changed to error. The check remains active.

,REASON=PARS1201
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1201E, parm IS REQUIRED BUT WAS NOT
SPECIFIED. The caller must provide exactly one insert, containing the
parameter that is required. The insert length is limited to 16.

,REASON=PARS1202
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1202E, parm WAS SPECIFIED BUT IS NOT
ALLOWED. The caller must provide exactly one insert, containing the
parameter that was specified. The insert length is limited to 16.

,REASON=PARS1203
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1203E, PARAMETER parm VALUE value IS NOT
VALID. The caller must provide exactly two inserts, containing the
parameter name and the value that was specified, respectively. The length
of the first insert is limited to 16. The length of the second insert is limited
to 17.

,REASON=PARS1204
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1204E, UNEXPECTED END OF PARAMETER
STRING. The caller must provide no inserts.

,REASON=PARS1205
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1205E, A PARAMETER WAS EXPECTED BUT string
WAS FOUND INSTEAD. The caller must provide exactly one insert,
containing the string that was found. The insert length is limited to 17.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 329

,REASON=PARS1206
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1206E, A DELIMITER WAS EXPECTED BUT string
WAS FOUND INSTEAD The caller must provide exactly one insert,
containing the string that was found. The insert length is limited to 17.

,REASON=PARS1207
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1207E, PARAMETER parm HAS TOO MANY
VALUES, n. The caller must provide exactly two inserts, containing the
parameter name and the number of values, respectively. The number of
values is to be provided not as a printable field but as a halfword or
fullword field containing the information. The length of the first insert is
limited to 16. The length of the second insert is limited to 4.

,REASON=PARS1208
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1208E, PARAMETER parm HAS TOO FEW VALUES,
n. The caller must provide exactly two inserts, containing the parameter
name and the number of values, respectively. The number of values is to
be provided not as a printable field but as a halfword or fullword field
containing the information. The length of the first insert is limited to 16.
The length of the second insert is limited to 4.

,REASON=PARS1209
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1209E, PARAMETER parm IS NOT RECOGNIZED.
The caller must provide exactly one insert, containing the parameter that
was not recognized. The insert length is limited to 17.

,REASON=PARS1210
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1210E, PARAMETER parm IS MISSING ITS VALUE.
The caller must provide exactly one insert, containing the parameter name.
The insert length is limited to 16.

,REASON=PARS1211
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1211E, PARAMETER parm VALUE value IS TOO
LARGE. The caller must provide exactly two inserts, containing the
parameter name and the value, respectively. The length of the first insert is
limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1212
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1212E, PARAMETER parm VALUE value IS TOO
SMALL. The caller must provide exactly one insert, containing the
parameter name. The length of the first insert is limited to 16. The length
of the second insert is limited to 17.

,REASON=PARS1213
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1213E, PARAMETER parm VALUE IS TOO LONG.
The caller must provide exactly two inserts, containing the parameter name
and the value, respectively. The length of the first insert is limited to 16.
The length of the second insert is limited to 17.

,REASON=PARS1214
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1214E, PARAMETER parm VALUE value IS TOO

HZSFMSG macro

330 IBM Health Checker for z/OS User's Guide

SHORT. The caller must provide exactly two inserts, containing the
parameter name and the value, respectively. The length of the first insert is
limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1215
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1215E, PARAMETER parm VALUE value IS NOT
DECIMAL. The caller must provide exactly two inserts, containing the
parameter name and the value, respectively. The length of the first insert is
limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1216
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1216E, PARAMETER parm VALUE value IS NOT
HEXADECIMAL. The caller must provide exactly two inserts, containing
the parameter name and the value, respectively. The length of the first
insert is limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1217
indicates that the message is being issued because parameters were
provided but none were expected, HZS1217E, PARAMETERS WERE
SPECIFIED BUT ARE NOT ALLOWED. The caller must provide no inserts.

,REASON=PARS1218
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1218E, PARAMETER NUMBER n WAS NOT
PROCESSED. The caller must provide exactly one insert, containing the
parameter that was not recognized. The number of values is to be
provided not as a printable field but as a halfword or fullword field
containing the information. The length of the insert is limited to 4.

,REASON=PARS1219
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1219E, MIXING POSITIONAL AND KEYWORD
FORMATS IS NOT ALLOWED. The caller must provide no inserts.

,REASON=PARS1220
indicates that the message is being issued due to a parameter parsing error,
issuing message HZS1220E, parm1 IS NOT ALLOWED WITH parm2. The
caller must provide two inserts, containing parm1 and parm2. The length of
each insert is limited to 24.

,REASON=BADPARM
,REASON=ERROR
,REASON=ENVNA

When REQUEST=STOP is specified, a required parameter that indicates the
type of situation being reported

,REASON=BADPARM
indicates that the parameters are not valid. The system is to issue message
HZS1001E. This message is also recorded in the check's message buffer.

The state of the check is changed to parameter error. The check remains
disabled until the PARMS are changed, presumably to address the error.

,REASON=ERROR
indicates that the message is being issued because of an error. The system
is to issue message HZS1002E.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 331

The state of the check is changed to error. The check is disabled. If a
request is made to run the check, the check routine receives control for
check initialization.

,REASON=ENVNA
indicates that the check is not applicable in the current system
environment. Message HZS1003E is written as hardcopy-only and is also
written to the check's message buffer.

The state of the check is changed to not applicable. The check is disabled.
The check will not be called again until the reason for the condition is
resolved and the check is refreshed (or its parameter is changed).

,REFDOC=refdoc
,REFDOC=NO_REFDOC

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the reference documentation for
the message request. The length of the reference documentation text is
specified by the REFDOCLEN parameter. The default is NO_REFDOC.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,REFDOCLEN=refdoclen
,REFDOCLEN=0

When REFDOC=refdoc, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the reference documentation text with a maximum of
65535. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. refdoclen must be in the range
1 through 65535.

,REMOTE=NO
,REMOTE=YES

When REQUEST=CHECKMSG is specified, an optional parameter, which
identifies the locale of the check. The default is REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,REMOTE=NO
,REMOTE=YES

When REQUEST=DIRECTMSG is specified, an optional parameter, which
identifies the locale of the check. The default is REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,REMOTE=NO

HZSFMSG macro

332 IBM Health Checker for z/OS User's Guide

,REMOTE=YES
When REQUEST=HZSMSG is specified, an optional parameter, which
identifies the locale of the check. The default is REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,REMOTE=NO
,REMOTE=YES

When REQUEST=STOP is specified, an optional parameter, which identifies the
locale of the check. The default is REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,REMOTE=NO
,REMOTE=YES

When REQUEST=DOM is specified, an optional parameter, which identifies the
locale of the check. The default is REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

REQUEST=CHECKMSG
REQUEST=DIRECTMSG
REQUEST=HZSMSG
REQUEST=STOP
REQUEST=DOM

A required parameter that identifies the source of the message text.

REQUEST=CHECKMSG
indicates that the message text is provided in the message table identified
by the MSGTBL parameter of the HZSADDCK macro when the check was
added.

REQUEST=DIRECTMSG
indicates that the message content is not provided by any message table,
but is provided directly via additional parameters to HZSFMSG.

You can use the same pre-defined system symbols for commonly used
phrases in your DIRECTMSG message text as you can in a message table.

Note that using a plain ampersand character (&) is not recommended
outside of the name of a supported pre-defined symbol. Use the symbol
& instead. If you use a plain ampersand in your DIRECTMSG text,
HZSFMSG issues a warning, RC=4 RSN=41A, but will still issue the
DIRECTMSG message.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 333

|
|

|
|
|
|
|

REQUEST=HZSMSG
indicates that the message text is provided by IBM Health Checker for
z/OS.

REQUEST=STOP
indicates that the system is to stop calling this check. The message text is
provided by IBM Health Checker for z/OS.

REQUEST=DOM
indicates that the system is to issue DOM requests at this time for all
outstanding WTOs for this check from all previous iterations.
REQUEST=DOM is:
v only allowed before any check exception messages have been sent in

the current check iteration.
v only allowed for checks which have been added with parameter

DOM(CHECK), see macro HZSADDCK for details.

If a check with attribute DOM(CHECK) does not trigger a DOM request
for previous WTOs this way, check exception messages of the current check
iteration will only be stored in the message buffer and no WTOs will be
sent for them.

A check can use this to avoid repeated WTOs for identical exceptions in
consecutive check iterations. The remaining code flow stays exactly the
same, in particular HZSFMSG is still called, the (current and possibly
refreshed) message text gets copied into the message buffer etc. The system
will just not automatically issue a DOM request for previous WTOs and it
will not issue a new WTO for those HZSFMSG calls where the check still
has WTOs from a previous iteration for which DOM has not been issued
yet.

A check iteration without any check exceptions will not trigger automatic
DOM requests for outstanding WTOs for a check with attribute
DOM(CHECK). For such iterations the check is required to issue
HZSFMSG REQUEST=DOM at the latest at the very end of the iteration,
otherwise the system will disable the check.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,REXX=NO
When REMOTE=YES and REQUEST=CHECKMSG are specified, an optional
parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is not a REXX check.

,REXX=NO
When REMOTE=YES and REQUEST=DIRECTMSG are specified, an optional
parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is not a REXX check.

HZSFMSG macro

334 IBM Health Checker for z/OS User's Guide

,REXX=NO
When REMOTE=YES and REQUEST=STOP are specified, an optional
parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is not a REXX check.

,REXX=NO
When REMOTE=YES and REQUEST=DOM are specified, an optional
parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is not a REXX check.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SEVERITY=SYSTEM
,SEVERITY=NONE
,SEVERITY=LOW
,SEVERITY=MED
,SEVERITY=HI
,SEVERITY=VALUE

When REQUEST=CHECKMSG is specified, an optional parameter that is the
check exception message severity to use. The SEVERITY keyword is:
v only allowed for check exceptions (not for info or report messages)
v only allowed for checks which have been added with parameter

AllowDynSev(YES), see macro HZSADDCK.

The default is SEVERITY=SYSTEM.

,SEVERITY=SYSTEM
indicates that the system will determine the severity from the SEVERITY
specified at ADD CHECK time, or on any subsequent UPDATE CHECK
statements.

,SEVERITY=NONE
indicates that you're assigning no severity to this exception message

,SEVERITY=LOW
indicates that this is a low-severity check exception.

,SEVERITY=MED
indicates that this is a medium-severity check exception.

,SEVERITY=HI
indicates that this is a high-severity check exception.

,SEVERITY=VALUE
indicates that the value specified by SEVERITYVAL is to be used.

,SEVERITY=SYSTEM
,SEVERITY=NONE
,SEVERITY=LOW
,SEVERITY=MED
,SEVERITY=HI

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 335

,SEVERITY=VALUE
When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional parameter that is the check exception message severity to
use. The SEVERITY keyword is only allowed for checks which have been
added with parameter AllowDynSev(YES), see macro HZSADDCK. The default
is SEVERITY=SYSTEM.

,SEVERITY=SYSTEM
indicates that the system will determine the severity from the SEVERITY
specified at ADD CHECK time, or on any subsequent UPDATE CHECK
statements.

,SEVERITY=NONE
indicates that you're assigning no severity to this exception message

,SEVERITY=LOW
indicates that this is a low-severity check exception.

,SEVERITY=MED
indicates that this is a medium-severity check exception.

,SEVERITY=HI
indicates that this is a high-severity check exception.

,SEVERITY=VALUE
indicates that the value specified by SEVERITYVAL is to be used.

,SEVERITYVAL=severityval
When SEVERITY=VALUE and REQUEST=CHECKMSG are specified, a
required input parameter, that indicates the severity to be used. It must be one
of the values defined by the equates generated by the list form of the
HZSFMSG macro. For example HZSFMSG MF=(L,xxx) generates
xxx_XSEVERITY_yyy, where yyy is one of SYSTEM, NONE, LOW, MED, or HI.
The corresponding numeric values are 0 (SYSTEM), 255 (NONE), 4 (LOW), 8
(MED), and 12 (HI).

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,SEVERITYVAL=severityval
When SEVERITY=VALUE, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter, that
indicates the severity to be used. It must be one of the values defined by the
equates generated by the list form of the HZSFMSG macro. For example
HZSFMSG MF=(L,xxx) generates xxx_XSEVERITY_yyy, where yyy is one of
SYSTEM, NONE, LOW, MED, or HI. The corresponding numeric values are 0
(SYSTEM), 255 (NONE), 4 (LOW), 8 (MED), and 12 (HI).

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,SOURCE=source
,SOURCE=NO_SOURCE

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the message source for the
message request. The length of the message source text is specified by the
SOURCELEN parameter. The default is NO_SOURCE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SOURCELEN=sourcelen

HZSFMSG macro

336 IBM Health Checker for z/OS User's Guide

|
|

|
|

,SOURCELEN=0
When SOURCE=source, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the message source text with a maximum of 65535. The
default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. sourcelen must be in the range
1 through 65535.

,SPRESP=spresp
,SPRESP=NO_SPRESP

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the system programmer response
for the message request. The length of the system programmer response text is
specified by the SPRESPLEN parameter. The default is NO_SPRESP.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SPRESPLEN=spresplen
,SPRESPLEN=0

When SPRESP=spresp, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the system programmer response text with a maximum
of 65535. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. spresplen must be in the range
1 through 65535.

,SYSACT=sysact
,SYSACT=NO_SYSACT

When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, an optional input parameter that is the system action for the message
request. The length of the system action text is specified by the SYSACTLEN
parameter. The default is NO_SYSACT.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SYSACTLEN=sysactlen
,SYSACTLEN=0

When SYSACT=sysact, REASON=CHECKEXCEPTION and
REQUEST=DIRECTMSG are specified, a required input parameter that
contains the length of the system action text with a maximum of 65535. The
default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. sysactlen must be in the range
1 through 65535.

,TEXT=text
When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, a required input parameter that is the message text for the message
request. The length of the message text is specified by the TEXTLEN
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 337

,TEXT=text
When REASON=CHECKINFO and REQUEST=DIRECTMSG are specified, a
required input parameter that is the message text for the message request. The
length of the message text is specified by the TEXTLEN parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,TEXT=text
When REASON=CHECKREPORT and REQUEST=DIRECTMSG are specified, a
required input parameter that is the message text for the message request. The
length of the message text is specified by the TEXTLEN parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,TEXTLEN=textlen
When REASON=CHECKEXCEPTION and REQUEST=DIRECTMSG are
specified, a required input parameter that contains the length of the message
text with a maximum of 65535.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. textlen must be in the range 1
through 65535.

,TEXTLEN=textlen
When REASON=CHECKINFO and REQUEST=DIRECTMSG are specified, a
required input parameter that contains the length of the message text with a
maximum of 65535.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. textlen must be in the range 1
through 65535.

,TEXTLEN=textlen
When REASON=CHECKREPORT and REQUEST=DIRECTMSG are specified, a
required input parameter that contains the length of the message text with a
maximum of 65535.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. textlen must be in the range 1
through 65535.

ABEND Codes
058 The IBM Health Checker for z/OS address space terminated while this call

was in process.

290 HZSFMSG service failed a request. There may be additional diagnostic
data in the registers at time of the abend.

Register
Diagnostic data when REQUEST=CHECKMSG fails

2 The message id passed in MGB_MessageNumber

3 The number of variable inserts passed in MGB_INSERT_CNT

4 The PQE address passed to the Check routine

5 The number of variables that have not been processed

6 Addition information for internal diagnosis by IBM

7 Address of data in the message table that was being processed

HZSFMSG macro

338 IBM Health Checker for z/OS User's Guide

8 Data pointed to by R7, or the address of the check routine

An abend 290 will be issued if an error in the request is detected. Addition detail
is recorded in LOGREC for this error.

In the following HZSFMSG abend reason codes, the bytes designated "xx" are for
diagnostic purposes and have no significance to the external interface.

User errors are indicated by an abend reason code of the form xxxx4xxx.

Component errors are indicated by an abend reason code of the form xxxx1xxx.

Reason Code (Hex)
Explanation

xxxx4106
The HZSMGB was not avaliable in storage in the caller's key.

xxxx4107
A variable insert in the HZSMGB had a bad address or length.

xxxx4108
The message number could not be found in the message table.

xxxx4109
The MGB_INSERT_CNT contain a value that was higher than the
maximum number of insert allowed.

xxxx410A
The message table is in error. A message insert was requested in the
incorrect sequence.

xxxx410B
A message insert is required to complete the message, but it was not
provided.

xxxx410C
A message insert was provided, but it was not needed to complete the
message.

xxxx410D
A message insert address was zero.

xxxx410E
A message insert length was not valid for the requested variable. A text
insert must be from 0-256, a hex insert must be from 1-100, and the rest
must be 8 charaters or less.

xxxx410F
The parameter list was not available in storage in the caller's key.

xxxx4110
The address of the HZSMGB area is zero when the request required a
completed HZSMGB.

xxxx4111
The parameter version is not supported.

xxxx4112
The calling routine is not a check routine, or the environment is not valid.
For example due to:
v missing MESSAGETABLE

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 339

v missing REMOTE(YES)
v caller not in TASK mode
v invalid REXX home

xxxx4113
The calling routine did not provide a valid handle.

xxxx4114
The calling remote routine is not a check routine.

xxxx4115
ABENDRESULT was specified, but could not be set because it is not in
storage in the caller's key.

xxxx4016
The variable defined in the HZSMGB area has a length greater than the
value defined by Maxlen in the message table.

xxxx4116
The variable defined in the HZSMGB area has a length greater than the
value defined by Fieldsize in the message table.

xxxx4117
The message table supplied by a remote check is not valid. Make sure that
the message table was built via the HZSMSGEN exec and has not been
overlaid.

xxxx4118
A remote check issued HZSFMSG other than from the INITRUN or RUN
function

xxxx4119
HZSFMSG has been called with an unrecognized REQUEST type

xxxx4120
HZSFMSG has been called with an unrecognized REASON for this
particular REQUEST type

xxxx4122
IDLEN parameter is out of range

xxxx4123
TEXTLEN parameter is out of range

xxxx4124
ID parameter is null

xxxx4125
TEXT parameter is null

xxxx412B
EXPL parameter is null

xxxx412C
EXPLLEN parameter is out of range

xxxx412E
SYSACT parameter is null

xxxx412F
SYSACTLEN parameter is out of range

xxxx4130
ORESP parameter is null

HZSFMSG macro

340 IBM Health Checker for z/OS User's Guide

xxxx4131
ORESPLEN parameter is out of range

xxxx4132
SPRESP parameter is null

xxxx4133
SPRESPLEN parameter is out of range

xxxx4134
PROBD parameter is null

xxxx4135
PROBDLEN parameter is out of range

xxxx4136
SOURCE parameter is null

xxxx4137
SOURCELEN parameter is out of range

xxxx4138
REFDOC parameter is null

xxxx4139
REFDOCLEN parameter is out of range

xxxx413A
AUTOMATION parameter is null

xxxx413B
AUTOMATIONLEN parameter is out of range

xxxx4140
REQUEST=DOM is not allowed for DOM(SYSTEM)

xxxx4141
REQUEST=DOM is not allowed after first check exception in a check
iteration

xxxx4150
Non-SYSTEM SEVERITY or SEVERITYVAL not allowed for an
AllowDynSev(NO) check

xxxx4151
Bad 'sev' in SEVERITY(sev)

xxxx4152
Bad 'val' in SEVERITYVAL(val)

xxxx1001
An unexpected internal error occurred.

xxxx1013
The message table contains data that cannot be processed.

xxxx1014
The Pqe control block was not found.

xxxx1015
A message variable description was bad.

xxxx1017
The message table contains data that incorrectly defines a Maxlen value.
The table is corrupted.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 341

xxxx1018
The message table contains data that allows a WTO line to exceed 71
characters. The table is corrupted.

xxxx1019
The Hcklog control block contains errors.

Return and Reason Codes
When the HZSFMSG macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 48. Return and Reason Codes for the HZSFMSG Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzsfmsgRc_OK

Meaning: The request completed successfully.

Action: None required

4 — Equate Symbol: HzsfmsgRc_Warn

Meaning: Warning.

Action: Refer to action under the individual reason code.

4 xxxx041A Equate Symbol: HzsfmsgRsn_DirectMsgUseAmp

Meaning: Unrecognized pre-defined symbol, or plain & in a DIRECTMSG
message.

Action: Use only supported symbols, or use pre-defined symbol & for a
plain & instead.

8 — Equate Symbol: HzsfmsgRc_InvParm

Meaning: HZSFMSG request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0837 Equate Symbol: HzsfmsgRsn_ErrorLimitExceeded

Meaning: The check routine has abended too many times, messages will not be
processed.

Action: Fix the check routine.

0C — Equate Symbol: HzsfmsgRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

HZSFMSG macro

342 IBM Health Checker for z/OS User's Guide

|

|

|

|

|
|

|
|

Table 48. Return and Reason Codes for the HZSFMSG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C01 Equate Symbol: HzsfmsgRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: Re-issue the request when the service is available

10 — Equate Symbol: HzsfmsgRc_CompError

Meaning: Component Error. An associated dump and logrec entry has been
created using abend 290 and the reason code.

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzsfmsgRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

10 xxxx1013 Equate Symbol: HzsfmsgRsn_MsgTblError

Meaning: The message table could not be processed.

Action: Report the problem to the system programmer

10 xxxx1014 Equate Symbol: HzsfmsgRsn_Pqe_NotValid

Meaning: The Pqe control block could not be found.

Action: Report the problem to the system programmer

10 xxxx1015 Equate Symbol: HzsfmsgRsn_BadMsgTblSegment

Meaning: A message variable is incorrectly defined in the message table.

Action: Report the problem to the system programmer

10 xxxx1017 Equate Symbol: HfmsgAbend_BadMsgTblOutLen

Meaning: The message table contains data that incorrectly defines a Maxlen
value. The table is corrupted.

Action: Report the problem to the system programmer

10 xxxx1018 Equate Symbol: HzsfmsgAbend_MsgTblMissingNewLine

Meaning: The message table contains data that allows a WTO line to exceed 71
characters. The table is corrupted

Action: Report the problem to the system programmer

10 xxxx1019 Equate Symbol: HzsfmsgRsn_HckLog_NotValid

Meaning: The Hcklog control block contains errors.

Action: Report the problem to the system programmer

Examples

Example 1: Operation:
v Issue a message with two inserts where the first insert is known at assembly

time and the second is an 8-character name not known at assembly time.

The code is as follows.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 343

* Issue a message with two inserts *

SYSSTATE ARCHLVL=1 * save regs, get dynamic storage, chain saveareas,

MVC MGB_MsgIVal(L’Insert2Val),MyMod Insert value
DROP 3
ST 3,MGB_Inserts+4 Save insert address
HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,FMSGL)

DROP 2
*
* Place code to check return/reason codes here
*
* free dynamic storage, restore regs

BR 14
MyMod DC CL8’MYMODULE’
* Area for first insert
Insert1Area DS 0H
Insert1Len DC AL2(L’Insert1Val)
Insert1Val DC C’This is the first insert’

LTORG ,
HZSZCONS , Return code information
HZSMGB , Insert mapping

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
* Area for 2 inserts (HZSMGB_LEN accounts for one, so
* we add one more "length of MGB_Inserts")
TheMGBAddr DS A
TheMGBArea DS CL(HZSMGB_LEN+1*L’MGB_Inserts)
* Area for second insert
Insert2Area DS 0H
Insert2Len DS CL(L’MGB_MsgInsertD_Header)
Insert2Val DS CL(L’MyMod)

HZSFMSG MF=(L,FMSGL),PLISTVER=MAX
DYNAREA_LEN EQU *-DYNAREA

Example 2: Operation:
v Same as example 1, but using MGBFORMAT=1 and the MGB parameter rather

than the MGBADDR parameter.

The code is as follows.

* Issue a message with two inserts, MGBFORMAT=1. *
* For MGBFORMAT=0, it was necessary to move the insert *
* data if it was not in the form of a halfword length *
* followed by the data. *
* For MGBFORMAT=1, that is not necessary since the length *
* is specified in the MGB_MsgInsertDesc DSECT. *

SYSSTATE ARCHLVL=1
* save regs, get dynamic storage, chain saveareas, set usings
* somewhere there needs to be code to set Insert2Val

LA 2,TheMGB1Area
USING HZSMGB1,2
MVC MGB1_MessageNumber,=F’1’ Message 1
MVC MGB1_insert_cnt,=F’2’ Two inserts

* address first insert description
LA 3,MGB1_insert_structure_Entries
USING MGB1_MsgInsertDesc,3

* fill in first insert description
LA 4,L’Insert1Val
ST 4,MGB1_MsgInsertDesc_Length
LA 4,Insert1Val
ST 4,MGB1_MsgInsertDesc_Addr

* move on to next insert description
LA 3,MGB1_insert_structure_Entries_Len(,3)

* fill in second insert description
LA 4,L’Insert2Val
ST 4,MGB1_MsgInsertDesc_Length
MVC Insert2Val(L’Insert2Val),MyMod Insert value
LA 4,Insert2Val
ST 4,MGB1_MsgInsertDesc_Addr
DROP 3
HZSFMSG REQUEST=CHECKMSG,MGB=TheMGB1Area, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

HZSFMSG macro

344 IBM Health Checker for z/OS User's Guide

MGBFORMAT=1,MF=(E,FMSGL)
DROP 2

*
* Place code to check return/reason codes here
*
* free dynamic storage, restore regs

BR 14
MyMod DC CL8’MYMODULE’
* Area for first insert
Insert1Val DC C’This is a static insert’

LTORG ,
HZSZCONS , Return code information
HZSMGB , Insert mapping

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
* Area for 2 inserts (HZSMGB1_LEN accounts for none,
* we add two "length of MGB1_MsgInsertDesc"

DS 0F
TheMGB1Area DS CL(HZSMGB1_LEN+1*L’MGB1_Inserts)
* Area for second insert
Insert2Val DS CL(L’MyMod)

HZSFMSG MF=(L,FMSGL),PLISTVER=MAX
DYNAREA_LEN EQU *-DYNAREA

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 345

HZSPREAD macro — Read Check Persistent Data

Description
The HZSPREAD macro is an interface used by check routines to read data that has
been preserved in the IBM Health Checker for z/OS Persistent Data data set,
which is allocated using the HZSPDATA ddname in the startup proc, or via the
HZSPDATA statement in a HZSPRMxx parmlib member. Two groups of data are
preserved for an IPL, the first and the most recent.

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: Problem state. PSW key 8-15

When problem state and key 8-15 and not APF authorized,
or when SECCHECK=ALL is specified, the caller must be
authorized for read access to either of the following:

v XFACILIT class resource
HZS.sysname.checkowner.PDATA

v XFACILIT class resource
HZS.sysname.checkowner.checkname.PDATA

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). Control parameters
must be below 2G.

The user-provided buffer (via BUFFER) has the same
requirements and restrictions as the control parameters.

Programming Requirements
v This service is supported only when it is called from a check routine invoked by

IBM Health Checker for z/OS.
v The storage used by this service should be in the same key as the caller.

Restrictions
The caller may not have an FRR established.

Input Register Information
Before issuing the HZSPREAD macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

HZSPREAD macro

346 IBM Health Checker for z/OS User's Guide

|
|

Before issuing the HZSPREAD macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0. Otherwise, used as a work register
by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� HZSPREAD � CHECKOWNER = checkowner , CHECKNAME = checkname
, SECCHECK = UNAUTH

, SECCHECK = ALL
, IPL = CURRENT
, IPL = PRIOR

�

� , INSTANCE = FIRST
, INSTANCE = MOSTRECENT

�

�
, STARTBYTE = FIRST_BYTE

, BUFFER = buffer , DATALEN = datalen , BYTESAVAIL = bytesavail , BYTESPROVIDED = bytesprovided
, STARTBYTE = startbyte

�

�
, RETIPLTOD = retipltod , RETPTIME = retptime

, REMOTE = NO

, REXX = NO
, REMOTE = YES , HANDLE = handle

, REXX = YES

, RETCODE = retcode
�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0

, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

Parameters
The parameters are explained as follows:

HZSPREAD macro

Chapter 12. IBM Health Checker for z/OS HZS macros 347

||||

name
An optional symbol, starting in column 1, that is the name on the HZSPREAD
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,BUFFER=buffer
A required input parameter that is the buffer in which to return the data. The
buffer should be in the same key as the caller.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,BYTESAVAIL=bytesavail
A required output parameter that indicates the total number of bytes that were
available to be returned. If that number is less than or equal to the sum of the
values provided by the DataLen and StartByte parameters, then all requested
bytes were returned. If that number is greater than the sum of the values
provided by the DataLen and StartByte parameters, then the number of bytes
returned matches the value provided by the DataLen parameter, and
subsequent calls should be made to retrieve the additional data, adding the
value in the StartByte parameter to the value in the DataLen parameter to form
the value for the StartByte parameter in the next call.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,BYTESPROVIDED=bytesprovided
An optional output parameter that indicates the total number of bytes that
were returned by this call. This number is derived by the system from the
values of the StartByte, DataLen, and BytesAvail parameters as described
under the BytesAvail parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,CHECKNAME=checkname
A required input parameter that specifies the name of the check that has saved
persistent data.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

CHECKOWNER=checkowner
A required input parameter that specifies the owner of the check that has
saved persistent data.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,DATALEN=datalen
A required input parameter that contains the number of bytes of data to
return.

When requesting data for a check other than your own, a startbyte of 0 will be
used regardless of what you specify, so you should use a datalen that will
accomplish returning all the data in a single request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,HANDLE=handle
When REMOTE=YES is specified, a required input parameter that specifies a
handle (token) that identifies the check. This handle was returned via the

HZSPREAD macro

348 IBM Health Checker for z/OS User's Guide

|
|
|
|
|

|
|

HANDLE parameter of the HZSADDCK macro for a REMOTE=YES
REXX=NO check. It is provided in REXX variable HZS_HANDLE for a
REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,INSTANCE=FIRST
,INSTANCE=MOSTRECENT

A required parameter that indicates which instance of the data is to be
returned.

,INSTANCE=FIRST
indicates that the first instance of this check's data for the selected IPL
should be returned.

,INSTANCE=MOSTRECENT
indicates that the most recent instance of this check's data for the selected
IPL should be returned.

,IPL=CURRENT
,IPL=PRIOR

A required parameter that indicates which IPL's data is to be returned.

,IPL=CURRENT
indicates that data from this IPL is to be returned.

,IPL=PRIOR
indicates that data from the prior IPL is to be returned.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter

HZSPREAD macro

Chapter 12. IBM Health Checker for z/OS HZS macros 349

list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,REMOTE=NO
,REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is
REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RETIPLTOD=retipltod
An optional output parameter that is to contain the IPL TOD of the persistent
data. It is in STCK format.

HZSPREAD macro

350 IBM Health Checker for z/OS User's Guide

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RETPTIME=retptime
An optional output parameter that specifies the time the persistent data record
was written. It is in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,REXX=NO
,REXX=YES

When REMOTE=YES is specified, an optional parameter, which indicates if this
is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is not a REXX check.

,REXX=YES
indicates that the check is a REXX check.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SECCHECK=UNAUTH
,SECCHECK=ALL

An optional parameter that indicates whether to do RACF security checks. The
default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases. If RACF does not
grant authority, the request is rejected.

,STARTBYTE=startbyte
,STARTBYTE=FIRST_BYTE

An optional input parameter that indicates which byte to begin with. For the
first call, the most likely value would be 0 to indicate the "first byte".
Subsequent calls would most likely use the previous StartByte value plus the
value provided by the DataLen parameter, when the value returned in the
BytesAvail parameter of the previous call exceeded the value provided by the
DataLen parameter.

Note that if reading from a check other than your own a StartByte of 0 is used,
regardless of what you specify. The default is FIRST_BYTE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

ABEND Codes
None.

HZSPREAD macro

Chapter 12. IBM Health Checker for z/OS HZS macros 351

Return and Reason Codes
When the HZSPREAD macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 49. Return and Reason Codes for the HZSPREAD Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzspreadRc_OK

Meaning: The request was successfully processed. Note that, if
your buffer was not large enough, you might not have retrieved
all possible data. Refer to the BytesAvail parameter description for
more information.

Action: None required

8 — Equate Symbol: HzspreadRc_InvParm

Meaning: HZSPREAD request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HzspreadRsn_NotAuthorized

Meaning: Caller is not authorized to access persistent data for this
check

Action: Avoid calling HZSPREAD to access data for a check when
not authorized.

8 xxxx0808 Equate Symbol: HzspreadRsn_BadENV

Meaning: HZSPREAD is supported only when called within the
HZS address space.

Action: Invoke HZSPREAD only within the HZS address space.

8 xxxx0818 Equate Symbol: HzspreadRsn_BadParmlist

Meaning: Error accessing parameter list.

Action: Make sure that the provided parameter list is valid.

8 xxxx082D Equate Symbol: HzspreadRsn_NoMatch

Meaning: No persistent data records exist for this check.

Action: Make sure that you requested the proper information.

8 xxxx0830 Equate Symbol: HzspreadRsn_DataDoesNotExist

Meaning: The startbyte requested for the specified instance is not
available.

Action: Make sure that you requested the proper information.

HZSPREAD macro

352 IBM Health Checker for z/OS User's Guide

Table 49. Return and Reason Codes for the HZSPREAD Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0843 Equate Symbol: HzspreadRsn_SrbMode

Meaning: SRB mode.

Action: Avoid issuing HZSPREAD in SRB mode.

8 xxxx0844 Equate Symbol: HzspreadRsn_NotEnabled

Meaning: Not Enabled.

Action: Avoid using HZSPREAD when not enabled.

8 xxxx0845 Equate Symbol: HzspreadRsn_Locked

Meaning: Locked

Action: Avoid using HZSPREAD when a lock is held.

8 xxxx0846 Equate Symbol: HzspreadRsn_FRR

Meaning: The caller had an EUT FRR established.

Action: Avoid using HZSPREAD when an EUT FRR is
established.

8 xxxx0847 Equate Symbol: HzspreadRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure that the ALET associated with the parameter
list is valid. The access register might not have been set up
correctly.

8 xxxx0848 Equate Symbol: HzspreadRsn_BadBufferALET

Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the buffer is
valid. The access register might not have been set up correctly.

8 xxxx0849 Equate Symbol: HzspreadRsn_BadBuffer

Meaning: Error accessing buffer

Action: Make sure that the provided buffer is valid.

8 xxxx0858 Equate Symbol: HzspreadRsn_BadHandle

Meaning: The handle provided with the HANDLE parameter is
not valid.

Action: Specify the handle that was returned by the HZSADDCK
macro if this is a REMOTE=YES REXX=NO check.

8 xxxx085A Equate Symbol: HzspreadRsn_WrongRemoteFunction

Meaning: The check routine is not currently processing either the
INITRUN or the RUN remote function.

Action: Avoid invoking HZSPREAD for a remote check when not
within the INITRUN or RUN function.

HZSPREAD macro

Chapter 12. IBM Health Checker for z/OS HZS macros 353

Table 49. Return and Reason Codes for the HZSPREAD Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx085B Equate Symbol: HzspreadRsn_BadRemoteEnvironment

Meaning: HZSPREAD was invoked from a task other than the
one that issued HZSCHECK REQUEST=OPSTART.

Action: Avoid invoking HZSPREAD from an incorrect task.

8 xxxx0861 Equate Symbol: HzspreadRsn_WrongFunction

Meaning: The check routine is not currently processing either the
INIT, CHECK, or CLEANUP function.

Action: Avoid invoking HZSPREAD for a local check when not
within the INIT or CHECK function.

10 — Equate Symbol: HzspreadRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzspreadRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

Examples

Example 1: See SAMPLIB(HZSSCHKP) for a sample local check routine which
uses service HZSPREAD.

Example 2: Operation:
v Retrieve the peristent data stored from the previous IPL.

The code is as follows.

* Retrieve previous IPL persistent data *

SYSSTATE ARCHLVL=2
LHI 2,L’thebuff Length to read
ST 2,thelen
SLR 2,2 Value of 0
ST 2,startbyte Start at byte 0
HZSPREAD CHECKOWNER=cowner,CHECKNAME=cname, *

IPL=PRIOR,INSTANCE=FIRST, *
STARTBYTE=startbyte, *
BUFFER=thebuff,DATALEN=thelen, *
BYTESAVAIL=avail, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,PREADL)

*
* Place code to check return/reason codes here
*
*
* Place code to process the output buffer here
*
cowner DC CL16’MY_CHECK_OWNER’
cname DC CL32’MY_CHECK_NAME’

LTORG ,
HZSZCONS , Return code information

DYNAREA DSECT

HZSPREAD macro

354 IBM Health Checker for z/OS User's Guide

thelen DS F Length of output buffer
avail DS F Available bytes
startbyte DS F Starting byte position
LRETCODE DS F
LRSNCODE DS F

HZSPREAD MF=(L,PREADL),PLISTVER=MAX
DS 0D

thebuff DS 16384X Output buffer

Example 3: Operation:
v If additional data exists, re-issue HZSPREAD to read the next data

The code is as follows.
*
* Place code to check available bytes here, in case
* more bytes were available than could be returned in
* the output buffer
*

* Retrieve next group of prior IPL persistent data *
* The example presumes that a call similar to that *
* in the first example had been made *

SYSSTATE ARCHLVL=2
CLC avail,thelen
JNH done_pread
L 2,startbyte Previous starting byte
AL 2,thelen Increment by length read
ST 2,startbyte Next starting byte
LHI 2,L’thebuff Length to read this time
ST 2,thelen
HZSPREAD CHECKOWNER=cowner,CHECKNAME=cname, *

IPL=PRIOR,INSTANCE=FIRST, *
STARTBYTE=startbyte, *
BUFFER=thebuff,DATALEN=thelen, *
BYTESAVAIL=avail, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,PREADL)

*
* Place code to check return/reason codes here
*
*
* Place code to process the output buffer here
*
done_pread DS 0H

....
cowner DC CL16’MY_CHECK_OWNER’
cname DC CL32’MY_CHECK_NAME’

LTORG ,
HZSZCONS , Return code information

DYNAREA DSECT
thelen DS F Length of output buffer
avail DS F Available bytes
startbyte DS F Starting byte position
LRETCODE DS F
LRSNCODE DS F

HZSPREAD MF=(L,PREADL),PLISTVER=MAX
DS 0D

HZSPREAD macro

Chapter 12. IBM Health Checker for z/OS HZS macros 355

HZSPWRIT macro — Write Check Persistent Data

Description
The HZSPWRIT macro is an interface used by check routines to write persistent
data into the IBM Health Checker for z/OS Persistent Data data set, which is
allocated using the HZSPDATA ddname in the startup proc or via the HZSPDATA
statement in a HZSPRMxx parmlib member. Use HZSPWRIT only within the Init,
Check, or Cleanup function for a local check, or within the InitRun or Run
function for a remote check.

The data is associated with the writing check, and can be retrieved by the
HZSPREAD macro, specifying the check owner and check name. The data remains
even if the writing check is deleted.

If the check iteration completes with an abend (or a remote check iteration is
designated unsuccessful) or an invocation of HZSPWRIT is not successful, then the
persistent data for that iteration is not retained. Note that "unsuccessful" has no
correlation with whether or not the check detected exception(s).

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: Problem state. PSW key 8-15

When problem state and key 8-15 and not APF authorized,
or when SECCHECK=ALL is specified, the caller must be
authorized for update access to either of the following:

v XFACILIT class resource
HZS.sysname.checkowner.PDATA

v XFACILIT class resource
HZS.sysname.checkowner.checkname.PDATA

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). Control parameters
must be below 2G.

The user-provided buffer (via BUFFER) has the same
requirements and restrictions as the control parameters.

Programming Requirements
v This service is supported only when it is called from a check routine invoked by

IBM Health Checker for z/OS.

HZSPWRIT macro

356 IBM Health Checker for z/OS User's Guide

|
|

Restrictions
The caller may not have an FRR established.

Input Register Information
Before issuing the HZSPWRIT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the HZSPWRIT macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0. Otherwise, used as a work register
by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� HZSPWRIT � BUFFER = buffer , DATALEN = datalen �

�
, SECCHECK = UNAUTH

, SECCHECK = ALL
�

HZSPWRIT macro

Chapter 12. IBM Health Checker for z/OS HZS macros 357

�
, REMOTE = NO

, REXX = NO
, REMOTE = YES , HANDLE = handle

, REXX = YES

�

�
, RETCODE = retcode , RSNCODE = rsncode

�

�
, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the HZSPWRIT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

BUFFER=buffer
A required input parameter, area that contains the data to be written. The
buffer should be in the same key as the caller.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,DATALEN=datalen
A required input parameter that contains the number of bytes of data from the
buffer to be written.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,HANDLE=handle
When REMOTE=YES is specified, a required input parameter that specifies a
handle (token) that identifies the check. This handle was returned via the
HANDLE parameter of the HZSADDCK macro for a REMOTE=YES
REXX=NO check. It is provided in REXX variable HZS_HANDLE for a
REMOTE=YES REXX=YES check.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

HZSPWRIT macro

358 IBM Health Checker for z/OS User's Guide

,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX

HZSPWRIT macro

Chapter 12. IBM Health Checker for z/OS HZS macros 359

v A decimal value of 0

,REMOTE=NO
,REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is
REMOTE=NO.

,REMOTE=NO
indicates that the check runs locally in the address space of IBM Health
Checker for z/OS.

,REMOTE=YES
indicates that the check runs remotely, in an address space other than that
of IBM Health Checker for z/OS.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,REXX=NO
,REXX=YES

When REMOTE=YES is specified, an optional parameter, which indicates if this
is a REXX check. The default is REXX=NO.

,REXX=NO
indicates that the check is not a REXX check.

,REXX=YES
indicates that the check is a REXX check.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SECCHECK=UNAUTH
,SECCHECK=ALL

An optional parameter that indicates whether to do RACF security checks. The
default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases. If RACF does not
grant authority, the request is rejected.

ABEND Codes
None.

Return and Reason Codes
When the HZSPWRIT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.

HZSPWRIT macro

360 IBM Health Checker for z/OS User's Guide

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 50. Return and Reason Codes for the HZSPWRIT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzspwritRc_OK

Meaning: The request was successfully processed.

Action: None required

8 — Equate Symbol: HzspwritRc_InvParm

Meaning: HZSPWRIT request specified incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HzspwritRsn_NotAuthorized

Meaning: Caller is not authorized to write persistent data for
this check

Action: Avoid calling HZSPWRIT to write data when not
authorized.

8 xxxx0808 Equate Symbol: HzspwritRsn_BadENV

Meaning: HZSPWRIT is supported only when called within
the HZS address space.

Action: Invoke HZSPWRIT only within the HZS address
space.

8 xxxx0818 Equate Symbol: HzspwritRsn_BadParmlist

Meaning: Error accessing parameter list.

Action: Make sure that the provided parameter list is valid.

8 xxxx0843 Equate Symbol: HzspwritRsn_SrbMode

Meaning: SRB mode.

Action: Avoid issuing HZSPWRIT in SRB mode.

8 xxxx0844 Equate Symbol: HzspwritRsn_NotEnabled

Meaning: Not Enabled.

Action: Avoid using HZSPWRIT when not enabled.

8 xxxx0845 Equate Symbol: HzspwritRsn_Locked

Meaning: Locked

Action: Avoid using HZSPWRIT when a lock is held.

HZSPWRIT macro

Chapter 12. IBM Health Checker for z/OS HZS macros 361

Table 50. Return and Reason Codes for the HZSPWRIT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0846 Equate Symbol: HzspwritRsn_FRR

Meaning: The caller had an EUT FRR established.

Action: Avoid using HZSPWRIT when an EUT FRR is
established.

8 xxxx0847 Equate Symbol: HzspwritRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure that the ALET associated with the
parameter list is valid. The access register might not have
been set up correctly.

8 xxxx0848 Equate Symbol: HzspwritRsn_BadBufferALET

Meaning: Bad buffer ALET.

Action: Make sure that the ALET associated with the buffer
is valid. The access register might not have been set up
correctly.

8 xxxx0849 Equate Symbol: HzspwritRsn_BadBuffer

Meaning: Error accessing buffer

Action: Make sure that the provided buffer is valid.

8 xxxx0858 Equate Symbol: HzspwritRsn_BadHandle

Meaning: The handle provided with the HANDLE
parameter is not valid.

Action: Specify the handle that was returned by the
HZSADDCK macro if this is a REMOTE=YES REXX=NO
check.

8 xxxx085A Equate Symbol: HzspwritRsn_WrongRemoteFunction

Meaning: The check routine is not currently processing
either the INITRUN or the RUN remote function.

Action: Avoid invoking HZSPWRIT for a remote check when
not within the INITRUN or RUN function.

8 xxxx085B Equate Symbol: HzspwritRsn_BadRemoteEnvironment

Meaning: HZSPWRIT was invoked from a task other than
the one that issued HZSCHECK REQUEST=OPSTART.

Action: Avoid invoking HZSPWRIT from an incorrect task.

8 xxxx0861 Equate Symbol: HzspwritRsn_WrongFunction

Meaning: The check routine is not currently processing
either the INIT, CHECK, or CLEANUP function.

Action: Avoid invoking HZSPWRIT for a local check when
not within the INIT or CHECK function.

HZSPWRIT macro

362 IBM Health Checker for z/OS User's Guide

Table 50. Return and Reason Codes for the HZSPWRIT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C — Equate Symbol: HzspwritRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C15 Equate Symbol: HzspwritRsn_DataCorrupted

Meaning: The persistent data being managed by the system
for this check has been overlaid. It will not be written to the
HZSPDATA data set.

Action: Report the problem to the system programmer

10 — Equate Symbol: HzspwritRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzspwritRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

Example
See SAMPLIB(HZSSCHKP) for a sample local check routine which uses service
HZSPWRIT.

HZSPWRIT macro

Chapter 12. IBM Health Checker for z/OS HZS macros 363

HZSQUERY macro — HZS Query

Description
The HZSQUERY macro provides the interface to obtain information about checks
that are currently registered with IBM Health Checker for z/OS.

Environment
The requirements for the caller are:

Requirement Description
Minimum authorization: Problem state. PSW key 8-15 When problem state and key

8-15 and not APF authorized, or when SECCHECK=ALL is
specified, the caller's authorization requirements depend on
the input specification.

v The caller must be authorized for read access to any of
the following:

– when the check owner has wildcard character(s),
XFACILIT class resource HZS.sysname.reqtype

– when the check owner has no wildcard characters and
the check name has wildcard character(s), XFACILIT
class resource HZS.sysname.checkowner.reqtype

– when the check owner has no wildcard characters and
the check name has no wildcard characters, XFACILIT
class resource
HZS.sysname.checkowner.checkname.reqtype or
XFACILIT class resource
HZS.sysname.checkowner.reqtype

v The values for reqtype are as follows

– When REQUEST=MSGBUFF is specified, reqtype is
MESSAGES.

– When REQUEST=CHKINFO is specified, reqtype is
QUERY.

– When REQUEST=GENINFO is specified, reqtype is
QUERY.

When KEEP=YES or KEEP=CLOSE is specified, the caller
must be supervisor state or key 0-7.

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.

HZSQUERY macro

364 IBM Health Checker for z/OS User's Guide

|
|

Requirement Description
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). Control parameters
must be below 2G.

The user-provided answer area via the ANSAREA parameter
has the same requirements and restrictions as the control
parameters.

The user-provided answer area via the ANSAREA64
parameter has the same requirements and restrictions as the
control parameters but can be above 2G for an AMODE 64
caller.

The user-provided area via the QUAAC1HDR parameter
has the same requirements and restrictions as the control
parameters but can be above 2G for an AMODE 64 caller.

Programming Requirements
The caller must include the HZSQUAA macro to get a mapping for the answer
area.

The caller should include the HZSZCONS macro to get equate symbols for the
return and reason codes.

The caller must include the HZSPQE macro to get a mapping for some of the
subfields within the answer area.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information
Before issuing the HZSQUERY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the HZSQUERY macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 365

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� HZSQUERY � REQUEST = GENINFO
REQUEST = CHECKINFO parameters-1
REQUEST = MSGBUFF parameters-2

, TEXTSTRING = YES

, TEXTSTRING = NO
�

� , ANSAREA = ansarea
, ANSAREA64 = ansarea64

, ANSLEN = anslen
, ANSLEN64 = anslen64 , RETCODE = retcode

�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0
, PLISTVER = 1
, PLISTVER = 2

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

��
, SECCHECKONLY = NO , SECCHECK = UNAUTH

, SECCHECK = ALL
, SYSNAME = CURRENT

, SECCHECKONLY = YES
, SYSNAME = sysname

, CHECKOWNER = checkowner
, OWNER = owner

�

� , CHECKNAME = checkname
, NAME = name

, EXITRTN = ANY_EXITRTN

, EXITRTN = exitrtn
�

HZSQUERY macro

366 IBM Health Checker for z/OS User's Guide

�
, CATEGORY = ANY_CATEGORY , NUMCAT = numcat , CATRULE = DEFAULT
, CATEGORY = category , CATRULE = ONLY

, CATRULE = ANY
, CATRULE = EVERY
, CATRULE = EXCEPT
, CATRULE = VALUE , CATRULEVAL = catruleval

�

�
, CHECKTYPE = ALL , EXCEPTION = NOTAPPLICABLE , RESULT = ANY

, EXCEPTION = BYDATE , RESULT = EXCEPTIONS
, EXCEPTION = BYSYNCVAL
, EXCEPTION = ALL

, EXCEPTION = NOTAPPLICABLE , RESULT = ANY
, CHECKTYPE = NOTDELETED

, EXCEPTION = BYDATE , RESULT = EXCEPTIONS
, EXCEPTION = BYSYNCVAL
, EXCEPTION = ALL

, CHECKTYPE = DELETED

�

�
, OUTPUTSTYLE = FULL

, OUTPUTSTYLE = NO_CHKWORK
, OUTPUTSTYLE = SHORT
, OUTPUTSTYLE = VALUE , OUTPUTSTYLEV = outputstylev

, QUAACVER = 0

, QUAACVER = 1
�

�
, LOCALE = ANY

, LOCALE = HZSPROC
, REXX = ANY

, LOCALE = REMOTE
, REXX = NO
, REXX = YES

, GLOBALCHECK = DONOTFIND

, GLOBALCHECK = FINDSYSTEM
��

parameters-2

�� , INSTANCE = CURRENT parameters-3
, INSTANCE = MUSTMATCH parameters-4
, INSTANCE = LOGSTREAM , QUAAC1HDR = quaac1hdr

�

�
, KEEP = FULL

, KEEP = YES
, KEEP = CLOSE

��

parameters-3

�� , CHECKOWNER = checkowner
, OWNER = owner

, CHECKNAME = checkname
, NAME = name

�

�
, SECCHECKONLY = NO , SECCHECK = UNAUTH

, SECCHECK = ALL
, SYSNAME = CURRENT

, SECCHECKONLY = YES
, SYSNAME = sysname

�

� , MSGTOKEN = msgtoken
, QUAAC1HDR = quaac1hdr

��

parameters-4

�� , CHECKOWNER = checkowner
, OWNER = owner

, CHECKNAME = checkname
, NAME = name

�

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 367

||||||||||||

�
, SECCHECKONLY = NO , SECCHECK = UNAUTH

, SECCHECK = ALL
, SYSNAME = CURRENT

, SECCHECKONLY = YES
, SYSNAME = sysname

�

� , MSGTOKEN = msgtoken
, QUAAC1HDR = quaac1hdr

��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the HZSQUERY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSAREA=ansarea
A required output parameter which is to contain the returned information The
area is mapped by macro HZSQUAA. The header area is mapped by DSECT
HZSQUAAHDR.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSAREA64=ansarea64
A required output parameter which is to contain the returned information The
area is mapped by macro HZSQUAA. This area can be above 2G. The header
area is mapped by DSECT HZSQUAAHDR64.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter which contains the length of the provided answer
area. The length must be at least the value specified by symbol
HZSQUERY_MIN_ANSLEN in macro HZSQUAA.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ANSLEN64=anslen64
A required input parameter which contains the length of the provided answer
area. The length must be at least the value specified by symbol
HZSQUERY_MIN_ANSLEN64 in macro HZSQUAA. It can exceed 2G.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field, or specify a literal decimal value.

,CATEGORY=category
,CATEGORY=ANY_CATEGORY

When REQUEST=CHECKINFO is specified, an optional input parameter that
specifies an array of 1 to 16 contiguous 16 character entries each of which
contains a category to be associated with the check. The categories are used as
filters. Each category can include wildcard characters. Checks that belong to
categories that match according to the rules of the CATRULE parameter and
according to the other filtering parameters (OWNER, NAME, and EXITRTN)
are processed. The number of categories is specified by the NUMCAT
parameter. The default is ANY_CATEGORY.

HZSQUERY macro

368 IBM Health Checker for z/OS User's Guide

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,CATRULE=DEFAULT
,CATRULE=ONLY
,CATRULE=ANY
,CATRULE=EVERY
,CATRULE=EXCEPT
,CATRULE=VALUE

When CATEGORY=category and REQUEST=CHECKINFO are specified, a
required parameter that indicates how to process the category filters.

,CATRULE=DEFAULT
indicates to apply the default (which is CATRULE=ONLY).

,CATRULE=ONLY
indicates to match only if all the categories match the categories to which
the target check belongs, and if the target check belongs to exactly the
number of categories specified by the NUMCAT parameter.

,CATRULE=ANY
indicates to match if any of the categories provided match any of the
categories to which the target check belongs.

,CATRULE=EVERY
indicates to match if every one of the categories provided matches any of
the categories to which the target check belongs.

,CATRULE=EXCEPT
indicates to match except when one of the categories provided matches
any of the categories to which the target check belongs.

,CATRULE=VALUE
Indicates that the value specified by CATRULEVAL is to be used.

,CATRULEVAL=catruleval
When CATRULE=VALUE, CATEGORY=category and REQUEST=CHECKINFO
are specified, a required input parameter that indicates the category rule to be
applied. It must be one of the values defined by the xxx_CATRULE_yyy
equates generated by HZSQUERY MF=(L,xxx).

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,CHECKNAME=checkname
When REQUEST=CHECKINFO is specified, a required input parameter field
that identifies the name of the check. If the first character is x'00', or the value
is all blanks, information about all checks is returned. Wildcard processing is
performed on the name, using the standard wildcard symbols of "*" and "?".
The check pattern is delineated by the last non-blank found within the input.
Example: A check pattern of "*" indicates to match all checks. Example: A
check pattern of "A*" indicates to match all checks with names beginning with
"A".

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,CHECKNAME=checkname
When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the name of the check. No
Wildcard processing is performed on the name.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 369

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,CHECKNAME=checkname
When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the name of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,CHECKOWNER=checkowner
When REQUEST=CHECKINFO is specified, a required input parameter field
that identifies the owner of the check. If the first character is x'00', or the value
is all blanks, information about checks with all owners is returned. Wildcard
processing is performed on the name, using the standard wildcard symbols of
"*" and "?". The owner pattern is delineated by the last non-blank found within
the input. Example: an owner pattern of "*" indicates to match all owners.
Example: an owner pattern of "A*" indicates to match all owners with names
beginning with "A".

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CHECKOWNER=checkowner
When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the owner of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CHECKOWNER=checkowner
When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the owner of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CHECKTYPE=ALL
,CHECKTYPE=NOTDELETED
,CHECKTYPE=DELETED

When REQUEST=CHECKINFO is specified, an optional parameter, of the
checks for which information is to be returned. The default is
CHECKTYPE=ALL.

,CHECKTYPE=ALL
that indicates that no restrictions are to be made. Return information about
checks of any type. The type of the returned check is defined by field
Hzsquaac_Type / Hzsquaac1_Type in macro HZSQUAA.

,CHECKTYPE=NOTDELETED
that indicates to return information only about checks that are not deleted
and are not delete-pending

,CHECKTYPE=DELETED
that indicates to return information only about checks that are deleted or
are delete-pending.

,EXCEPTION=NOTAPPLICABLE
,EXCEPTION=BYDATE

HZSQUERY macro

370 IBM Health Checker for z/OS User's Guide

,EXCEPTION=BYSYNCVAL
,EXCEPTION=ALL

When CHECKTYPE=ALL and REQUEST=CHECKINFO are specified, an
optional parameter that indicates what policy exception processing to do The
default is EXCEPTION=NOTAPPLICABLE.

,EXCEPTION=NOTAPPLICABLE
that indicates that policy exception processing is not applicable to this
request

,EXCEPTION=BYDATE
that indicates to find only checks that have policy DATE exceptions, i.e. a
policy statement that matches this check was not applied because its DATE
was older than the check's DATE.

,EXCEPTION=BYSYNCVAL
that indicates to find only checks that have policy SYNCVAL exceptions,
i.e. a policy statement that matches this check was not applied because its
SYNCVAL or (E)INTERVAL settings conflicted with the check's values.

,EXCEPTION=ALL
that indicates to find only checks that had any kind of policy exception.

,EXCEPTION=NOTAPPLICABLE
,EXCEPTION=BYDATE
,EXCEPTION=BYSYNCVAL
,EXCEPTION=ALL

When CHECKTYPE=NOTDELETED and REQUEST=CHECKINFO are
specified, an optional parameter that indicates what policy exception
processing to do The default is EXCEPTION=NOTAPPLICABLE.

,EXCEPTION=NOTAPPLICABLE
that indicates that policy exception processing is not applicable to this
request

,EXCEPTION=BYDATE
that indicates to find only checks that have policy DATE exceptions, i.e. a
policy statement that matches this check was not applied because its DATE
was older than the check's DATE.

,EXCEPTION=BYSYNCVAL
that indicates to find only checks that have policy SYNCVAL exceptions,
i.e. a policy statement that matches this check was not applied because its
SYNCVAL or (E)INTERVAL settings conflicted with the check's values.

,EXCEPTION=ALL
that indicates to find only checks that had any kind of policy exception.

,EXITRTN=exitrtn
,EXITRTN=ANY_EXITRTN

When REQUEST=CHECKINFO is specified, an optional input parameter that
identifies the name of the exit routine associated with the check, to be used as
a filter. EXITRTN can include wildcard characters. All checks with names that
match the specified name and that match the other filtering parameters
(OWNER, NAME, CATEGORY) are processed. The default is ANY_EXITRTN.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,GLOBALCHECK=DONOTFIND
,GLOBALCHECK=FINDSYSTEM

When REQUEST=CHECKINFO is specified, an optional parameter that

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 371

indicates what to process for global checks. It is relevant only to calls that
specify something other than OUTPUTSTYLE=SHORT. The default is
GLOBALCHECK=DONOTFIND.

,GLOBALCHECK=DONOTFIND
that indicates not to find the system on which the global check is being
run.

,GLOBALCHECK=FINDSYSTEM
that indicates to find the system on which the global check is to be run.
Field PQE_GlobalCheck_SYSNAME contains the name of that system, or
zeroes if no system is currently tagged to run that check.

,INSTANCE=CURRENT
,INSTANCE=MUSTMATCH
,INSTANCE=LOGSTREAM

When REQUEST=MSGBUFF is specified, a required parameter that indicates
how to compare the instance of the check designated by the MSGTOKEN
parameter to the instance of the check.

,INSTANCE=CURRENT
indicates to return the message buffer(s) for the current instance of the
check, and set bit HzsquaaH_MsgBuffWrongInstance /
HzsquaaH64_MsgBuffWrongInstance when the instance of the check
designated by the MSGTOKEN parameter is not the current instance.

,INSTANCE=MUSTMATCH
indicates to return data only if the message buffer(s) for the instance of the
check designated by the MSGTOKEN parameter are available. They might
not be available if the instance is not the current instance.

,INSTANCE=LOGSTREAM
Indicates that the message data to be returned is to be found within the
logstream. You would use this when you want the information from a
previous iteration of a check. Note that if you are basing this request on
the "current" information returned from a previous call that specified
INSTANCE=CURRENT or INSTANCE=MUSTMATCH, it is possible that
the logstream data that you receive back will be the same information that
was returned for that previous call. This could happen if the message
buffer has already been written to the logstream and no new iteration of
the check has yet begun. Compare the Hcklog_CheckHasRunCount fields
of the two calls and if they are identical, this has happened (and you
would just call "again" using the data returned on this call).

Also of note is that if the first Hcklog area does not have a value of 1 in
field HckLog_BufNum, it means that this query was done while the
check's data was being written to the logstream. The data retrieved is a
subset of the data that INSTANCE=CURRENT or
INSTANCE=MUSTMATCH would have returned. You can use the
information returned within the QUAAC1HDR parameter to reference the
check instance prior to this one, on a subsequent HZSQUERY call. Bit
HZSQUAAH_MsgbuffIncomplete / HZSQUAAH64_MsgbuffIncomplete
will als be on if this has occurred.

The system uses the IXGCONN REQUEST=CONNECT service to access
the logstream. The caller of HZSQUERY must satisfy the System
Authorization Facility (SAF) checks that are performed by that service.
Refer to the documentation of IXGCONN for additional information.

,KEEP=NO

HZSQUERY macro

372 IBM Health Checker for z/OS User's Guide

|

,KEEP=YES
,KEEP=CLOSE

When INSTANCE=LOGSTREAM is specified, an optional keyword input that
indicates whether to keep the logstream connection and browse session upon
return. The default is KEEP=NO.

,KEEP=NO
indicates to close the browse session and logstream connection prior to

return.

,KEEP=YES
indicates to keep the logstream connected and the browse session open
upon successful return (return code less than 8) unless there is known to
be no previous record (as indicated by field HzsquaaC1LogstreamBlockID
in Hzsquaa1hdr being zero). If there is no previous record, then the browse
session is closed and the logstream disconnected prior to return. This
option is available only if the caller is supervisor state or PSW key 0-7. If
the caller is problem state key 8-15, this option is treated as if KEEP=NO
were specified. When KEEP=YES is specified, be sure that no previous
HZSQUERY for this browse session resulted in closing the browse session
(whether due to KEEP=CLOSE or to unsuccessful completion).

,KEEP=CLOSE
indicates to close the browse session and disconnect the logstream. No data
is returned. This option is available only if the caller is supervisor state or
PSW key 0-7. If the caller is problem state key 8-15, this option is treated as
if KEEP=NO were specified. If you have used KEEP=YES you must use
KEEP=CLOSE unless a subsequent call results in a return code greater than
or equal to 8 or a logstream block ID of 0. This includes cases where your
application's recovery gets control without having had a chance in its
mainline to use KEEP=CLOSE. If the job step or address space terminates,
it is not necessary to have a KEEP=CLOSE invocation. When
KEEP=CLOSE is specified, be sure that no previous HZSQUERY for this
browse session resulted in closing the browse session (whether due to
KEEP=CLOSE or to unsuccessful completion).

,LOCALE=ANY
,LOCALE=HZSPROC
,LOCALE=REMOTE

When REQUEST=CHECKINFO is specified, an optional parameter, which
identifies the locale of the check. The default is LOCALE=ANY.

,LOCALE=ANY
indicates that the check can be of any locale (hzsproc, remote or REXX)

,LOCALE=HZSPROC
indicates that the check must be of locale HZSPROC (i.e., runs in the IBM
Health Checker for z/OS address space start by hzsproc).

,LOCALE=REMOTE
indicates that the check is remote (i.e., does not run in the IBM Health
Checker for z/OS address space start).

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 373

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MSGTOKEN=msgtoken
When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, a
required input parameter, field that is the message token returned by a
previous HZSQUERY request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,MSGTOKEN=msgtoken
When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, a
required input parameter, field that is the message token returned by a
previous HZSQUERY request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,NAME=name
When REQUEST=CHECKINFO is specified, a required input parameter field
that identifies the name of the check. If the first character is x'00', or the value
is all blanks, information about all checks is returned. Wildcard processing is
performed on the name, using the standard wildcard symbols of "*" and "?".
The check pattern is delineated by the last non-blank found within the input.
Example: A check pattern of "*" indicates to match all checks. Example: A
check pattern of "A*" indicates to match all checks with names beginning with
"A".

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,NAME=name
When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, a

HZSQUERY macro

374 IBM Health Checker for z/OS User's Guide

required input parameter field that identifies the name of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,NAME=name
When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the name of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,NUMCAT=numcat
When CATEGORY=category and REQUEST=CHECKINFO are specified, a
required input parameter that indicates how many categories are contained in
the array specified by the CATEGORY parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,OUTPUTSTYLE=FULL
,OUTPUTSTYLE=NO_CHKWORK
,OUTPUTSTYLE=SHORT
,OUTPUTSTYLE=VALUE

When REQUEST=CHECKINFO is specified, an optional parameter that
indicates the style of output The default is OUTPUTSTYLE=FULL.

,OUTPUTSTYLE=FULL
that indicates to return the full amount of data, each HzsquaaCData /
HzsquaaC1Data entry mapped by macro HZSPQE or HZSDPQE.

,OUTPUTSTYLE=NO_CHKWORK
that indicates to return the full amount of data except for the x'800' bytes
of the PQE_CHKWORK area. Each HzsquaaCData / HzsquaaC1Data entry
mapped by macro HZSPQE (up to the PQE_CHKWORK field) or
HZSDPQE.

,OUTPUTSTYLE=SHORT
that indicates to return the "short form", each HzsquaaCData
/HzsquaaC1Data entry mapped by DSECT HZSQUAACS in macro
HZSQUAA.

,OUTPUTSTYLE=VALUE
indicates that the value specified by OUTPUTSTYLEV is to be used.

,OUTPUTSTYLEV=outputstylev
When OUTPUTSTYLE=VALUE and REQUEST=CHECKINFO are specified, a
required input parameter that indicates the output style to be used. It must be
one of the values defined by the xxx_OUTPUTSTYLE_yyy equates generated
by HZSQUERY MF=(L,xxx).

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,OWNER=owner
When REQUEST=CHECKINFO is specified, a required input parameter field
that identifies the owner of the check. If the first character is x'00', or the value
is all blanks, information about checks with all owners is returned. Wildcard
processing is performed on the name, using the standard wildcard symbols of
"*" and "?". The owner pattern is delineated by the last non-blank found within

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 375

the input. Example: an owner pattern of "*" indicates to match all owners.
Example: an owner pattern of "A*" indicates to match all owners with names
beginning with "A".

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,OWNER=owner
When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the owner of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,OWNER=owner
When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, a
required input parameter field that identifies the owner of the check. No
Wildcard processing is performed on the name.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:
– POLICYNAME

v 2, which supports both the following parameters and those from version 0
and 1:
– ANSAREA64
– ANSLEN64
– QUAAC1HDR

To code: Specify one of the following:
v IMPLIED_VERSION

HZSQUERY macro

376 IBM Health Checker for z/OS User's Guide

v MAX
v A decimal value of 0, 1, or 2

,QUAACVER=0
,QUAACVER=1

When REQUEST=CHECKINFO is specified, an optional parameter that
indicates the format of information to be returned for
REQUEST=CHECKINFO, as mapped by DSECTs within HZSQUAA.
Quaacver=1 returns more information than Quaacver=0. The default is
QUAACVER=0.

,QUAACVER=0
The header information for each CHECKINFO entry is mapped by DSECT
HZSQUAAC.

,QUAACVER=1
The header information for each CHECKINFO entry is mapped by DSECT
HZSQUAAC1. Note that when you specify, or conditionally plan to specify
on a subsequent invocation, INSTANCE=LOGSTREAM, you must specify
QUAACVER=1 in order to get back the proper data for the
INSTANCE=LOGSTREAM specification.

,QUAAC1HDR=quaac1hdr
When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, an
optional output parameter, area mapped by HZSQUAAC1 field
HZSQUAAC1HDR that is to returned. This area identifies the next older check
iteration MSGBUFF should the caller wish to retrieve that information using
HZSQUERY with INSTANCE=LOGSTREAM.

If the QUAAC1HDR area had been returned on an invocation that specified
KEEP=YES, be sure not to use this area while also specifying KEEP=YES:
v if a subsequent INSTANCE=LOGSTREAM invocation resulted in closing that

browse session (whether due to KEEP=CLOSE or to unsuccessful
completion)

v if there was a change of logstream name in a subsequent
INSTANCE=LOGSTREAM invocation, in which case the system would have
closed that browse session, so that this new request would get return code
X'0C' with reason code HzsqueryRsn_LogstreamError. To avoid this, check
the logstream name returned on each subsequent iteration and if it changes,
avoid using this QUAAC1HDR area with KEEP=YES.

It is OK to use such a QUAAC1HDR area if you specify KEEP=NO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,QUAAC1HDR=quaac1hdr
When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, an
optional output parameter, area mapped by HZSQUAAC1 field
HZSQUAAC1HDR that is to returned. This area identifies the next older check
iteration MSGBUFF should the caller wish to retrieve that information using
HZSQUERY with INSTANCE=LOGSTREAM.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,QUAAC1HDR=quaac1hdr
When INSTANCE=LOGSTREAM and REQUEST=MSGBUFF are specified, a
required input/output parameter, area mapped by HZSQUAAC1 field
HZSQUAAC1HDR that was returned in the answer area of a previous

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 377

|
|

|
|
|

|
|
|
|
|
|

|

HZSQUERY request that specified either REQUEST=CHECKINFO with
QUAACVER=1 or REQUEST=MSGBUFF with the QUAAC1HDR parameter. If
that previous HZSQUERY was REQUEST=CHECKINFO, the
HZSQUAAC1HDR area is part of the HZSQUAAC1 area of the answer area. If
that previous HZSQUERY was REQUEST=MSGBUFF, the HZSQUAAC1HDR
area was returned via the QUAAC1HDR parameter. On input, this area
identifies the instance of the MSGBUFF for which data is to be returned. On
output, this area identifies the next older check iteration MSGBUFF should the
caller wish to retrieve that information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

REQUEST=GENINFO
REQUEST=CHECKINFO
REQUEST=MSGBUFF

A required parameter, which identifies the type of request.

REQUEST=GENINFO
Get general information about IBM Health Checker for z/OS. This includes
the procedure used to start it, and the started task identifier assigned to it.
The returned information consists of
v a header area (mapped by DSECT HZSQUAAHDR or DSECT

HZSQUAAHDR64 in macro HZSQUAA, depending on whether you use
the ANSLEN or ANSLEN64 parameter), which contains the procedure
used to start IBM Health Checker for z/OS, the started task identifier,
and the logstream name, as well as a value of one in field
HzsquaahNumQuaaG / Hzsquaah64NumQuaaG indicating that there is
one entry provided, with the address of that entry being in field
HzsquaahQuaaGAddr / Hzsquaah64QuaaGAddr.

v the entry (mapped by DSECT HZSQUAAG in macro HZSQUAA)

REQUEST=CHECKINFO
Get information about the specified check. The information consists of
v a header area (mapped by DSECT HZSQUAAHDR or DSECT

HZSQUAAHDR64 in macro HZSQUAA, depending on whether you use
the ANSLEN or ANSLEN64 parameter), which contains the number of
entries that follows (HzsquaahNumQuaaC / Hzsquaah64NumQuaaC)
and the address of the first entry (HzsquaahQuaaCAddr /
Hzsquaah64QuaaCAddr).

v entries (mapped by DSECT HZSQUAAC / HZSQUAAC1 in macro
HZSQUAA) each of which has a field that indicates the length of that
entry (HzsquaaCLen / HzsquaaC1Len). The length field should be
added to the address of an entry to get the address of the next entry.

REQUEST=MSGBUFF
Get information about the message buffer(s) specified by the input
MSGTOKEN. That MSGTOKEN would have been returned on a previous
HZSQUERY request in field HzsquaaCMsgToken. The information consists
of
v a header area (mapped by DSECT HZSQUAAHDR or DSECT

HZSQUAAHDR64 in macro HZSQUAA, depending on whether you use
the ANSLEN or ANSLEN64 parameter), which contains the number of
entries that follows (HzsquaahNumHCKL / Hzsquaah64NumHCKL)
and the address of the first entry (HzsquaahHcklAddr /
Hzsquah64HcklAddr).

HZSQUERY macro

378 IBM Health Checker for z/OS User's Guide

v entries (mapped by DSECT HZSLOG in macro HZSZHCKL) each of
which has a field that indicates the length of that entry (Hcklog_BufLen).
The length field should be added to the address of an entry to get the
address of the next entry.

,RESULT=ANY
,RESULT=EXCEPTIONS

When CHECKTYPE=ALL and REQUEST=CHECKINFO are specified, an
optional parameter that indicates what result processing to do The default is
RESULT=ANY.

,RESULT=ANY
that indicates that any check result is applicable to this request

,RESULT=EXCEPTIONS
that indicates to find only checks that detected exception(s). Note that
DELETED checks are not considered to have detected exception(s).

,RESULT=ANY
,RESULT=EXCEPTIONS

When CHECKTYPE=NOTDELETED and REQUEST=CHECKINFO are
specified, an optional parameter that indicates what result processing to do
The default is RESULT=ANY.

,RESULT=ANY
that indicates that any check result is applicable to this request

,RESULT=EXCEPTIONS
that indicates to find only checks that detected exception(s).

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,REXX=ANY
,REXX=NO
,REXX=YES

When LOCALE=REMOTE and REQUEST=CHECKINFO are specified, an
optional parameter, which indicates if this is a REXX check. The default is
REXX=ANY.

,REXX=ANY
indicates that the check can either be a REXX check or not.

,REXX=NO
indicates that the check is not a REXX check.

,REXX=YES
indicates that the check is a REXX check.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SECCHECK=UNAUTH

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 379

,SECCHECK=ALL
When SECCHECKONLY=NO and REQUEST=CHECKINFO are specified, an
optional parameter that indicates whether to do RACF security checks. The
default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases. If RACF does not
grant authority, the request is rejected.

,SECCHECK=UNAUTH
,SECCHECK=ALL

When SECCHECKONLY=NO, INSTANCE=CURRENT and
REQUEST=MSGBUFF are specified, an optional parameter that indicates
whether to do RACF security checks. The default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases. If RACF does not
grant authority, the request is rejected.

,SECCHECK=UNAUTH
,SECCHECK=ALL

When SECCHECKONLY=NO, INSTANCE=MUSTMATCH and
REQUEST=MSGBUFF are specified, an optional parameter that indicates
whether to do RACF security checks. The default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases. If RACF does not
grant authority, the request is rejected.

,SECCHECKONLY=NO
,SECCHECKONLY=YES

When REQUEST=CHECKINFO is specified, an optional parameter that
indicates whether to do full processing or only security checks. The default is
SECCHECKONLY=NO.

,SECCHECKONLY=NO
that indicates to do full processing.

,SECCHECKONLY=YES
that indicates to do only the security check to see if the requesting user has
RACF authority to access the data. When this option is specified, the
security check is done regardless of the caller's key or state.

,SECCHECKONLY=NO
,SECCHECKONLY=YES

When INSTANCE=CURRENT and REQUEST=MSGBUFF are specified, an
optional parameter that indicates whether to do full processing or only security
checks The default is SECCHECKONLY=NO.

HZSQUERY macro

380 IBM Health Checker for z/OS User's Guide

,SECCHECKONLY=NO
that indicates to do full processing.

,SECCHECKONLY=YES
that indicates to do only the security check to see if the requesting user has
RACF authority to access the data. When this option is specified, the
security check is done regardless of the caller's key or state.

,SECCHECKONLY=NO
,SECCHECKONLY=YES

When INSTANCE=MUSTMATCH and REQUEST=MSGBUFF are specified, an
optional parameter that indicates whether to do full processing or only security
checks The default is SECCHECKONLY=NO.

,SECCHECKONLY=NO
that indicates to do full processing.

,SECCHECKONLY=YES
that indicates to do only the security check to see if the requesting user has
RACF authority to access the data. When this option is specified, the
security check is done regardless of the caller's key or state.

,SYSNAME=sysname
,SYSNAME=CURRENT

When SECCHECKONLY=YES and REQUEST=CHECKINFO are specified, an
optional input parameter that specifies the system name to be used when
doing the security check. Note that this specification is used only when the
caller is supervisor state, system key, or APF-authorized. The default is
CURRENT. which indicates to use the name of the system on which this
request was issued.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SYSNAME=sysname
,SYSNAME=CURRENT

When SECCHECKONLY=YES, INSTANCE=CURRENT and
REQUEST=MSGBUFF are specified, an optional input parameter that specifies
the system name to be used when doing the security check. Note that this
specification is used only when the caller is supervisor state, system key, or
APF-authorized. The default is CURRENT. which indicates to use the name of
the system on which this request was issued.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SYSNAME=sysname
,SYSNAME=CURRENT

When SECCHECKONLY=YES, INSTANCE=MUSTMATCH and
REQUEST=MSGBUFF are specified, an optional input parameter that specifies
the system name to be used when doing the security check. Note that this
specification is used only when the caller is supervisor state, system key, or
APF-authorized. The default is CURRENT. which indicates to use the name of
the system on which this request was issued.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TEXTSTRING=YES
,TEXTSTRING=NO

An optional parameter that indicates whether to return the "text strings"

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 381

mapped in HZSPQE for options that return data within the HZSPQE. It is
relevant only to REQUEST=CHKINFO calls that specify something other than
OUTPUTSTYLE=SHORT. The default is TEXTSTRING=YES.

,TEXTSTRING=YES
that indicates to return the HZSPQE "text strings".

,TEXTSTRING=NO
that indicates not to return the "text strings". If not using the HZSPQE
output for displaying, specifying "NO" avoids setting some fields that you
might not need.

ABEND Codes
058 The IBM Health Checker for z/OS address space terminated while this call

was in process.

Return and Reason Codes
When the HZSQUERY macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 51. Return and Reason Codes for the HZSQUERY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzsqueryRc_OK

Meaning: Requested information returned

Action: None required

4 — Equate Symbol: HzsqueryRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: HzsqueryRsn_NotAllDataReturned

Meaning: Not all data was returned because the answer area is not big enough.
Answer area field HZSQUAAHTLEN /HZSQUAAH64TLEN indicates how much
space is currently required.

Action: Allocate a larger area and request the function again.

8 — Equate Symbol: HzsqueryRc_InvParm

Meaning: HZSQUERY request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

HZSQUERY macro

382 IBM Health Checker for z/OS User's Guide

Table 51. Return and Reason Codes for the HZSQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: HzsqueryRsn_NotAuthorized

Meaning: Caller is not authorized.

For INSTANCE=LOGSTREAM, the first eight bytes of the DIAG area in the
header (HZSQUAAHDIAG or HZSQUAAH64DIAG) contain the four-byte return
code and four-byte reason code from the IXGCONN service.

Action: Avoid calling HZSQUERY when not authorized

8 xxxx0818 Equate Symbol: HzsqueryRsn_BadParmlist

Meaning: Error accessing parameter list.

Action: Make sure that the provided parameter list is valid.

8 xxxx0838 Equate Symbol: HzsqueryRsn_BadParmListVersion

Meaning: The specified version of the macro is not compatible with the current
version of IBM Health Checker for z/OS.

Action: Avoid requesting parameters that are not supported by this version of
IBM Health Checker for z/OS.

8 xxxx0843 Equate Symbol: HzsqueryRsn_SrbMode

Meaning: SRB mode.

Action: Avoid issuing HZSQUERY in SRB mode.

8 xxxx0844 Equate Symbol: HzsqueryRsn_NotEnabled

Meaning: Not Enabled.

Action: Avoid using HZSQUERY when not enabled.

8 xxxx0845 Equate Symbol: HzsqueryRsn_Locked

Meaning: Locked

Action: Avoid using HZSQUERY when a lock is held.

8 xxxx0846 Equate Symbol: HzsqueryRsn_FRR

Meaning: The caller had an EUT FRR established.

Action: Avoid using HZSQUERY when an EUT FRR is established.

8 xxxx0847 Equate Symbol: HzsqueryRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure that the ALET associated with the parameter list is valid. The
access register might not have been set up correctly.

8 xxxx0848 Equate Symbol: HzsqueryRsn_BadAnsAreaALET

Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the answer area is valid. The
access register might not have been set up correctly.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 383

Table 51. Return and Reason Codes for the HZSQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0849 Equate Symbol: HzsqueryRsn_BadAnsArea

Meaning: Error accessing answer area.

Action: Make sure that the provided answer area is valid.

8 xxxx084A Equate Symbol: HzsqueryRsn_BadAnsLen

Meaning: AnsLen is less than size of the header area.

Action: Provide a larger answer area (as indicated by the ANSLEN keyword).

8 xxxx084B Equate Symbol: HzsqueryRsn_BadParmlistValue

Meaning: A parameter list field contains an unsupported value.

Action: Check for possible storage overlay

8 xxxx084C Equate Symbol: HzsqueryRsn_BadCategoryALET

Meaning: Bad category ALET.

Action: Make sure that the ALET associated with the category area is valid. The
access register might not have been set up correctly.

8 xxxx084D Equate Symbol: HzsqueryRsn_BadCategory

Meaning: Error accessing category area.

Action: Make sure that the provided category area is valid.

8 xxxx084E Equate Symbol: HzsqueryRsn_MsgTokenNotValid

Meaning: MSGTOKEN is not valid.

Action: Make sure that the MSGTOKEN specifies a value returned by
HZSQUERY. As that might represent a check that no longer exists, it might be
necessary to re-issue HZSQUERY to get a new MSGTOKEN.

8 xxxx085C Equate Symbol: HzsqueryRsn_XM

Meaning: For INSTANCE=LOGSTREAM, a cross-memory environment exists.

Action: Avoid using HZSQUERY INSTANCE=LOGSTREAM when the primary
address space does not match the home address space.

8 xxxx085D Equate Symbol: HzsqueryRsn_BadQUAAC1HDRALET

Meaning: Bad QUAAC1HDR ALET.

Action: Make sure that the ALET associated with the QUAAC1HDR area is valid.
The access register might not have been set up correctly.

8 xxxx085E Equate Symbol: HzsqueryRsn_BadQUAAC1HDR

Meaning: Error accessing QUAAC1HDR area.

Action: Make sure that the provided QUAAC1HDR area is valid.

0C — Equate Symbol: HzsqueryRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

HZSQUERY macro

384 IBM Health Checker for z/OS User's Guide

Table 51. Return and Reason Codes for the HZSQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C01 Equate Symbol: HzsqueryRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: Re-issue the request when the service is available

0C xxxx0C21 Equate Symbol: HzsqueryRsn_LogstreamRecordNotFound

Meaning: The requested record within the logstream specified within the
QUAAC1HDR area could not be found. The requested data could not be
retrieved.

The first eight bytes of the DIAG area in the header (HZSQUAAHDIAG or
HZSQUAAH64DIAG) contain the four-byte return code and four-byte reason
code from the IXGBRWSE service.

One of the reasons that this might occur is an expired logstream retention period
and therefore some check history entries have been deleted by the system.

Action: Avoid calling HZSQUERY when the BlockID returned within the
QUAAC1HDR area is 0. If the BlockID was not 0, notify the system programmer.

0C xxxx0C22 Equate Symbol: HzsqueryRsn_LogstreamGap

Meaning: A gap was detected in the logstream specified within the
QUAAC1HDR area. The requested data could not be retrieved.

The first eight bytes of the DIAG area in the header (HZSQUAAHDIAG or
HZSQUAAH64DIAG) contain the four-byte return code and four-byte reason
code from the IXGBRWSE service.

Action: Notify the system programmer.

0C xxxx0C23 Equate Symbol: HzsqueryRsn_LogstreamLossOfData

Meaning: A loss of data was detected in the logstream specified within the
QUAAC1HDR area. The system received reason code
IxgRsnCodeWarningLossOfData when attempting to browse the logstream. The
requested data could not be retrieved.

The first eight bytes of the DIAG area in the header (HZSQUAAHDIAG or
HZSQUAAH64DIAG) contain the four-byte return code and four-byte reason
code from the IXGBRWSE service.

Action: Notify the system programmer.

0C xxxx0C24 Equate Symbol: HzsqueryRsn_LogstreamError

Meaning: The system received an unexpected return / reason code from a system
logger function. The requested data could not be retrieved.

The first eight bytes of the DIAG area in the header (HZSQUAAHDIAG or
HZSQUAAH64DIAG) contain the four-byte return code and four-byte reason
code from the IXGBRWSE service.

Action: Notify the system programmer.

0C xxxx0C25 Equate Symbol: HzsqueryRsn_LogstreamBadData

Meaning: The data retrieved from the logstream specified within the
QUAAC1HDR area was not valid.

Action: Notify the system programmer.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 385

|
|

Table 51. Return and Reason Codes for the HZSQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C26 Equate Symbol: HzsqueryRsn_StorageNotAvailable

Meaning: The system could not obtain working storage needed to process the
request.

Action: Try re-running the job with a larger region size.

0C xxxx0C27 Equate Symbol: HzsqueryRsn_BadLogstream

Meaning: The system could not connect to the logstream specified within the
QUAAC1HDR area.

The first eight bytes of the DIAG area in the header (HZSQUAAHDIAG or
HZSQUAAH64DIAG) contain the four-byte return code and four-byte reason
code from the IXGCONN service.

Action: Make sure that the area has been properly initialized and that the
logstream data set is accessible. Make sure that the system logger is active.

10 — Equate Symbol: HzsqueryRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzsqueryRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

Examples
None.

HZSQUERY macro

386 IBM Health Checker for z/OS User's Guide

Part 3. Check Descriptions

© Copyright IBM Corp. 2006, 2015 387

388 IBM Health Checker for z/OS User's Guide

Chapter 13. IBM Health Checker for z/OS checks

This chapter describes the checks supplied with IBM Health Checker for z/OS.

More checks are added to IBM Health Checker for z/OS periodically, both as
APARs and integrated into z/OS and other IBM products, elements, and
components. APARs related to health checks (new checks or updates to existing
ones) can also be found by running an SMP/E MISSINGFIX report for fix category
IBM.Function.HealthChecker.

For check output messages, see the component message books, use the search
function of IBM Knowledge Center (https://www.ibm.com/support/
knowledgecenter/), or use the message explanations directly from the LookAt Web
site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/ (LookAt has
been sunset with z/OS V2R1 as Knowledge Centers take over the function of all
search in technical documentation. You can continue to access older releases (prior
to V2R1) of messages in LookAt as-is. Neither the site nor the content will continue
to be updated. For more information about using LookAt to find check messages,
see “Finding check message documentation with LookAt” on page 41).

All checks are local checks (run in the IBM Health Checker for z/OS address
space) unless otherwise noted.

Where are the migration checks?
We have listed all the migration checks with their individual components. You can
identify migration checks by the phrase ZOSMIG (or simply MIG for ICSF checks)
in the check name. You can find the migration checks in one of the following ways:
v Use the list of checks shown in the partial table of contents in Part 3, “Check

Descriptions,” on page 387.
v If you are using a PDF version of this book, do a search on the phrase ZOSMIG

to find all but the ICSF migration checks, or search on MIG (case sensitive) to
find all the migration checks.

See z/OS V2R2 Migration for additional information about migration checks.

Allocation checks (IBMALLOC)

ALLOC_ALLC_OFFLN_POLICY
Description:

Checks the value of the ALLC_OFFLN POLICY in the current Allocation
settings.

Reason for check:
This check ensure that the best ALLC_OFFLN POLICY allocation setting for
the particular environment is set. Certain ALLC_OFFLN POLICY values can
result in a deadlock.

z/OS releases the check applies to:
z/OS V1R13 and later.

© Copyright IBM Corp. 2006, 2015 389

|
|
|
|
|
|
|
|
|

|

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMALLOC,ALLOC_ALLC_OFFLN_POLICY)
SEVERITY(LOW)
INTERVAL(24:00)
DATE(’date_of_the_change’)
PARM(’POLICY(WTOR)’)
REASON(’The reason for the change.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes. the following parameters are accepted indicating the value of
ALLC_OFFLN POLICY which the user wants as the recommended setting:
v PARM('POLICY(WTOR)')
v PARM('POLICY(CANCEL)')
v PARM('POLICY(WAITHOLD)')
v PARM('POLICY(WAITNOH)')

The default is PARM('POLICY(WTOR,CANCEL,WAITNOH)').

You can also specify more than one acceptable value by separating them via
commas as such: PARM('POLICY(val1,val2...valn)'), where the values
correspond to the different values of the ALLC_OFFLN POLICY.If any of these
values match the current setting, then the check will be successful. If the
checks finds that current ALLC_OFFLN POLICY setting does not match the
parameter, the check issues an exception.

Reference:
For additional information, see the ALLOCxx chapterz/OS MVS Initialization
and Tuning Guidege .

Messages:
This check issues the following messages:
v IEFAH001I (successful)
v IEFAH002E (exception)

See IEFA messages in z/OS MVS System Messages, Vol 8 (IEF-IGD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
When successful, the report that the check produces is shown below:
CHECK(IBMALLOC,ALLOC_ALLC_OFFLN_POLICY)
START TIME: 09/24/2010 16:11:40.728961
CHECK DATE: 20100830 CHECK SEVERITY: LOW
CHECK PARM: POLICY(WTOR,CANCEL,WAITNOH)

IEFAH001I Option value WTOR matches the owner

Allocation checks

390 IBM Health Checker for z/OS User's Guide

recommendation of WTOR,CANCEL,WAITNOH

END TIME: 09/24/2010 16:11:40.729241 STATUS: SUCCESSFUL

For an exception, the report that the check produces is shown below:
CHECK(IBMALLOC,ALLOC_ALLC_OFFLN_POLICY)
START TIME: 09/24/2010 16:11:40.728961
CHECK DATE: 20100830 CHECK SEVERITY: LOW
CHECK PARM: POLICY(WTOR,CANCEL,WAITNOH)

* Low Severity Exception *

IEFAH002E Option value WAITHOLD does not match the owner
recommendation of WTOR,CANCEL,WAITNOH

END TIME: 09/24/2010 16:11:40.729241 STATUS: EXCEPTION-LOW

ALLOC_SPEC_WAIT_POLICY
Description:

Checks the value of the SPEC_WAIT POLICY in the current Allocation settings.

Reason for check:
This check ensure that the best SPEC_WAIT POLICY allocation setting for the
particular environment is set. Certain SPEC_WAIT POLICY values can result in
a deadlock.

z/OS releases the check applies to:
z/OS V1R13 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMALLOC,ALLOC_SPEC_WAIT_POLICY)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)
DATE(’date_of_the_change’)
PARM(’POLICY(WTOR)’)
REASON(’The reason for the change.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes. the following parameters are accepted to indicate the value of SPEC_WAIT
POLICY the user wants as the recommended setting:
v PARM('POLICY(WTOR)')
v PARM('POLICY(CANCEL)')
v PARM('POLICY(WAITHOLD)')
v PARM('POLICY(WAITNOH)')

The default is PARM('POLICY(WTOR,CANCEL,WAITNOH)').

Allocation checks

Chapter 13. IBM Health Checker for z/OS checks 391

You can also specify more than one acceptable value by separating them via
commas as such: PARM('POLICY(val1,val2...valn)'), where the values
correspond to the different values of the SPEC_WAIT POLICY.If any of these
values match the current setting, then the check will be successful. If the
checks finds that current SPEC_WAIT POLICYYsetting does not match the
parameter, the check issues an exception.

Reference:
For additional information, see the ALLOCxx chapterz/OS MVS Initialization
and Tuning Guide .

Messages:
This check issues the following messages:
v IEFAH001I (successful)
v IEFAH002E (exception)

See IEFA messages in z/OS MVS System Messages, Vol 8 (IEF-IGD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
When successful, the report that the check produces is shown below:
CHECK(IBMALLOC,ALLOC_SPEC_WAIT_POLICY)
START TIME: 10/25/2010 11:17:41.822822
CHECK DATE: 20100831 CHECK SEVERITY: LOW
CHECK PARM: POLICY(WTOR,CANCEL,WAITNOH)

IEFAH001I Option value WTOR matches the owner
recommendation of WTOR,CANCEL,WAITNOH

END TIME: 10/25/2010 11:17:41.825402 STATUS: SUCCESSFUL

For an exception, the report that the check produces is shown below:
CHECK(IBMALLOC,ALLOC_SPEC_OFFLN_POLICY)
START TIME: 10/25/2010 12:15:43.753021
CHECK DATE: 20100831 CHECK SEVERITY: LOW
CHECK PARM: POLICY(WTOR,CANCEL,WAITNOH)

* Low Severity Exception *

IEFAH002E Option value WAITHOLD does not match the owner
recommendation of WTOR,CANCEL,WAITNOH

END TIME: 09/24/2010 16:11:40.729241 STATUS: EXCEPTION-LOW

ALLOC_TIOT_SIZE
Description:

Checks the value of the TIOT SIZE in the current Allocation settings.

Reason for check:
This check ensure that the best TIOT SIZE value for the particular environment
is set. Since the size of the TIOT is directly related to how many DD
statements can be specified per job step, jobs may fail if there are more DDs
than space for them in the TIOT.

z/OS releases the check applies to:
z/OS V1R13 and later.

Allocation checks

392 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMALLOC,ALLOC_TIOT_SIZE)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)
DATE(’date_of_the_change’)
PARM(’SIZE(24,32)’)
REASON(’The reason for the change.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes. The following parameter lets you specify a customized range for the TIOT
SIZE values that is optimal for your installation:

PARM('SIZE(min,max)')
These range values must be integers between 16 and 64. To specify only
one acceptable value, specify identical min and max values.

The default is PARM('SIZE(24,32)')

The default is PARM('SIZE(32,64)').

Reference:
For additional information, see the ALLOCxx chapterz/OS MVS Initialization
and Tuning Guide .

Messages:
This check issues the following messages:
v IEFAH001I (successful)
v IEFAH002E (exception)

See IEFA messages in z/OS MVS System Messages, Vol 8 (IEF-IGD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
When successful, the report that ALLOC_TIOT_SIZE produces is shown below:
CHECK(IBMALLOC,ALLOC_TIOT_SIZE)
START TIME: 09/24/2010 16:11:40.728961
CHECK DATE: 20100830 CHECK SEVERITY: LOW
CHECK PARM: SIZE(32,64)

IEFAH001I Option value 32 matches the owner
recommendation of 32-64

END TIME: 09/24/2010 16:11:40.729241 STATUS: SUCCESSFUL

For an exception, the report that ALLOC_TIOT_SIZE produces is shown below:

Allocation checks

Chapter 13. IBM Health Checker for z/OS checks 393

CHECK(IBMALLOC,ALLOC_TIOT_SIZE)
START TIME: 09/24/2010 16:11:40.728961
CHECK DATE: 20100830 CHECK SEVERITY: LOW
CHECK PARM: SIZE(32,64)

* Low Severity Exception *

IEFAH002E Option value 24 does not match the owner
recommendation of 32-64

END TIME: 09/24/2010 16:11:40.729241 STATUS: EXCEPTION-LOW

ASM checks (IBMASM)

ASM_NUMBER_LOCAL_DATASETS
Description:

Checks on the number of usable local page data sets. The check generates an
exception if the number is below the recommended value of 3. This is a
one-time check that is also run whenever a page data set is dynamically added
or deleted.

Reason for check:
Running with a sufficient number of usable paging data sets ensures that
paging I/O is distributed over multiple devices which enhances paging
throughput.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMASM,ASM_NUMBER_LOCAL_DATASETS),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’MINLOCALS(3)’),
DATE(’date_of_the_change’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, in keyword MINLOCALS, which is an integer, 1-255, indicating the
recommended minimum number of usable local page data sets. The default is
3.

Reference:
For information on auxiliary storage management, see z/OS MVS Initialization
and Tuning Guide .

Messages:
This check issues the following exception messages:
v ILRH0101E

Allocation checks

394 IBM Health Checker for z/OS User's Guide

See the ILRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ASM_PAGE_ADD
Description:

Checks on the ability to dynamically add additional paging data sets via the
PAGEADD command. The check generates an exception if the number of
paging data sets that can be added is at or below the warning value of 2. This
is a one-time check that is also run whenever a page data set is dynamically
added or deleted.

Reason for check:
Specifying an appropriate PAGTOTL value (IEASYSxx) allows for the paging
data sets that are defined at IPL time, and allows room for expansion if
additional data sets are subsequently needed.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMASM,ASM_PAGE_ADD),
INTERVAL(ONETIME),
SEVERITY(MED),
PARM(’MINADDS(2)’),
DATE(’date_of_the_change’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, in keyword MINADDS, which is an integer, 1-255, indicating the the
recommended minimum number of paging data sets that can be dynamically
added. The default is MINADDS(2).

Reference:

v For information on auxiliary storage management initialization, see z/OS
MVS Initialization and Tuning Guide .

v For information on the PAGTOTL parameter, see z/OS MVS Initialization and
Tuning Reference.

v For information on the PAGEADD command, see z/OS MVS System
Commands.

Messages:
This check issues the following exception messages:
v ILRH0103E

See the ILRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

Allocation checks

Chapter 13. IBM Health Checker for z/OS checks 395

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ASM_PLPA_COMMON_SIZE
Description:

Checks on the combined size of the PLPA and Common page data sets in
relation to the size of CSA/ECSA and PLPA/EPLPA . The check generates an
exception if the PLPA and Common page data sets size can not accommodate
the percentage (identified by the warning threshold) of the slots required for
all CSA/ECSA and PLPA/EPLPA.

Note: If the PLPA and Common page data sets are not defined in the system,
informational message ILRH0112I is issued to indicate this condition and the
check is stopped from running.

Reason for check:
You should define the PLPA and Common page data sets based on the size of
CSA/ECSA and PLPA/EPLPA, if known.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMASM,ASM_PLPA_COMMON_SIZE),
INTERVAL(ONETIME),
PARM(’THRESHOLD(100%)’),
DATE(’date_of_the_change’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, as follows:
v When not using dynamic severity: THRESHOLD(value),
v When using dynamic severity: THRESHOLD_HIGH(value),

THRESHOLD_MED(value), THRESHOLD_LOW(value),
THRESHOLD_NONE(value)
Note that when using dynamic severity, you may specify thresholds for 1 or
more of the parameters to identify different thresholds by severity level.
Note that you do not need to specify thresholds for all of the parameters.

The variable for the parameters is as follows:

value
An integer, 0-100 indicating the warning threshold percent. It may
optionally be followed by %.

Default: THRESHOLD(100%)

You can use synonyms for these parameters, as follows:

Allocation checks

396 IBM Health Checker for z/OS User's Guide

Parameter Synonyms

THRESHOLD_HIGH v THRESHOLD_HI

v THRESHOLD_H

THRESHOLD_MED v THRESHOLD_M

THRESHOLD_LOW v THRESHOLD_L

THRESHOLD_NONE v THRESHOLD_NO

v THRESHOLD_N

Note that your number for the HIGH cases is smaller than the MED cases, as
shown in the following example:
PARM(’THRESHOLD_HIGH(70%),THRESHOLD_MED(85%),THRESHOLD_LOW(100%)’)

Reference:
For information on auxiliary storage management initialization, see z/OS MVS
Initialization and Tuning Guide .

Messages:
This check issues the following exception messages:
v ILRH0105E

See the ILRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ASM_PLPA_COMMON_USAGE
Description:

Looks at the slot usage of the PLPA and Common page data sets. The check
generates an exception if the combined usage of both data sets meets or
exceeds the warning threshold.

Note: If the PLPA and Common page data sets are not defined in the system,
informational message ILRH0112I is issued to indicate this condition and the
check is stopped from running.

Reason for check:
You should prevent full conditions on the PLPA and Common page data sets.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMASM,ASM_PLPA_COMMON_USAGE),
INTERVAL(00:30),
PARM(’THRESHOLD(80%)’),
DATE(’date_of_the_change’)

Debug support:
No

Allocation checks

Chapter 13. IBM Health Checker for z/OS checks 397

|
|
|

Verbose support:
No

Parameters accepted:
Yes, as follows:
v When not using dynamic severity: THRESHOLD(value),
v When using dynamic severity: THRESHOLD_HIGH(value),

THRESHOLD_MED(value), THRESHOLD_LOW(value),
THRESHOLD_NONE(value)
Note that when using dynamic severity, you may specify thresholds for 1 or
more of the parameters to identify different thresholds by severity level.
Note that you do not need to specify thresholds for all of the parameters.

The variable for the parameters is as follows:

value
An integer, 0-100 indicating the warning threshold percent. It may
optionally be followed by %.

Default: THRESHOLD(80%)

You can use synonyms for these parameters, as follows:

Parameter Synonyms

THRESHOLD_HIGH v THRESHOLD_HI

v THRESHOLD_H

THRESHOLD_MED v THRESHOLD_M

THRESHOLD_LOW v THRESHOLD_L

THRESHOLD_NONE v THRESHOLD_NO

v THRESHOLD_N

Note that when specifying percentages for parameter values, your number for
the HIGH cases is smaller than the MED cases, as shown in the following
example:
PARM(’THRESHOLD_HIGH(90%),THRESHOLD_MED(80%),THRESHOLD_LOW(70%)’)

Reference:
For information on auxiliary storage management initialization, see z/OS MVS
Initialization and Tuning Guide .

Messages:
This check issues the following exception messages:
v ILRH0111E

See the ILRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ASM_LOCAL_SLOT_USAGE
Description:

Looks at the slot usage of each local page data set. The check generates an
exception if the usage on any data set meets or exceeds the warning threshold.

Allocation checks

398 IBM Health Checker for z/OS User's Guide

Reason for check:
To maximize the efficiency of ASM slot management, you should keep the slot
usage on all local page data sets below 30% .

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMASM,ASM_LOCAL_SLOT_USAGE),
INTERVAL(00:30),
SEVERITY(MED),
PARM(’THRESHOLD(30%)’),
DATE(’date_of_the_change’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, as follows:
v When not using dynamic severity: THRESHOLD(value),
v When using dynamic severity: THRESHOLD_HIGH(value),

THRESHOLD_MED(value), THRESHOLD_LOW(value),
THRESHOLD_NONE(value)
Note that the thresholds specified should increase in value as the severity
increases, since a higher value indicates a more severe condition (higher
usage of the paging data set), as shown in the following example:
PARM(’THRESHOLD_HIGH(80%),THRESHOLD_MED(60%), THRESHOLD_LOW(30%)’)

The variable for the parameters is as follows:

value
An integer, 0-100 indicating the warning threshold percent. It may
optionally be followed by %.

Default: THRESHOLD(30%)

You can use synonyms for these parameters, as follows:

Parameter Synonyms

THRESHOLD_HIGH v THRESHOLD_HI

v THRESHOLD_H

THRESHOLD_MED v THRESHOLD_M

THRESHOLD_LOW v THRESHOLD_L

THRESHOLD_NONE v THRESHOLD_NO

v THRESHOLD_N

PARM(’THRESHOLD_HIGH(60%),THRESHOLD_MED(25%)’)

Allocation checks

Chapter 13. IBM Health Checker for z/OS checks 399

Reference:
For information on auxiliary storage management initialization, see z/OS MVS
Initialization and Tuning Guide .

Messages:
This check issues the following exception messages:
v ILRH0107E

See the ILRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Catalog checks (IBMCATALOG)

CATALOG_ATTRIBUTE_CHECK
Description:

Checks whether any catalogs in the environment are defined with inconsistent
share options.

Reason for check:
Catalogs defined with SHAREOPTIONS(3,4) must reside on shared DASD and
vice-versa.

Unshared Catalogs (share options (3 3)) that reside on shared DASD will
become damaged if accessed by multiple systems. Conversely, a shared catalog
(share options (3 4)) on non-shared DASD may see performance degradation
due to unnecessary serialization activity.

z/OS releases the check applies to:
z/OS DFSMS V2R2.

Type of check (local, remote, or REXX):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMCATALOG,CATALOG_ATTRIBUTE_CHECK)
SEVERITY(LOW)
INTERVAL(720:00)
REASON('Detect inconsistencies between catalog SHAREOPTIONS and DASD')
ACTIVE
DATE('20131110')

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information, see z/OS DFSMS Managing Catalogs.

Allocation checks

400 IBM Health Checker for z/OS User's Guide

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

Messages:
This check issues the following exception messages:
v IGGHC116E

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CATALOG_IMBED_REPLICATE
Description:

Check collects all catalog names in the users environment that are defined with
obsolete attributes IMBED and/or REPLICATE. You can then redefine the
catalogs without these attributes.

In order to run this check, the user must have RACF read access to all the
catalogs on the system. If you do not have the correct RACF access, you will
receive 100-8 catalog errors.

Once you have identified all the catalogs you need to redefine without IMBED
and REPLICATE attributes, IBM suggests that you turn the check off. This is
recommended because:
v Users can no longer define catalogs with the obsolete IMBED or REPLICATE

attributes. That means that once you have identified any existing catalogs
that were defined with IMBED and REPLICATE and redefined them, it is no
longer useful to run this check.

v Leaving the check on after you have identified and/or redefined any
catalogs defined with IMBED or REPLICATE attributes, the check can cause
a performance issue. the check does a sequential search of the active Master
Catalog, which means it reads all the records in the master catalog. This I/O
to the master catalog to read all the records can impact performance.

You can turn the check off temporarily using F HZSPROC command or
permanently using the HZSPRMxx parmlib member.

Reason for check:
No supported releases of z/OS honor either the IMBED or REPLICATE
attributes for new catalogs, they are obsoleted by newer, cached DASD devices.
Using the IMBED and REPLICATE attributes can waste DASD space and
degrade performance, in some cases causing unplanned outages. In addition,
servicing catalogs with these attributes is very difficult.

If the check finds instances of IMBED or REPLICATE attributes, the system
issues exception message IGGHC104E and generates a report in message
IGGHC106I in the message buffer to describe the check’s findings. IBM
suggests that you use the EXPORT/IMPORT command to remove the
attributes:
v Use the EXPORT command to create a back up and later to recover.
v Use the IMPORT command for the exported copies.

Ideally, you should do this during system down time, when the catalogs
cannot be accessed by any users.

z/OS releases the check applies to:
z/OS V1R11 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can

Catalog checks

Chapter 13. IBM Health Checker for z/OS checks 401

|
|

|

|

|
|
|

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCATALOG,CATALOG_IMBED_REPLICATE)
ACTIVE
SEVERITY(LOW)
INTERVAL(TIMER) HOURS(24)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
To use the EXPORT and IMPORT commands, see z/OS DFSMS Access Method
Services Commands for information on the EXPORT and IMPORT commands.

Messages:
This check issues the following exception messages:
v IGGHC104E

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

CATALOG_RNLS
Description:

Check verifies that your data sets reside on different volumes as other shared
catalogs.

CATALOG MANAGEMENT uses the SYSIGGV2 resource while serializing
access to catalogs. The SYSIGGV2 resource is used to serialize the entire
catalog BCS component across all I/O as well as to serialize access to specific
catalog entries. The SYSZVVDS resource is used to serialize access to
associated VVDS records. The SYSZVVDS resource along with the SYSIGGV2
resource provide an essential mechanism to facilitate cross system sharing of
catalogs. When customer's data sets reside on the same volume as other shared
catalogs, deadlocks can occur. This GRS RNL Health Check will help
preventing lockouts from shared volumes. The check will perform the system
check and indicate when GRS RNLs do not match IBM recommendations for
SYSIGGV2, SYSZVVDS, and SYSVTOC.

Reason for check:
All Catalog RESERVES should be converted to SYSTEMS ENQUEUEs unless
catalogs are shared outside the sysplex.

z/OS releases the check applies to:
z/OS V2R1 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCATALOG,CATALOG_RNLS)
ACTIVE

Catalog checks

402 IBM Health Checker for z/OS User's Guide

SEVERITY(LOW)
INTERVAL(TIMER) HOURS(336)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
No

Messages:
This check issues the following exception messages:
v IGGHC110I
v IGGHC111E

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

Communications Server checks (IBMCS)

CSRES_AUTOQ_GLOBALTCPIPDATA
Description:

Checks to see if:
v The AUTOQUIESCE operand has been specified on the

UNRESPONSIVETHRESHOLD resolver setup statement and
v The GLOBALTCPIPDATA resolver setup statement has not been specified in

the resolver setup file

Reason for check:
The AUTOQUIESCE operand is ignored if the AUTOQUIESCE operand is
specified on the UNRESPONSIVETHRESHOLD resolver setup statement but
no GLOBALTCPIPDATA resolver setup statement is specified.

z/OS releases the check applies to:
z/OS V1R13 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSRES_AUTOQ_GLOBALTCPIPDATA)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Catalog checks

Chapter 13. IBM Health Checker for z/OS checks 403

Parameters accepted:
No

Reference:
For more information on AUTOQUIESCE and GLOBALTCPIPDATA resolver
setup statement, see the AUTOQUIESCE and GLOBALTCPIPDATA sections in
z/OS V2R2.0 Communications Server: IP Configuration Reference.

Messages:
This check issues the following exception messages:
v EZBH015E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSRES_AUTOQ_RESOLVEVIA
Description:

Checks if the RESOLVEVIA statement has been specified with the value TCP in
the global TCPIP.DATA file when the autonomic quiescing of unresponsive
name servers function is active.

Reason for check:
The default value for the RESOLVEVIA statement is UDP. If the autonomic
quiescing of unresponsive name server function is active, the resolver polls
unresponsive name servers using UDP, not TCP. If your installation uses TCP,
the results of the resolver's polling attempts will not accurately reflect the
responsiveness of the name server in your installation.

z/OS releases the check applies to:
z/OS V1R13 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSRES_AUTOQ_RESOLVEVIA)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
EVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on AUTOQUIESCE resolver setup statement and
RESOLVEVIA on the TCPIP.DATA file, see the AUTOQUIESCE and
RESOLVEVIA sections in z/OS V2R2.0 Communications Server: IP Configuration
Reference.

Communications Server checks

404 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v EZBH021E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSRES_AUTOQ_TIMEOUT
Description:

Checks if the configured resolver timeout value in the global TCPIP.DATA file
exceeds the optimal setting when the autonomic quiescing of unresponsive
name servers function is active.

Reason for check:
The default value for the RESOLVERTIMEOUT statement is 5 seconds. If the
autonomic quiescing of unresponsive name server function is active, the
resolver polls unresponsive name servers every six seconds. The resolver uses
the value you specify or default for the RESOLVERTIMEOUT statement in the
global TCPIP.DATA file to determine how long to wait for a response to the
poll. If you specify a value for the RESOLVERTIMEOUT statement that is
greater than 5 seconds, the resolver will be less efficient when polling
unresponsive name servers.

z/OS releases the check applies to:
z/OS V1R13 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSRES_AUTOQ_TIMEOUT)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
PARM(’TIMEOUT(5)’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on AUTOQUIESCE resolver setup statement and
RESOLVERTIMEOUT on the TCPIP.DATA file, see the AUTOQUIESCE and
RESOLVERTIMEOUT sections inz/OS V2R2.0 Communications Server: IP
Configuration Reference.

Messages:
This check issues the following exception messages:
v EZBH018E

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 405

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSTCP_CINET_PORTRNG_RSV_tcpipstackname
Description:

Checks whether the port range specified by INADDRANYPORT and
INADDRANYCOUNT in the BPXPRMxx parmlib member is reserved for
OMVS on this stack, when operating in a CINET environment. A port range is
reserved on a TCP/IP stack using the PORTRANGE TCP/IP profile statement.
The tcpipstackname suffix is the job name of the TCP/IP stack to which this
check applies. Use CSTCP_CINET_PORTRNG_RSV_* to reference this check
for all stacks.

Reason for check:
When operating in a CINET environment, the range of ports defined as
available for CINET use by the INADDRANYPORT and INADDRANYCOUNT
parameters in the BPXPRMxx parmlib member should be reserved (using the
PORTRANGE TCP/IP profile statement) on every TCP/IP stack. This prevents
a TCP/IP stack from allocating a port that CINET might subsequently attempt
to use, which could result in an ABEND and the following message:
BPXF219I A SOCKETS PORT ASSIGNMENT CONFLICT EXISTS BETWEEN UNIX SYSTEM SERVICES AND TCPIPstackname

z/OS releases the check applies to:
z/OS V1R10 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSTCP_CINET_PORTRNG_RSV_tcpipstackname)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(MEDIUM)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on using multiple instances of TCP/IP in a CINET
environment, see Considerations for multiple instances of TCP/IP in z/OS
V2R2.0 Communications Server: IP Configuration Guide.

Messages:
This check issues the following exception messages:
v EZBH008E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

Communications Server checks

406 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSTCP_IPMAXRT4_tcpipstackname
Description:

Checks to see whether the total number of IPv4 indirect static and dynamic
routes in the TCP/IP stack's routing table has exceeded the maximum
threshold (default 2000). The tcpipstackname suffix is the job name of the
TCP/IP stack to which this check applies. Use CSTCP_IPMAXRT4_* to
reference this check for all stacks.

Reason for check:
A high number of routes added by OMPROUTE and the TCP/IP stack can
potentially result in high CPU consumption from routing changes. A large
routing table is considered to be inefficient in network design and operation.
By default, this check is performed once at 30 minutes after stack initialization,
at once whenever the total number of routes exceeds the threshold, and then
will be repeated once at the specified intervals (default 168 hours for weekly).

z/OS releases the check applies to:
z/OS V1R12 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
ADDREPLACE POLICY STMT(IPMAXRT4)
UPDATE
CHECK(IBMCS,CSTCP_IPMAXRT4_tcpipstackname)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
PARM(’IPMAXRT4(2000)’)
ACTIVE
SEVERITY(LOW)
INTERVAL(168:00)

The following examples show how you can make runtime updates of
CSTCP_IPMAXRT4_tcpipstackname default values:
F hzsproc,update,check=(ibmcs,cstcp_ipmaxrt4_*),parm=’ipmaxrt4(1000)’
F hzsproc,update,check=(ibmcs,cstcp_ipmaxrt4_*),interval=02:00
F hzsproc,update,check=(ibmcs,cstcp_ipmaxrt4_*),interval=01:00,parm=’ipmaxrt4(1500)’

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes - IPMAXRT4 is an integer value indicating the maximum threshold value
for the number of IPv4 indirect static and dynamic routes that the TCP/IP
stack can add to its routing table before issuing a warning message to indicate
a potential high CPU consumption. Value must be in the range 1 to 65536.
Default: IPMAXRT4(2000)

Reference:
See Minimizing the routing responsibility of z/OS Communications Server in
z/OS V2R2.0 Communications Server: IP Configuration Guide.

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 407

Messages:
This check issues the following exception messages:
v EZBH013E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSTCP_IPMAXRT6_tcpipstackname
Description:

Checks to see whether the total number of IPv6 indirect static and dynamic
routes in the TCP/IP stack's routing table has exceeded the maximum
threshold (default 2000). The tcpipstackname suffix is the job name of the
TCP/IP stack to which this check applies. Use CSTCP_IPMAXRT6_* to
reference this check for all stacks.

Reason for check:
A high number of routes added by OMPROUTE and the TCP/IP stack can
potentially result in high CPU consumption from routing changes. A large
routing table is considered to be inefficient in network design and operation.
By default, this check is performed once at 30 minutes after stack initialization,
at once whenever the total number of routes exceeds the threshold, and then
will be repeated once at the specified intervals (default 168 hours for weekly).

z/OS releases the check applies to:
z/OS V1R12 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
ADDREPLACE POLICY STMT(IPMAXRT6)
UPDATE
CHECK(IBMCS,CSTCP_IPMAXRT6_tcpipstackname)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
PARM(’IPMAXRT6(2000)’)
ACTIVE
SEVERITY(LOW)
INTERVAL(168:00)

The following examples show how you can make runtime updates of
CSTCP_IPMAXRT6_tcpipstackname default values:
F hzsproc,update,check=(ibmcs,cstcp_ipmaxrt6_*),parm=’ipmaxrt6(1000)’
F hzsproc,update,check=(ibmcs,cstcp_ipmaxrt6_*),interval=02:00
F hzsproc,update,check=(ibmcs,cstcp_ipmaxrt6_*),interval=01:00,parm=’ipmaxrt6(1500)’

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes - IPMAXRT6 is an integer value indicating the maximum threshold value
for the number of IPv6 indirect static and dynamic routes that the TCP/IP

Communications Server checks

408 IBM Health Checker for z/OS User's Guide

stack can add to its routing table before issuing a warning message to indicate
a potential high CPU consumption. Value must be in the range 1 to 65536.
Default: IPMAXRT6(2000)

Reference:
See Minimizing the routing responsibility of z/OS Communications Server in
z/OS V2R2.0 Communications Server: IP Configuration Guide.

Messages:
This check issues the following exception messages:
v EZBH013E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSTCP_SYSTCPIP_CTRACE_tcpipstackname
Description:

Checks if TCP/IP Event Trace (SYSTCPIP) is active with options other than the
default options (MINIMUM, INIT, OPCMDS, or OPMSGS). The tcpipstackname
suffix is the job name of the TCP/IP stack to which this check applies. Use
CSTCP_SYSTCPIP_CTRACE_* to reference this check for all stacks.

Reason for check:
If problem documentation is not being gathered, only the default SYSTCPIP
trace options (MINIMUM, INIT, OPCMDS, or OPMSGS) should be active.
Leaving other options active can result in performance degradation.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMCS,CSTCP_SYSTCPIP_CTRACE_tcpipstackname)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For information on initializing and modifying TCP/IP Event Trace options, see
Specifying trace options in z/OS V2R2.0 Communications Server: IP Diagnosis
Guide.

Messages:
This check issues the following exception messages:

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 409

v EZBH002E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSTCP_SYSPLEXMON_RECOV_tcpipstackname
Description:

Checks to see whether:
v The IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF parameters

have been specified and

v The GLOBALCONFIG SYSPLEXMONITOR RECOVERY parameter has been
specified

v

The tcpipstackname suffix is the job name of the TCP/IP stack to which this
check applies. Use CSTCP_SYSPLEXMON_RECOV_* to reference this check for
all stacks.

Reason for check:
IBM suggests that you use GLOBALCONFIG SYSPLEXMONITOR RECOVERY
when IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF is specified.
This allows a TCP/IP stack in a sysplex to perform internal checks to
determine if conditions are such that it is unhealthy. If so, it should remove
itself from the sysplex, allowing a healthy backup TCP/IP stack to takeover the
ownership of the DVIPA interfaces. This enables continued availability to
applications.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSTCP_SYSPLEXMON_RECOV_tcpipstackname)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on GLOBALCONFIG SYSPLEXMONITOR RECOVERY,
see GLOBALCONFIG in z/OS V2R2.0 Communications Server: IP Configuration
Reference.

Communications Server checks

410 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v EZBH006E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSTCP_TCPMAXRCVBUFRSIZE_tcpipstackname
Description:

Checks if the configured TCP maximum receive buffer size is sufficient to
provide optimal support to the z/OS Communications Server FTP Server. The
tcpipstackname suffix is the job name of the TCP/IP stack to which this check
applies. Use CSTCP_TCPMAXRCVBUFRSIZE_* to reference this check for all
stacks.

Reason for check:
Optimally, the z/OS Communications Server FTP Server needs a buffer size of
180K for data connections. TCPMAXRCVBUFRSIZE should not be set below
180K if the z/OS Communications Server FTP Server is being used.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMCS,CSTCP_TCPMAXRCVBUFRSIZE_tcpipstackname)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
PARM(’MAXRCVBUFRSIZE(180K)’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes - MAXRCVBUFRSIZE is an integer value with optional suffix (K)
indicating the maximum value an application can set as its receive buffer size
(in bytes) using SETSOCKOPT(). Value must be in the range 256 to 512K.
Default: MAXRCVBUFRSIZE(180K)

Reference:
For more information on TCPMAXRCVBUFRSIZE, see TCPCONFIG in z/OS
V2R2.0 Communications Server: IP Configuration Reference.

Messages:
This check issues the following exception messages:
v EZBH004E

See z/OS V2R2.0 Communications Server: IP Messages Volume 2 (EZB, EZD).

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 411

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSVTAM_CSM_STG_LIMIT
Description:

Checks if the maximum amount of storage dedicated to CSM use is adequate
to meet the needs of your system.

Reason for check:
The default values for CSM are 200 MEG for FIXED, 100 MEG for ECSA and
2000 MEG for HVCOMM. It is suggested that they be initially coded in
IVTPRM00 using the following values: 120M for ECSA, 240M for FIXED and
2000M for HVCOMM. Then the system should be monitored for one week
using the DISPLAY CSM command to determine peak usage. IVTPRM00 MAX
ECSA, MAX FIXED and MAX HVCOMM values should then be adjusted to
1.5 times the highest value indicated in the DISPLAY CSM outputs.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMCS,CSVTAM_CSM_STG_LIMIT)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes:
v MAXFIX - Integer value with optional suffix (K,M) indicating the maximum

bytes of fixed storage dedicated to CSM use. Default: MAXFIX(200M), the
value must be in the range between 1024K to 30720M.

v MAXECSA - Integer value with optional suffix (K,M) indicating the
maximum amount of storage dedicated to ECSA CSM buffers. Default:
MAXECSA(100M), the value must be in the range between 1024K to 2048M.

v MAXHVCOMM - Integer value with optional suffix (K,M) indicating the
maximum amount of storage dedicated to HVCOMM CSM use. Default:
MAXHVCOMM(2000M), the value must be in the range between 100M to
999999M.

Reference:
For more information on defining the maximum amount of storage dedicated
to CSM, see IVTPRM00 (Communication Storage Manager) in z/OS MVS
Initialization and Tuning Reference.

Communications Server checks

412 IBM Health Checker for z/OS User's Guide

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

Messages:
This check issues the following exception messages:
v ISTH017E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSVTAM_T1BUF_T2BUF_EE
Description:

Checks to see whether the T1BUF and T2BUF buffer pool allocations for the
system are adequate when Enterprise Extender (EE) are being used .

Reason for check:
The T1BUF and T2BUF buffer pools are used exclusively for Enterprise
Extender (EE) functions that use QDIO or HyperSockets. When EE is being
used with QDIO or HyperSockets DLCs, setting the T1BUF or T2BUF buffer
pool allocations at their default values (16 for T1BUF and 8 for T2BUF) might
not be optimal.

The T1BUF and T2BUF buffer pools should be monitored and tuned to
minimize the number of expansions. Minimizing buffer pool expansions will
decrease internal buffer overhead processing which should increase throughput
while reducing CPU consumption. These buffer pools can be monitored using
the D NET,BFRUSE,BUF=(T1,T2) command. Once the appropriate allocation
values for the T1BUF and T2BUF buffer pools has been determined, you can
change the T1BUF and T2BUF Start option allocation values.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSVTAM_T1BUF_T2BUF_EE)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on defining T1BUF and T2BUF parameters, see the
Buffer Pool section of z/OS V2R2.0 Communications Server: SNA Resource
Definition Reference.

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 413

Messages:
This check issues the following exception messages:
v ISTH013E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSVTAM_T1BUF_T2BUF_NOEE
Description:

Checks the T1BUF and T2BUF buffer pool allocations for the system when
Enterprise Extender (EE) is not being used.

Reason for check:
The T1BUF and T2BUF buffer pool is used exclusively for Enterprise Extender
(EE) functions that use QDIO or HyperSockets. If EE is not being used, the
T1BUF or T2BUF buffer pool allocations are not optimal if set above their
default values (16 for T1BUF and 8 for T2BUF).

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSVTAM_T1BUF_T2BUF_NOEE)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on defining T1BUF and T2BUF parameters, see the
Buffer Pool section of z/OS V2R2.0 Communications Server: SNA Resource
Definition Reference.

Messages:
This check issues the following exception messages:
v ISTH016E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Communications Server checks

414 IBM Health Checker for z/OS User's Guide

CSVTAM_VIT_DSPSIZE
Description:

Checks to see whether the VTAM® Internal Trace (VIT) dataspace table size is
set to 5 (50 MB).

Reason for check:
IBM suggests a VIT dataspace table size of 5 (50 MB) to allow an optimal
amount of trace information to be captured for serviceability.

z/OS releases the check applies to:
z/OS V1R9 through z/OS V1R12.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSVTAM_VIT_DSPSIZE)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on defining VTAM Internal Trace parameters, see
TRACE for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS
V2R2.0 Communications Server: SNA Resource Definition Reference.

Messages:
This check issues the following exception messages:
v ISTH008E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSVTAM_VIT_OPT_ALL
Description:

'Check to see whether all VTAM Internal Trace (VIT) options are active. Having
all VIT options active might not optimal for system performance.

Reason for check:
It might not be optimal for all VIT options to be active, unless this was
requested by IBM service. In general, only a subset of all the VIT options needs
to be made active to service a problem.

z/OS releases the check applies to:
z/OS V1R9 and later.

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 415

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSVTAM_VIT_OPT_ALL)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on defining VTAM Internal Trace parameters, see
TRACE for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS
V2R2.0 Communications Server: SNA Resource Definition Reference.

Messages:
This check issues the following exception messages:
v ISTH010E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSVTAM_VIT_OPT_PSSSMS
Description:

Checks to see whether the VTAM Internal Trace (VIT) options PSS and SMS
are active.

Reason for check:
IBM suggests that the VIT PSS and SMS options always be activated, since
they are almost always required when servicing a VTAM problem.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSVTAM_VIT_PSS_SMS)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Communications Server checks

416 IBM Health Checker for z/OS User's Guide

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on defining VTAM Internal Trace parameters, see
TRACE for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS
V2R2.0 Communications Server: SNA Resource Definition Reference.

Messages:
This check issues the following exception messages:
v ISTH006E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CSVTAM_VIT_SIZE
Description:

Checks to see whether the VTAM Internal Trace (VIT) table size is set to the
maximum value (999).

Reason for check:
A maximum table size of 999 for the VIT table allows the maximum amount of
trace information to be captured for serviceability.

z/OS releases the check applies to:
z/OS V1R9 through z/OS V1R12.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,CSVTAM_VIT_SIZE)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on defining VTAM Internal Trace parameters, see
TRACE for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS
V2R2.0 Communications Server: SNA Resource Definition Reference.

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 417

Messages:
This check issues the following exception messages:
v ISTH004E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R1_CS_GATEWAY
Description:

Checks whether the GATEWAY statement is in use in a TCP/IP profile on this
system. Support for the GATEWAY statement will be removed in a future
release of IBM z/OS Communications Server.

If this check determines that a GATEWAY statement has been processed, it will
continue to report this exception for the duration of this IPL, or as long as this
migration check is active. When this exception condition is detected, message
ISTM014E will be issued and will be followed by message ISTM900I which
will indicate the date and time that the GATEWAY statement had been last
processed, even if it has since been removed from all TCP/IP configuration
files. Therefore, if this exception condition has been corrected (for example,
GATEWAY statements have been removed from all TCP/IP profiles on this
system) you can use message ISTM900I to determine whether a new use of
GATEWAY statement has been detected, or whether the exception condition is
related to the earlier detection of the GATEWAY configuration statement.

When the check is activated, at that point a TCP/IP stack with the GATEWAY
statement may have not been processed yet. As a result, you may not see an
exception for this check the first time the check is processed. However
subsequent processing of the check (manually triggered or during subsequent
intervals) will detect whether a TCP/IP configuration that uses the GATEWAY
statement has been processed.

Reason for check:
Since the GATEWAY configuration statement will no longer be supported in
the TCP/IP profile in a future release of z/OS Communications Server , IBM
suggests that customers who currently use the GATEWAY statement migrate to
the BEGINROUTES/ENDROUTES configuration block.

z/OS releases the check applies to:
z/OS V2R1

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,ZOSMIGV2R1_CS_GATEWAY)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Communications Server checks

418 IBM Health Checker for z/OS User's Guide

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on understanding GATEWAY statements in z/OS V2R2.0
Communications Server: IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM014E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R2_Next_CS_SENDMAILCLIEN
Description:

Checks whether the sendmail client is in use on this system. Support for the
sendmail client will be withdrawn in a future release of IBM z/OS
Communications Server.

If this check determines that the sendmail client has been invoked on this
system, it will continue to be reported for the duration of this IPL, or as long
as this Migration Health Check is active. When this exception condition is
detected, message ISTM018E is issued and is followed by message ISTM900I
which indicates the date and time that the sendmail client was last invoked,
even if it has since been removed from the system or usage of it has stopped.
Therefore, if this exception has been corrected (for example, sendmail client no
longer being used on the system) you can use message ISTM900I to determine
whether a new use of the sendmail client has been detected, or whether the
exception condition is related to the earlier detection of the sendmail client or
use a compatible third-party solution.

Reason for check:
Because sendmail on z/OS will no longer be supported in a future release of
the IBM z/OS Communications Server, IBM suggests that customers who
currently use or plan to use sendmail for sending email, migrate to the
CSSMTP daemon that was introduced in z/OS V1R11.

z/OS releases the check applies to:
z/OS V2R2

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,ZOSMIGV2R2_Next_CS_SENDMAILCLIEN)
DATE(’date of the change’)
REASON(’Your reason for making the update’)
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 419

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on “Mail on z/OS” in z/OS V2R2.0 Communications Server:
IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM018E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R2_Next_CS_SENDMAILDAEMN
Description:

Checks whether the sendmail daemon is in use on this system. Support for the
sendmail daemon will be withdrawn in a future release of IBM z/OS
Communications Server.

If this check determines that the sendmail daemon is running on this system, it
will continue to be reported for the duration of this IPL, or as long as this
Migration Health Check is active. When this exception condition is detected,
message ISTM028E is issued and is followed by message ISTM900I which
indicates the date and time that the sendmail daemon was last detected, even
if it has since been stopped. Therefore, if this exception has been corrected (for
example, sendmail daemon no longer being used on the system) you can use
message ISTM900I to determine whether a new use of the sendmail daemon
has been detected, or whether the exception condition is related to the earlier
detection of the sendmail daemon.

Reason for check:
Because the ability to run sendmail on z/OS will no longer be supported in
future releases, IBM suggests that customers who currently use or plan to use
sendmail on z/OS for sending email from z/OS, migrate to the CSSMTP
daemon that was introduced in z/OS V1R11. Customers who currently use or
plan to use sendmail on z/OS for purposes other than sending email from
z/OS, are encouraged to migrate those functions to a compatible third-party
solution or to other operating system platforms that continue to support
sendmail or equivalent function, such as Linux on z Systems.

z/OS releases the check applies to:
z/OS V2R2

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

Communications Server checks

420 IBM Health Checker for z/OS User's Guide

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

UPDATE
CHECK(IBMCS,ZOSMIGV2R2_Next_CS_SENDMAILDAEMN)
DATE(’date of the change’)
REASON(’Your reason for making the update’)
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on “Mail on z/OS” in z/OS V2R2.0 Communications Server:
IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM028E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R2_Next_CS_SENDMAILMSA
Description:

Checks whether sendmail is being used as a Mail Submission Agent (MSA) on
this system (sendmail is listening on port 587). Support sendmail will be
withdrawn in a future release of IBM z/OS Communications Server and the
MSA function will no longer be available on z/OS.

If this check determines that sendmail is acting as an MSA on this system, it
will continue to be reported for the duration of this IPL, or as long as this
Migration Health Check is active. When this exception condition is detected,
message ISTM022E is issued and is followed by message ISTM900I which
indicates the date and time that the sendmail MSA was last detected, even if it
has since been removed from the system or usage of it has stopped. Therefore,
if this exception has been corrected (for example, sendmail MSA function no
longer being used on the system) you can use message ISTM900I to determine
whether a new use of the sendmail MSA function has been detected, or
whether the exception condition is related to the earlier detection of the
sendmail MSA function.

Reason for check:
Because sendmail will no longer be supported on z/OS in future releases and
the MSA function will no longer be available on z/OS, IBM suggests that
customers who currently use or plan to use sendmail as a mail submission
agent (MSA), migrate that function to a compatible third-party solution or to
other operating system platforms that continue to support MSA functions, such
as Linux on z Systems.

z/OS releases the check applies to:
z/OS V2R2

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 421

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,ZOSMIGV2R2_Next_CS_SENDMAILMSA)
DATE(’date of the change’)
REASON(’Your reason for making the update’)
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on “Mail on z/OS” in z/OS V2R2.0 Communications Server:
IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM022E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R2_Next_CS_SENDMAILMTA
Description:

Checks whether sendmail is being used as a Mail Transfer Agent (MTA) on this
system (sendmail is listening on port 25). Support for sendmail will be
withdrawn in a future release of IBM z/OS Communications Server and the
MTA function will no longer be available on z/OS.

If this check determines that sendmail is acting as an MTA on this system, it
will continue to be reported for the duration of this IPL, or as long as this
Migration Health Check is active. When this exception condition is detected,
message ISTM020E is issued and is followed by message ISTM900I which
indicates the date and time that the sendmail MTA was last detected, even if it
has since been removed from the system or usage of it has stopped. Therefore,
if this exception has been corrected (for example, sendmail MTA function no
longer being used on the system) you can use message ISTM900I to determine
whether a new use of the sendmail MTA function has been detected, or
whether the exception condition is related to the earlier detection of the
sendmail MTA function.

Reason for check:
Because sendmail will no longer be supported on z/OS in future releases and
the MTA function will no longer be available on z/OS, IBM suggests that
customers who currently use or plan to use sendmail as a mail transfer agent

Communications Server checks

422 IBM Health Checker for z/OS User's Guide

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

(MTA), migrate that function to a compatible third-party solution or to other
operating system platforms that continue to support MTA functions, such as
Linux on z Systems.

z/OS releases the check applies to:
z/OS V2R2

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,ZOSMIGV2R2_Next_CS_SENDMAILMTA)
DATE(’date of the change’)
REASON(’Your reason for making the update’)
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on “Mail on z/OS” in z/OS V2R2.0 Communications Server:
IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM020E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R2_Next_CS_SMTPDDAEMON
Description:

Checks whether the SMTPD daemon is in use on this system. Support for the
SMTPD daemon will be withdrawn in a future release of IBM z/OS
Communications Server.

If this check determines that SMTPD is running on this system, it will continue
to be reported for the duration of this IPL, or as long as this Migration Health
Check is active. When this exception condition is detected, message ISTM024E
is issued and is followed by message ISTM900I which indicates the date and
time that the SMTPD daemon was last detected, even if it has since been
removed from the system or usage of it has stopped. Therefore, if this
exception has been corrected (for example, SMTPD no longer being used on
the system) you can use message ISTM900I to determine whether a new use of
the SMTPD daemon has been detected, or whether the exception condition is
related to the earlier detection of the SMTPD daemon.

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 423

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Reason for check:
Because SMTPD on z/OS will no longer be supported in future releases, IBM
suggests that customers who currently use or plan to use SMTPD to send mail
from the z/OS JES spool, migrate to the CSSMTP daemon that was introduced
in z/OS V1R11. Customers who currently use or plan to use SMTP for
purposes other than sending mail from the z/OS JES spool, are encouraged to
migrate those mail functions to other operating system platforms that continue
to support full email functionality, such as Linux on z Systems.

z/OS releases the check applies to:
z/OS V2R2

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,ZOSMIGV2R2_Next_CS_SMTPDDAEMON)
DATE(’date of the change’)
REASON(’Your reason for making the update’)
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on “Mail on z/OS” in z/OS V2R2.0 Communications Server:
IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM024E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R2_Next_CS_SMTPDMTA
Description:

Checks whether the SMTPD daemon is in use as a Mail Transfer Agent (MTA)
on this system (SMTPD is listening on port 25). Support for the SMTPD
daemon will be withdrawn in a future release of IBM z/OS Communications
Server and MTA functionality will no longer be available on z/OS.

If this check determines that SMTPD is running as an MTA on this system
(SMTPD listening on port 25), it will continue to be reported for the duration
of this IPL, or as long as this Migration Health Check is active. When this
exception condition is detected, message ISTM026E is issued and is followed
by message ISTM900I which indicates the date and time that the SMTPD
daemon was last detected acting as an MTA, even if it has since been removed

Communications Server checks

424 IBM Health Checker for z/OS User's Guide

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

from the system or usage of it as an MTA has stopped. Therefore, if this
exception has been corrected (for example, SMTPD no longer listening on port
25 on the system) you can use message ISTM900I to determine whether a new
use of the SMTPD daemon's MTA function has been detected, or whether the
exception condition is related to the earlier detection of the SMTPD daemon's
MTA function.

Reason for check:
Because SMTPD will no longer be supported on z/OS in future releases, and
its MTA function will not be available on z/OS, IBM suggests that customers
who are currently using or plan to use SMTPD as an MTA, migrate that
function to other operating system platforms that continue to provide MTA
support, such as Linux on z Systems.

z/OS releases the check applies to:
z/OS V2R2

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMCS,ZOSMIGV2R2_Next_CS_SMTPDMTA)
DATE(’date of the change’)
REASON(’Your reason for making the update’)
INACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See the information on “Mail on z/OS” in z/OS V2R2.0 Communications Server:
IP Configuration Reference.

Messages:
This check issues the following exception messages:
v ISTM026E

See z/OS V2R2.0 Communications Server: SNA Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Component trace checks (IBMCTRACE)

CTRACE_DEFAULT_OR_MIN
Description:

Checks to see whether any component traces have been active with other than
the default and the minimum for longer than the threshold.

Communications Server checks

Chapter 13. IBM Health Checker for z/OS checks 425

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|

Reason for check:
A component trace that is tracing more than the default can cause degraded
system performance.

z/OS releases the check applies to:
z/OS V2R2.

Type of check (local, remote, or REXX):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE,
CHECK(IBMCTRACE,CTRACE_DEFAULT_OR_MIN),
INTERVAL(4:00),
SEVERITY(LOW),
PARM('TIME(DAYS,07)’’),
DATE('20120901'),
Reason('Your reason for making the update.')

Debug support:
No

Verbose support:
Yes. When Verbose(Yes) is in effect, all component traces using other than the
default are displayed, even if they have not reached the threshold.

Parameters accepted:
Yes, the following parameters are accepted:
v TIME(DAYS,n) or
v TIME(HOURS,n).

Each of which identifies the length of time that any component traces must be
active with options that are not the minimum and not the default before the
exception is raised. “n” may range from 1-9999

Reference:
For more information, see "CTRACE" in AXREXX Return and reason codes in
z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN.

Messages:
This check issues the following exception messages:
v IEAH841E

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
When successful and VERBOSE(YES), or when an exception is encountered, a
report like the following is produced by the check:
IEAH844I Component Trace start date/time information
Start Date/Time Name Subname
09/27/2011 10:05:24 SYSHZS
09/27/2011 07:58:46 SYSAXR

Communications Server checks

426 IBM Health Checker for z/OS User's Guide

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|

|

|
|
|

|
|
|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

Consoles checks (IBMCNZ)

CNZ_AMRF_Eventual_Action_Msgs
Description:

Checks that eventual action messages are not retained if the Action Message
Retention Facility (AMRF) is active.

Reason for check:
Exclude eventual action messages from being retained when AMRF is active.
Because AMRF causes messages to remain in storage, eventual action messages
may exhaust storage needed to retain critical and immediate action messages.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For more information on AMRF, see z/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0004I

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Console_MasterAuth_Cmdsys
Description:

Checks that there is an active console with MASTER authority that has
command association to this system.

Reason for check:
Assign MASTER authority and proper command association to an MCS, EMCS
or SMCS console. This console gives you the ability to control your system.

z/OS releases the check applies to:
z/OS V1R4 through V1R7

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 427

|

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For more information on MASTER authority and command association, see
z/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0002I

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Console_Mscope_And_Routcode
Description:

Checks that each MCS/SMCS/EMCS console is not defined with multi-system
message scopes AND receiving all routing codes (or all except routing code
11).

Reason for check:
All MCS, SMCS, or EMCS consoles defined with multi-system message scope
should only receive routing codes specific to that console's function.
Conversely, all MCS, SMCS, EMCS consoles that are receiving all routing codes
(or all except routing code 11) should be defined with single-system message
scope. This reduces the number of messages sent to a console in the sysplex.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For more information on message scope and routing codes, see z/OS MVS
Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0003I

Consoles checks

428 IBM Health Checker for z/OS User's Guide

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Console_Operating_Mode
Description:

This check identifies installations running in 'Shared' console service operating
mode.

Reason for check:
'Distributed' mode is the preferred mode of operations and 'Shared' mode will
be removed in a future release.

z/OS releases the check applies to:
z/OS 1.13

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
INACTIVE
SEVERITY(MEDIUM)
INTERVAL(ONETIME)

Parameters accepted:
No

Reference:
For additional information about console service operating mode see z/OS
MVS Planning: Operations.

For additional information on setting the console service operating mode see
the CONSOLxx and IEASYSxx parmlib members in z/OS MVS Initialization and
Tuning Reference.

Messages:
This check issues the following exception messages:
v CNZHF0014E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Console_Routcode_11
Description:

Ensures that no MCS or SMCS console is receiving ROUTCODE 11 messages.

Reason for check:
All MCS/SMCS consoles should not be receiving messages issued with routing
code 11. Messages issued with routing code 11 are intended to be sent to the
programmer, not the operator console.

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 429

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For more information on routing codes, seez/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0005I

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_EMCS_Hardcopy_Mscope
Description:

Checks to see that each EMCS console defined with a multi-system message
scope is not receiving the hardcopy message set.

Reason for check:
All EMCS consoles with multi-system message scopes should not receive the
hardcopy message set. This can affect message processing times and console
availability.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(MED)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For more information on EMCS consoles, see z/OS MVS Planning: Operations.

Consoles checks

430 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v CNZHF0006E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_EMCS_Inactive_Consoles
Description:

Ensures that there are not an excessive number of inactive EMCS consoles.

Reason for check:
If the EMCS console is no longer needed, use the EMCS console removal
service (IEARELEC) to remove the EMCS console definition. The number of
inactive EMCS consoles in use in a sysplex can affect the time it takes for a
system to join a sysplex.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
PARM(10000)
ACTIVE
SEVERITY(HI)
INTERVAL(24:00)

Parameters accepted:
Yes. You can specify the number of inactive EMCS consoles that you deem
excessive. PARM(10000) is the default.

Reference:
For more information on EMCS consoles, see z/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0009E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_OBSOLETE_MSGFLD_AUTOMATION
Description:

Checks to see whether an obsolete version of Message Flood Automation is
installed. z/OS R11 eliminates the use of message exit IEAVMXIT and the
command exit CNZZCMXT. If either message exit IEAVMXIT or command exit
CNZZCMXT are installed on a z/OS V1 R11 system, the check generates an
exception.

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 431

Reason for check:
z/OS R11 eliminates the use of message exit IEAVMXIT and the command exit
CNZZCMXT and integrates MFA into mainline message processing. Customers
should remove the old code from their exits in order to ensure that old
processing does not interfere with new processing.

z/OS releases the check applies to:
z/OS V1 R11 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMCNZ,CNZ_OBSOLETE_MSGFLD_AUTOMATION)
SEVERITY(MED)INTERVAL(TIMER) HOURS(24) MINUTES(0)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see:
v z/OS MVS System Commands

v z/OS MVS Planning: Operations

Messages:
This check issues the following exception messages:
v CNZHF0011E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output: The following shows output from the check :
CNZHR0011I The following components of an obsolete Message Flood
Automation installation were detected:

Message Exit (IEAVMXIT)
Command Exit (CNZZCMXT)

* Medium Severity Exception *

CNZHF0011E An obsolete version of Message Flood Automation is active

Explanation: One or more components of an obsolete version of Message
Flood Automation were determined to be active. Report message
CNZHR0011I identifies which components of the obsolete version of
Message Flood Automation were detected.

Obsolete versions of Message Flood Automation conflict with current
Message Flood Automation processing.

System Action: The system continues processing.

Operator Response: N/A

System Programmer Response: Remove obsolete versions of Message Flood
Automation from your installation’s IEAVMXIT exit and MPFLSTxx .CMD

Consoles checks

432 IBM Health Checker for z/OS User's Guide

statements.

Problem Determination: See CNZHR0011I in the message buffer that
identifies which components of an obsolete version of Message Flood
Automation were detected.

Source: Consoles (SC1CK)

Reference Documentation:
z/OS MVS Planning: Operations
z/OS MVS System Commands
z/OS Migration

Automation: N/A

Check Reason: Obsolete versions of Message Flood Automation must be
removed from the system

CNZ_Syscons_Allowcmd
Description:

The check will compare the ALLOWCMD setting in the CONSOLxx parmlib
member for the system console with the desired setting.

Reason for check:
To ensure that the system console is as available as possible to act as a console
of last resort.

z/OS releases the check applies to:
z/OS V1R12 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

DATE(’date_of_the_change’)
REASON(’YOUR REASON FOR MAKING THE UPDATE.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
Yes:

PARM('Y/N')
Indicates which setting is preferred for ALLOWCMD on the system
console.
v PARM('Y') indicates that ALLOWCMD should be specified for the

system console.
v PARM('N') indicates that commands should only be allowed from the

system console if it's in PD-mode.

Reference:

v For more information on systems consoles, see z/OS MVS Planning:
Operations

v For more information on ALLOWCMD in the CONSOLxx parmlib member,
seez/OS MVS Initialization and Tuning Reference

Messages:
This check issues the following exception messages:

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 433

v CNZHF0015E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Syscons_Mscope
Description:

Ensures that the system console has a single-system message scope.

Reason for check:
The system console should only receive messages from the local system to
avoid having to process large numbers of messages.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(MED)
INTERVAL(24:00)

Parameters accepted:
No.

Reference:
For more information on systems consoles, see z/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0007E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Syscons_PD_Mode
Description:

Ensures that the system console is not in Problem Determination (PD) mode.

Reason for check:
The system console should not be running in PD mode during normal
operations. The system console should only be in PD mode to perform
necessary recovery operations in emergency situations.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can

Consoles checks

434 IBM Health Checker for z/OS User's Guide

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(MED)
INTERVAL(01:00)

Parameters accepted:
No

Reference:
For more information on system consoles, see z/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0010E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Syscons_Routcode
Description:

Ensures that the system console is receiving the minimum set of routing codes
(1, 2 and 10).

Reason for check:
The system console should be configured to receive, at a minimum, routing
codes 1, 2, and 10. This is to ensure that the system console receives all
important messages.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For more information on systems consoles, see z/OS MVS Planning: Operations.

Messages:
This check issues the following exception messages:
v CNZHF0008I

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 435

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

CNZ_Task_Table
Description:

Reports the status of important tasks that run in the CONSOLE address space.

Reason for check:
Using the report generated from this check, installations can determine if there
are (real or potential) problems with specific functions of the Consoles
component.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(00:15)

Parameters accepted:
No

Reference:
N / A

Messages:
This check will issue Header message CNZTTH01R and may issue one, or
more, exception messages. If Console Services appears to be running
sluggishly, IBM recommends that CNZ_TASK_Table output, including any
exception messages, be provided for analysis.
v CNZTTH02E
v CNZTTH03E
v CNZTTH04E
v CNZTTH05E
v CNZTTH06E
v CNZTTH07E
v CNZTTH08E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R13_CNZ_Cons_Oper_Mode
Description:

The check identifies installations that haven't explicitly identified their console
service operating mode.

Consoles checks

436 IBM Health Checker for z/OS User's Guide

|
|
|
|
|

|

|

|

|

|

|

|

|

Reason for check:
For systems at a level prior to z/OS V1R13, the default console service
operating mode is 'Shared', but beginning in z/OS 1.13 the new default is
'Distributed'. Simply accepting the default may leave the installation unaware
that they are going to run in 'Distributed' mode.

z/OS releases the check applies to:
z/OS 1.11 and z/OS 1.12 only.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
ACTIVE
SEVERITY(LOW)
INTERVAL(24:00)

Parameters accepted:
No

Reference:
For additional information about console service operating mode see z/OS
MVS Planning: Operations.

For additional information on setting the console service operating mode see
the CONSOLxx and IEASYSxx parmlib members in z/OS MVS Initialization and
Tuning Reference.

Messages:
This check issues the following exception messages:
v CNZHF0013E

See the CNZHF messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Contents supervision checks (IBMCSV)

CSV_APF_EXISTS
Description:

Checks to see if data sets described by entries in the APF list are consistent
with data sets that exist on the system.

Reason for check:
A potential system integrity risk exists when a data set cannot be allocated
using the criteria specified in the system APF list.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
Yes
v MIGRATEDOK(NO) specifies that a migrated APF authorized data set is

always an exception.

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 437

v MIGRATEDOK(YES) specifies that a migrated APF authorized data set is
never an exception.

v MIGRATEDOK(SYSTEM) specifies that a migrated APF authorized data set
is an exception unless the data set is SMS-managed (that is its catalog entry
contains a storage class) and has an "SMS" APF entry. This is the default."

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMCSV,CSV_APF_EXISTS)
PARM(’MIGRATEDOK(SYSTEM)’)
SEVERITY(LOW) INTERVAL(04:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides additional error detail in debug mode. You can put a
check into debug mode using any of the following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF.

Reference:
For more information, see:
v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS MVS Initialization and Tuning Guide

Messages:
This check issues the following exception messages:
v CSVH0957E

See the CSVH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for MLS users:
SYSLOW

Output:
The report that CSV_APF_EXISTS produces is shown below:
VOLUME is the volume specified in the APF entry or *SMS*
DSNAME is the data set name specified in the APF entry
ERROR is the problem that was detected by the check

CSVH0955I A problem was found with each APF list entry displayed

VOLUME DSNAME ERROR

TMPSTG ANY.ALIAS DS not found
SMS ANY.DATASET DS not SMS-managed
BADVOL ANY.DATASET Volume not found
SMS ANY.SMS.ALIAS DS is alias
ALL001 ANY.SMS.DATASET DS is SMS-managed

In the output:

VOLUME
The volume specified in the APF entry or *SMS*

Contents supervision (CSV) checks

438 IBM Health Checker for z/OS User's Guide

DSNAME
The data set name specified in the APF entry

ERROR
The problem that was detected by the check

CSV_LNKLST_NEWEXTENTS
Description:

Checks to see if the number of extents in each data set of a LNKLST set has
changed since the LNKLST was activated. All active LNKLST sets are checked.

Reason for check:
The system will recognize only the extents that existed when the LNKLST was
made ACTIVE.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
The following parameters are supported to control WTOs produced by
exception messages when a new extent is detected in the LNKLST set:

PARM(ALL)
Exceptions should be issued for all active LNKLST data sets for which new
extents were created after the LNKLST was activated.

PARM('NEW(text value)')
Exceptions should only be issued for errors that are detected after this
parameter is set.

The following are examples of PARMS specifications for
CSV_LNKLST_NEWEXTENTS:
PARMS(’NEW(yyyy/mm/dd hh:mm)’)
PARMS(’ALL’)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMCSV,CSV_LNKLST_NEWEXTENTS)
PARM(’ALL’)
SEVERITY(HIGH) INTERVAL(01:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
In debug mode, this check includes additional error information in the
message buffer. You can put a check into debug mode using any of the
following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF.

Verbose support:
Yes. When VERBOSE=YES is specified, the extent information for all data sets
(not just those with new extents after activation) will be shown.

Contents supervision (CSV) checks

Chapter 13. IBM Health Checker for z/OS checks 439

Reference:
For more information, see:
v z/OS MVS Initialization and Tuning Guide

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS System Commands

Messages:
This check issues the following exception messages:
v CSVH0970E

See the CSVH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for MLS users:
SYSLOW

Output:
The report that CSV_LNKLST_NEWEXTENTS produces is shown below:
CSVH0977I LNKLST set NEWLST

The error status is in column one:
C = Confirmed error * = New error

ORIG CURR VOLUME DSNAME
* 2 4 SIXPAK XESCT.SHARONP.LOADLIB
TOTAL EXTENTS ORIG: 130 CURR: 132

In the output:

ORIG
The number of extents that existed when the LNKLST was made ACTIVE.

CURR
The number of extents that existed the last time the check routine
executed.

CSV_LNKLST_SPACE
Description:

Checks all active LNKLST sets on the system for PDS's that were created with
secondary space defined.

Reason for check:
IBM suggests that partitioned data sets (PDS) in the LNKLST be defined with
only primary spaces. Allocating a PDS with only primary space causes it to
have one extent. That makes it easier to stay within the 255-extent limit of the
LNKLST set and prevents new extents from being created if a data set is
updated after the LNKLST is activated.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

Contents supervision (CSV) checks

440 IBM Health Checker for z/OS User's Guide

UPDATE
CHECK(IBMCSV,CSV_LNKLST_SPACE)
SEVERITY(LOW) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
In debug mode, this check includes additional error information in the
message buffer. You can put a check into debug mode using any of the
following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF.

Reference:
For more information, see:
v z/OS MVS Initialization and Tuning Guide

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS System Commands

Messages:
This check issues the following exception messages:
v CSVH0980E

See the CSVH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for MLS users:
SYSLOW

Output:
The report that CSV_LNKLST_SPACE produces is shown below:
CSVH0981I LNKLST set LNKLST00 data sets allocated with secondary

VOLUME DSNAME

ZOS17B SYS1.LINKLIB
ZOS17B SYS1.MIGLIB
ZOS17B SYS1.CSSLIB
ZOS17B SYS1.CMDLIB

In the output:

VOLUME
The volume serial number of a data set in the LNKLST

DSNAME
The name of a data set in the LNKLST

CSV_LPA_CHANGES
Description:

This check compares the current IPL's LPA to the previous IPL's LPA,
providing information about modules that have changed in size (or been
added or removed), along with summaries of the storage deltas for each of the
LPA sub-areas (PLPA, MLPA, FLPA, device support, dynamic LPA), and totals
for each of the sub-areas. In both cases, the display will differentiate between
the below-16M area and the above-16M area.

Reason for check:
An increase in the amount of LPA could mean that the private regions size

Contents supervision (CSV) checks

Chapter 13. IBM Health Checker for z/OS checks 441

might soon be, or has been, reduced which could cause application failures.
Running the system in exception has no consequence. The exception is
intended to alert to the possibilities.

z/OS releases the check applies to:
z/OS V1R9 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMCSV,CSV_LPA_CHANGES),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(

’PLPAD(32K),EPLPAD(1M)’,
’MLPAD(32K),EMLPAD(1M)’,
’FLPAD(32K),EFLPAD(1M)’,
’DEVSUPD(32K),EDEVSUPD(1M)’,
’DLPAD(32K),EDLPAD(1M)’,
’LPAD(64K),ELPAD(1M)’
),

DATE(’20060424’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:

v PLPAD(n), for PLPA Delta, specifies an integer 0-2G. If the delta for PLPA
exceeds n, an exception message is issued. The default is 32K.

v MLPAD(n), for MLPA Delta, specifies an integer 0-2G. If the delta for MLPA
exceeds n, an exception message is issued. The default is 32K.

v FLPAD(n), for FLPA Delta, specifies an integer 0-2G. If the delta for FLPA
exceeds n, an exception message is issued. The default is 32K.

v DEVSUPD(n), for Device Support LPA Delta, specifies an integer 0-2G. If the
delta for Device Support LPA exceeds n, an exception message is issued. The
default is 32K.

v DLPAD(n), for Dynamic LPA Delta, specifies an integer 0-2G. If the delta for
dynamic LPA exceeds n, an exception message is issued. The default is 32K.

v LPAD(n), for LPA Delta, specifies an integer 0-2G. If the delta for LPA (the
sum of the PLPA, MLPA, FLPA, DEVSUP LPA, and DLPA deltas) exceeds n,
an exception message is issued. The default is 64K.

v EPLPAD(n), for Extended PLPA Delta, specifies an integer 0-2G. If the delta
for extended PLPA exceeds n, an exception message is issued. The default is
1M.

v EMLPAD(n), for Extended MLPA Delta, specifies an integer 0-2G. If the delta
for extended MLPA exceeds n, an exception message is issued. The default is
1M.

Contents supervision (CSV) checks

442 IBM Health Checker for z/OS User's Guide

v EFLPAD(n), for Extended FLPA Delta, specifies an integer 0-2G. If the delta
for extended FLPA exceeds n, an exception message is issued. The default is
1M.

v EDEVSUPD(n), for Device Support Extended LPA Delta, specifies an integer
0-2G. If the delta for Device Support extended LPA exceeds n, an exception
message is issued. The default is 1MK.

v EDLPAD(n), for Extended Dynamic LPA Delta, specifies an integer 0-2G. If
the delta for extended dynamic LPA exceeds n, an exception message is
issued. The default is 1M.

v ELPAD(n), for Extended LPA Delta, specifies an integer 0-2G. If the delta for
Extended LPA (the sum of the EPLPA, EMLPA, EFLPA, DEVSUP ELPA, and
EDLPA deltas) exceeds n, an exception message is issued. The default is 1M.

Reference:

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Initialization and Tuning Guide

Messages:
This check issues the following exception messages:
v CSVH1001E

See the CSVH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

DAE checks (IBMDAE)

DAE_SHAREDSN
Description:

Checks that in a sysplex environment DAE data set is shared between systems
(DAE option SHARE(DSN) is in effect).

This check is only applicable for a system in a Parallel Sysplex environment.
Note, however, that this check is not applicable and will not run on a
geographically dispersed Parallel Sysplex (GDPS®) controlling system (K-sys)
in a GDPS environment.

Reason for check:
In a Parallel Sysplex environment, if the DAE data set is not being shared, it is
possible that the system requests a dump for a problem occurred on another
system in the sysplex. To prevent duplicate dumps on all systems in the
Sysplex, IBM recommends that you share the same ADYSETxx parameter
values in each system.

This check will detect if the DAE data set is being shared in a Parallel Sysplex
environment.

z/OS releases the check applies to:
z/OS V1R11 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can

Contents supervision (CSV) checks

Chapter 13. IBM Health Checker for z/OS checks 443

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMDAE,DAE_SHAREDSN)
ACTIVE
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:

Reference:
For more information, see:
v z/OS MVS Diagnosis: Tools and Service Aids.

Messages:
This check issues the following exception messages:
v ADYH011E

See the ADYH messages in z/OS MVS System Messages, Vol 1 (ABA-AOM).

SECLABEL recommended for MLS users:
SYSLOW

DAE_SUPPRESSING
Description:

Checks that DAE is active and has the configuration recommended by IBM.

Reason for check:
The system requests dumps that you may not need. Dump Analysis and
Elimination (DAE) is designed to suppress duplicate dumps and to help
prevent the system from using unneeded resources by capturing diagnostic
data repeatedly for the same problems. This check will detect whether DAE is
active and your settings match those recommended by IBM.

z/OS releases the check applies to:
z/OS V1R11 and later.

Parameters accepted:
The following parameters are supported to identify the expected suppression
options.

SVCDUMP(SUPPRESSALL | SUPPRESS | NONE)
Specifies that the check compare the current SVCDUMP suppression option
(specified in the SVCDUMP statement of the ADYSETxx parmlib member)
to the specified value and write exception message ADYH004E upon
mismatch.

Default: SUPPRESSALL

SYSMDUMP(SUPPRESSALL | SUPPRESS | NONE | ANY)
Any choice other than ANY indicates that the check should compare the
current SYSMDUMP suppression option (specified in the SYSMDUMP
statement of the ADYSETxx parmlib member) to the specified value and
write exception message ADYH005E upon mismatch.

ANY indicates that any option is acceptable so that there is never a
mismatch.

Default: ANY

The following is an example of PARMS specifications for DAE_SUPPRESSING:

DAE checks

444 IBM Health Checker for z/OS User's Guide

PARM(’SVCDUMP(SUPPRESSALL),SYSMDUMP(ANY)’)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMDAE,DAE_SUPPRESSING)
ACTIVE
PARM(’SVCDUMP(SUPPRESSALL),SYSMDUMP(ANY)’)
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:

Reference:
For more information, see:
v z/OS MVS Diagnosis: Tools and Service Aids.

Messages:
This check issues the following exception messages:
v ADYH0001E

See the ADYH messages in z/OS MVS System Messages, Vol 1 (ABA-AOM).

SECLABEL recommended for MLS users:
SYSLOW

Device Manager checks (IBMDMO)

DMO_TAPE_LIBRARY_INIT_ERRORS
Description:

This check reports any tape library initialization errors that were detected
during IPL. This is a local check, which will run once per the life of the IPL.

Reason for check:
Ensures that tape library HCD definitions agree with the tape library hardware
definitions.

z/OS releases the check applies to:
z/OS V1R13.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(DMO_TAPE_LIBRARY_INIT_ERRORS)
INTERVAL(ONETIME),
SEVERITY(LOW)
DATE(’date_of_the_change’)
Reason(’Your reason for making the update.’)

Debug support:
No

DAE checks

Chapter 13. IBM Health Checker for z/OS checks 445

Verbose support:
No

Parameters accepted:
No

Reference:
For additional information, refer to messages IEA437I and IEA438I in z/OS
MVS System Messages, Vol 6 (GOS-IEA).

Messages:
This check issues the following exception messages:
v DMOH0104E

See the DMOH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

DMO_REFUCB
Description:

This check indicates whether the REFUCB function is disabled by the system.

Reason for check:
IBM recommends that the REFUCB function is enabled by the system to
maintain VTOC integrity with shared DASD.

z/OS releases the check applies to:
z/OS V2R2 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(DMO_REFUCB),
SEVERITY(LOW),
PARM(’ENABLE(YES)’),
INTERVAL(ONETIME),
DATE(’date_of_the_change’)
REASON(’Reason for the update’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, the following parameters are accepted:

PARM(‘ENABLE(state)')

Since, there may be a rare instance where REFUCB should not be enabled, you
can set the expected state of REFUCB which the check expects to either:
v PARM('ENABLE(YES)'), which is the default, indicates that the expected

REFUCB state is 'enabled'.

Device Manager checks

446 IBM Health Checker for z/OS User's Guide

|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|
|

v PARM('ENABLE(NO)') indicates that the expected REFUCB state is
'disabled'.

Reference:
For additional information, see z/OS MVS Initialization and Tuning Reference and
z/OS MVS System Commands.

Messages:
This check issues the following exception messages:
v DMOH0201E
v DMOH0202I

See the DMOH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

DFSMS OPEN/CLOSE/EOV checks (IBMOCE)

OCE_XTIOT_CHECK
Description:

This check looks to see whether XTIOTs are enabled for non-VSAM data sets.
You can enable XTIOTs for non-VSAM data by specifying
NON_VSAM_XTIOT=YES sets in the DEVSUPxx parmlib member.
NON_VSAM_XTIOT=YES has to be specified in every DEVSUPxx member that
is identified by the current DEVSUPxx suffix list (as specified by
DEVSUP=(xx,...,zz) in IEASYSxx). Otherwise the NON_VSAM_XTIOT value
might get reset to its default of NO by one of the DEVSUPxx members which
do not list NON_VSAM_XTIOT=YES explicitly.

Reason for check:
Enabling XTIOTs for non-VSAM data sets decreases the chances of running out
of virtual storage when allocating and concurrently opening many sequential
and partitioned data sets.

z/OS releases the check applies to:
z/OS V2R1 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMOCE, OCE_XTIOT_CHECK)
INTERVAL(ONETIME),
SEVERITY(LOW)
DATE(’date_of_the_change’)
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Device Manager checks

Chapter 13. IBM Health Checker for z/OS checks 447

|
|

|
|
|

|
|

|

|

|

|
|
|

Parameters accepted:
No

Reference:
For additional information, see the DEVSUPxx parmlib member in z/OS MVS
Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IEC0H0101E

See the IEC0H messages in z/OS MVS System Messages, Vol 7 (IEB-IEE).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
The following shows sample output from the check exception:
CHECK(IBMOCE,OCE_XTIOT_CHECK)
START TIME: 08/29/2011 12:52:06.852243
CHECK DATE: 20110410 CHECK SEVERITY: LOW

* Low Severity Exception *

IEC0H0101E XTIOTs for non vsam data sets is not active
IBM suggests setting NON_VSAM_XTIOT=YES
in the DEVSUPxx member of SYS1.PARMLIB.

Explanation: IBM suggests setting NON_VSAM_XTIOT=YES in the DEVSUPxx
member of SYS1.PARMLIB to decrease the chances of running out of
virtural storage when allocating and concurrently opening many
sequential and partitioned data sets.

System Action: The system continues processing.

Operator Response: N/A

System Programmer Response: Encourage the use of XTIOT allocations.

Problem Determination: N/A

Source: DFSMS OPEN/CLOSE/EOV

Reference Documentation: For additional information see:

z/OS V1R12.0 MVS Initialization and Tuning Reference

Automation: N/A

Check Reason: Check whether XTIOTs for non VSAM is enabled.

END TIME: 08/29/2011 12:52:06.869138 STATUS: EXCEPTION-LOW

Global Resource Serialization checks (IBMGRS)

GRS_AUTHQLVL_SETTING
Description:

This check reports on whether the system is running with the recommended
AUTHQLVL setting.

OCE checks

448 IBM Health Checker for z/OS User's Guide

Reason for check:
If the AUTHQLVL parameter is not set to the maximum level, certain requests
may be susceptible to denial of service attacks.

z/OS releases the check applies to:
z/OS V1R13 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMGRS, GRS_AUTHQLVL_SETTING)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)
DATE(’date_of_the_change’)
PARM(’2’)
REASON(’Your reason for making the update.’);

Parameters accepted:
Yes, you can specify the AUTHQLVL value you want the check to look for,
either 1 or 2. For example, PARM(’1’)

Default: 2

Reference:
For more information on GRS, see z/OS MVS Planning: Global Resource
Serialization.

Messages:
This check issues the following exception messages:
v ISGH0322E
v ISGH0323E

And the following information messages:
v

v ISGH0102I
v ISGH0321I

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_CONVERT_RESERVES
Description:

Whether RESERVEs are being converted to global ENQs in STAR mode

Reason for check:
Converting RESERVEs to global ENQs can help avoid deadlocks and improve
reliability, availability, and serviceability.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can

Global Resource Serialization checks

Chapter 13. IBM Health Checker for z/OS checks 449

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE CHECK(IBMGRS,GRS_CONVERT_RESERVES)
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Parameters accepted:
No

Reference:
For more information on GRS Reserve Conversion, see z/OS MVS Planning:
Global Resource Serialization.

Messages:
This check issues the following exception messages:
v ISGH0307E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_EXIT_PERFORMANCE
Description:

Checks to see if there are GRS dynamic exits in use that could degrade system
performance.

Reason for check:
The use of certain GRS dynamic exits can degrade system performance. In
some cases, removing an exit module or changing it to use a different exit
point can help improve performance.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE CHECK(IBMGRS,GRS_EXIT_PERFORMANCE)
SEVERITY(LOW) INTERVAL(024:00) DATE(20050105)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Reference:
For more information on GRS installation exits, see z/OS MVS Planning: Global
Resource Serialization andz/OS MVS Installation Exits.

Messages:
This check issues the following exception messages:
v ISGH0309E
v ISGH0310E
v ISGH0311E
v ISGH0312E

Global Resource Serialization checks

450 IBM Health Checker for z/OS User's Guide

v ISGH0313E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_EXIT_PERFORMANCE
Description:

Checks to see if there are GRS dynamic exits in use that could degrade system
performance.

Reason for check:
The use of certain GRS dynamic exits can degrade system performance. In
some cases, removing an exit module or changing it to use a different exit
point can help improve performance.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE CHECK(IBMGRS,GRS_EXIT_PERFORMANCE)
SEVERITY(LOW) INTERVAL(024:00) DATE(20050105)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Reference:
For more information on GRS installation exits, see z/OS MVS Planning: Global
Resource Serialization andz/OS MVS Installation Exits.

Messages:
This check issues the following exception messages:
v ISGH0309E
v ISGH0310E
v ISGH0311E
v ISGH0312E
v ISGH0313E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_GRSQ_SETTING
Description:

Examines the system's GRSQ setting. The check generates an exception if the
GRSQ setting is not set to CONTENTION in a GRS=STAR mode environment.
This is a one-time check that is also run during a migration from GRS=RING
to GRS=STAR.

Global Resource Serialization checks

Chapter 13. IBM Health Checker for z/OS checks 451

Reason for check:
Having a GRSQ setting of CONTENTION will shorten the amount of time
required for SVC Dump processing.

z/OS releases the check applies to:
z/OS V1R8 and later.

Type of check:
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE
CHECK(IBMGRS,GRS_GRSQ_SETTING)
SEVERITY(LOW) INTERVAL(ONETIME) DATE(20050202)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on GRSQ, see z/OS MVS Planning: Global Resource
Serialization.

Messages:
This check issues the following exception messages:
v ISGH0315E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_Mode
Description:

Checks the mode of the Global Resource Serialization complex.

Reason for check:
A STAR configuration is recommended because it provides better availability,
real storage consumption, processing capacity, and response time.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMGRS,GRS_MODE)

SEVERITY(LOW) INTERVAL(ONETIME) PARM(’STAR’) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Global Resource Serialization checks

452 IBM Health Checker for z/OS User's Guide

Parameters accepted:
Yes, you can specify the mode required, either STAR, RING, or NONE. For
example, PARM(’STAR’)

Default : STAR

Reference:
For more information on GRS, see z/OS MVS Planning: Global Resource
Serialization.

Messages:
This check issues the following exception messages:
v ISGH0301E
v ISGH0303E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_RNL_IGNORED_CONV
Description:

Searches the RESERVE Conversion RNL for entries that will be ignored
because of a matching or equivalent entry in the SYSTEMS Exclusion RNL.

Reason for check:
There should be no duplicate entries between the RESERVE Conversion RNL
and SYSTEMS Exclusion RNL. Duplicate entries may result in undesired
serialization of a resource.

z/OS releases the check applies to:
z/OS V1R8 and later.

Type of check:
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE
CHECK(IBMGRS,GRS_RNL_IGNORED_CONV)
SEVERITY(LOW) INTERVAL(ONETIME) DATE(20050202)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For more information on Global Resource Serialization RNL’s, seez/OS MVS
Planning: Global Resource Serialization.

Messages:
This check issues the following exception messages:

Global Resource Serialization checks

Chapter 13. IBM Health Checker for z/OS checks 453

v ISGH0317E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

GRS_SYNCHRES
Description:

Checks whether GRS synchronous reserve processing is enabled.

Reason for check:
Enabling GRS synchronous reserve processing can prevent deadlock
conditions.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMGRS,GRS_SYNCHRES)

SEVERITY(LOW) INTERVAL(001:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information on GRS synchronous reserve processing, see z/OS MVS
Planning: Global Resource Serialization.

Messages:
This check issues the following exception messages:
v ISGH0305E

See the ISGH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

HSM checks (IBMHSM)

HSM_CDSB_BACKUP_COPIES
Description:

Determines if DFSMShsm is configured to maintain a critical level of Control
Data Set (CDS) backups. The check determines the number of CDS backup
copies that have been specified to DFSMShsm via the SETSYS
CDSVERSIONBACKUP(BACKUPCOPIES(x)) command.

This check is registered with IBM Health Checker for z/OS when the MAIN
DFSMShsm host initializes on a z/OS image for the first time since IPL.

The check will run after a MAIN DFSMShsm host initializes, the CDS backup
function completes on a MAIN or AUX host, a SETSYS CDSVERSIONBACKUP

Global Resource Serialization checks

454 IBM Health Checker for z/OS User's Guide

is issued to a MAIN or AUX DFSMShsm host (SETSYS CDSVERSIONBACKUP
commands processed during MAIN host initializatin will not cause the checks
to run).

This check requires a MAIN DFSMShsm host to be active on the z/OS image.
If this check runs while a MAIN DFSMShsm host is not active, the check will
be disabled until a MAIN host initializes.

Reason for check:
It is recommended that DFSMShsm maintain a minimum of 4 CDS backups.
This practice greatly minimizes the exposure of all valid backups rolling off
over the course of an extended off-shift period such as a three-day weekend.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:

UPDATE CHECK(IBMHSM,HSM_CDSB_BACKUP_COPIES)
SEVERITY(MED) INTERVAL(24:00) PARM(’CRITVAL(4)’)
DATE(20071031)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Parameters accepted:
Yes. The critical value of backups to check for can be adjusted. For example,
PARM('CRITVAL(10)').

Default: 4 Maximum: 9999

Note that specifying a value of 0 means the check will run but will not issue
an exception.

Verbose support:
No

Debug support:
No

Reference:
For more information on DFSMShsm CDS Backup, see the following:
v Defining the Backup Environment for Control Data Sets in z/OS DFSMShsm

Implementation and Customization Guide.
v z/OS DFSMSdfp Storage Administration

Messages:
This check issues the following exception messages:
v ARCHC0108E

See the ARCH messages in z/OS MVS System Messages, Vol 2 (ARC-ASA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

HSM_CDSB_DASD_BACKUPS
Description:

If DFSMShsm Control Data Set backups are created on DASD, this check will
ensure all required DASD backup data sets are in place.

HSM checks

Chapter 13. IBM Health Checker for z/OS checks 455

This check is registered with IBM Health Checker for z/OS when the MAIN
DFSMShsm host initializes on a z/OS image for the first time since IPL.

The check will run after a MAIN DFSMShsm host initializes, the CDS backup
function completes on a MAIN or AUX host, a SETSYS CDSVERSIONBACKUP
is issued to a MAIN or AUX DFSMShsm host(SETSYS CDSVERSIONBACKUP
commands processed during MAIN host initializatin will not cause the checks
to run).

This check requires a MAIN DFSMShsm host to be active on the z/OS image.
If this check runs while a MAIN DFSMShsm host is not active, the check will
be disabled until a MAIN host initializes.

Reason for check:
When backing up CDS's to DASD, DFSMShsm requires all backup data sets to
be pre-allocated. If one or more data set becomes unavailable, the CDS Backup
function may fail. A failure during CDS Backup may lead to critical functions
to be held within DFSMShsm.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:

UPDATE CHECK(IBMHSM,HSM_CDSB_DASD_BACKUPS)
SEVERITY(HI) INTERVAL(24:00) DATE(20071031)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Parameters accepted:
No

Verbose support:
No

Debug support:
No

Reference:
For more information on DFSMShsm CDS Backup, see the following:
v Defining the Backup Environment for Control Data Sets in z/OS DFSMShsm

Implementation and Customization Guide.
v z/OS DFSMSdfp Storage Administration

Messages:
This check issues the following exception messages:
v ARCHC0111E

See the ARCH messages in z/OS MVS System Messages, Vol 2 (ARC-ASA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

HSM_CDSB_VALID_BACKUPS
Description:

Determines if number of valid Control Data Set (CDS) backups has fallen
below a critical level.

HSM checks

456 IBM Health Checker for z/OS User's Guide

This check is registered with IBM Health Checker for z/OS when the MAIN
DFSMShsm host initializes on a z/OS image for the first time since IPL.

The check will run after a MAIN DFSMShsm host initializes, the CDS backup
function completes on a MAIN or AUX host, a SETSYS CDSVERSIONBACKUP
is issued to a MAIN or AUX DFSMShsm host(SETSYS CDSVERSIONBACKUP
commands processed during MAIN host initializatin will not cause the checks
to run).

This check requires a MAIN DFSMShsm host to be active on the z/OS image.
If this check runs while a MAIN DFSMShsm host is not active, the check will
be disabled until a MAIN host initializes.

For multi-cluster CDS's, all cluster backups for a version must be valid before
the version is considered a valid backup.

Reason for check:
It is recommended that DFSMShsm maintain a minimum of 4 CDS backups.
This practice greatly minimizes the exposure of all valid backups rolling off
over the course of an extended off-shift period such as a three-day weekend.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMHSM,HSM_CDS_VALID_BACKUPS)

SEVERITY(MED) INTERVAL(24:00) PARM(’CRITVAL(4)’)
DATE(20071031)
REASON(’YOUR REASON FOR MAKING AN UPDATE.’)

Parameters accepted:
Yes. The critical value of backups to check for can be adjusted. For example,
PARM('CRITVAL(10)').

Default: 4 Maximum: 9999

Note that specifying a value of 0 means the check will run but will not issue
an exception.

Verbose support:
No

Debug support:
No

Reference:
For more information on DFSMShsm CDS Backup, see the following:
v Defining the Backup Environment for Control Data Sets in z/OS DFSMShsm

Implementation and Customization Guide.
v z/OS DFSMSdfp Storage Administration

Messages:
This check issues the following exception messages:
v ARCHC0108E
v ARCHC0115E

See the ARCH messages in z/OS MVS System Messages, Vol 2 (ARC-ASA). .

HSM checks

Chapter 13. IBM Health Checker for z/OS checks 457

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSF checks (IBMICSF)

ICSF_COPROCESSOR_STATE_NEGCHANGE
Description:

Detects a degradation in the state of any cryptographic coprocessor or
accelerator on the system. This check is activated when ICSF is started. This
check will be performed on a daily basis.

Reason for check:
A degradation in the state of any cryptographic coprocessor or accelerator on
the system can have a possible negative impact on the operation of ICSF and
the dependant cryptographic workload. This checks allows for the detection of
degradation in the state of any cryptographic coprocessor or accelerator on the
system.

z/OS releases the check applies to:
ICSF FMID HCR7790 or later running on z/OS V1R12, z/OS V1R13 or z/OS
V2R1

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF,ICSF_COPROCESSOR_STATE_NEGCHANGE)
ACTIVE
SEVERITY(MEDIUM) INTERVAL(DAILY) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF System Programmer's
Guide.

Messages:
This check issues the following exception messages:
v CSFH0010E

See in z/OS Cryptographic Services ICSF Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

HSM checks

458 IBM Health Checker for z/OS User's Guide

ICSF_KEY_EXPIRATION
Description:

The ICSF_KEY_EXPIRATION:
v Checks each record in each active KDS.
v Examines the key validity end date of the record.
v If the end date is set and the end date is equal to or less than today's date

plus the number of days specified (the DAYS parameter value), lists the label
in the check output.

v Reports the active key data sets that were checked and the labels of the
records that will expire within the specified number of days. The records are
grouped by number of days until expiration.

The ICSF_KEY_EXPIRATION check is registered with these attributes:

Table 52. ICSF_KEY_EXPIRATION attributes

Attribute Setting

Severity Medium

State Active

Interval Run once a day on each system.

Date 20150101

Reason Detect cryptographic keys that are about to expire.

Parameter DAYS(nnn), where nnn is between 1 and 366, with a default of
60 if DAYS is not specified explicitly.

Reason for check:
ICSF_KEY_EXPIRATION allows the ICSF administrator to identify all records
in the cryptographic key data sets which are going to expire within the
specified interval.

z/OS releases the check applies to:
ICSF FMID HCR77B0 or later running on z/OS V1R13 and V2R1 or later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command.
UPDATE
CHECK(IBMICSF,ICSF_KEY_EXPIRATION)
ACTIVE
SEVERITY(MEDIUM)
DATE(’date_of_the_change’)
PARM(’DAYS(120)’)
REASON('Operational keys should not expire.')
INTERVAL(24:00)

Parameters accepted:
The value of DAYS(nnn), where nnn is between 1 and 366.

Verbose support:
No

Debug support:
No

ICSF checks

Chapter 13. IBM Health Checker for z/OS checks 459

Reference:
For information on the cryptographic key data sets and key material validity
dates, see z/OS Cryptographic Services ICSF Administrator's Guide.

Messages:
This check issues the following exception message:
v CSFH0031E

This check also issues the following information messages:
v CSFH0030I
v CSFH0032I

See in z/OS Cryptographic Services ICSF Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
The following shows the sample output from a ICSF_KEY_EXPIRATION check:
CHECK(ICSF,ICSF_KEY_EXPIRATION)
START TIME: 03/23/2015 08:10:01.603497
CHECK DATE: 20150101 CHECK SEVERITY: MEDIUM

CCA Cryptographic Keys Expiring in 60 Days

Active CKDS: CSF.CKDS

Records expiring on 20150401
CSF.SPECIAL.KEY.FOR.TESTING.ABCD0001 EXPORTE
CSF.SPECIAL.KEY.FOR.TESTING.ABCD0004 IMPORTE

Records expiring on 20150430
CSF.SPECIAL.KEY.FOR.TESTING.ABCD0002 MAC

Active PKDS: CSF.PKDS
Key data set not in KDSR format

CSFH0031E Check detected KDS record that will expire within the next 60 days.

Active TKDS: CSF.TKDS

Objects expiring on 20150401
CSF.SPECIAL.TOKEN.FOR.TEST.AD0 00000000AY

Objects expiring on 20150421
CSF.SPECIAL.TOKEN.FOR.TEST.AD0 00000001AY

Objects expiring on 20150521
CSF.SPECIAL.TOKEN.FOR.TEST.AD0 0000011AY

CSFH0031E Check detected TKDS records that will expire within the next 60 days.

END TIME: 03/23/2015 08:10:01.643285 STATUS: SUCCESSFUL

ICSF_MASTER_KEY_CONSISTENCY
Description:

Detects inconsistencies in the states of the coprocessor master keys. This check
is activated when ICSF is started and is performed on a daily basis. The check
determines when the state of a master key on at least one coprocessor is not in
accord with the state of the other coprocessors.

ICSF checks

460 IBM Health Checker for z/OS User's Guide

Reason for check:
The check is instituted to assist in maintaining master key functionality. The
coprocessor activation algorithm maximizes the number of active cryptographic
coprocessors.

z/OS releases the check applies to:
ICSF FMID HCR77A0 or later running on z/OS V1R12, z/OS V1R13 or z/OS
V2R1

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF, ICSF_MASTER_KEY_CONSISTENCY)
ACTIVE
SEVERITY(MEDIUM) INTERVAL(DAILY) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF System Programmer's
Guide.

Messages:
This check issues the following exception messages:
v CSFH0015E
v CSFH0016E

See in z/OS Cryptographic Services ICSF Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSFMIG_DEPRECATED_SERV_WARNINGS
Description:

Detects the use of services which will not be supported in subsequent releases
of ICSF. This check is inactive when ICSF is started it must be activated to
perform the check. Once activated the check will be performed on a daily
basis.

Reason for check:
Subsequent releases of ICSF will not support the use of certain callable
services. This check provides a way to detect if any applications are currently
using these services.

The deprecated services checked in ICSF FMID HCR77A0 (z/OS V2R1) are
listed below. These are not supported after System z 900 hardware.

ICSF checks

Chapter 13. IBM Health Checker for z/OS checks 461

v CSFAEGN
v CSFAKEX
v CSFAKIM
v CSFAKTR
v CSFATKN
v CSFCTT
v CSFCTT1
v CSFTCK
v CSFUDK
v CSFPKSC

z/OS releases the check applies to:
ICSF FMID HCR77A0 or later running on z/OS V1R12, z/OS V1R13 or z/OS
V2R1

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF,ICSFMIG_DEPRECATED_SERV_WARNINGS)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

Messages:
This check issues the following exception messages:
v CSFH0011I

See in z/OS Cryptographic Services ICSF Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSFMIG7731_ICSF_RETAINED_RSAKEY
Description:

Detects the existence of retained RSA private keys on a PCICC or
PCIXCC/CEX2C cryptographic card.

ICSF checks

462 IBM Health Checker for z/OS User's Guide

This check is inactive by default - in order to use this check you must activate
it. You should run the check periodically, when the events occur that affect
check results. For example, run the check dynamically when:
v The ICSF product release level is being upgraded to any new ICSF release

level.
v The z/OS product release level is being upgraded and ICSF is an exploited

feature for that z/OS image.

Reason for check:
A PCICC or PCIXCC/CEX2C card may possess the only copy of a retained
RSA private key. Customers that run applications and middleware that utilize
the retained key functionality of these cards are exposed to the loss of keys
upon hardware failure, which may result from a problem as simple as an
exhausted or malfunctioning card battery. Lost retained keys have the further
implication of lost data, for retained key management keys, and an inability to
verify signatures, for retained signature keys. Starting with the Cryptographic
Support for z/OS V1R7-V1R9 and z/OS.e V1R7-V1R8 Web deliverable (ICSF
FMID HCR7750), you no longer have the ability to store new private RSA keys
intended for key management usage in a cryptographic coprocessor. Existing
applications will continue to be able to use the retained keys and to delete
them from the cryptographic coprocessor cards.

z/OS releases the check applies to:
z/OS V1R9 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF, ICSFMIG7731_ICSF_RETAINED_RSAKEY)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF System Programmer's
Guide.

Messages:
This check issues the following exception messages:
v CSFH0003E

See in z/OS Cryptographic Services ICSF Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSF checks

Chapter 13. IBM Health Checker for z/OS checks 463

ICSFMIG7731_ICSF_PKDS_TO_4096BIT
Description:

Verifies that the PKDS size in an ICSF pre-HCR7750 environment is sufficiently
allocated to support 4096-bit RSA keys.

This check is inactive by default - in order to use this check you must activate
it. You should run the check periodically, when the events occur that affect
check results. For example, run the check dynamically when:
v The ICSF product release level is being upgraded to HCR7750 or later.
v The z/OS product release level is being upgraded and ICSF is an exploited

feature for that z/OS image.

Reason for check:
ICSF FMID HCR7750 introduces support for 4096-bit RSA keys, which requires
a larger PKDS than prior ICSF releases needed. If a customer at a pre-HCR7750
FMID ICSF level migrates to HCR7750 without first reallocating the PKDS for
4096-bit key support, ICSF at HCR7750 will fail to start. This ICSF migration
check will detect the case where the currently active PKDS is not sufficiently
allocated for the HCR7750 environment and inform the customer that a PKDS
reallocation action is necessary.

z/OS releases the check applies to:
z/OS V1R8 (or ICSF FMID HCR7731) and z/OS V1R9 (or ICSF FMID
HCR7740).

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF, ICSFMIG7731_ICSF_PKDS_TO_4096BIT)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see the following:
v z/OS Cryptographic Services ICSF Administrator's Guide

v z/OS Cryptographic Services ICSF System Programmer's Guide

Messages:
This check issues the following exception messages:
v CSFH0005E

See in z/OS Cryptographic Services ICSF Messages.

ICSF checks

464 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSFMIG77A1_COPROCESSOR_ACTIVE
Description:

Detects cryptographic coprocessors that will not become active when starting
HCR77A1. This checks compares the coprocessor master keys against the
CKDS and PKDS.

This check is inactive by default – in order to use this check you must activate
it. You should run this check on your system before installing the HCR77A1
release of ICSF.

Reason for check:
A coprocessor that has master keys that do not match the CKDS and PKDS
will not become active when ICSF FMID HCR77A1 is started. This will affect
the availability of coprocessors for cryptographic work. The method to decide
which coprocessors become active changed for HCR77A1 and later.

z/OS releases the check applies to:
ICSF FMID HCR7770 or later running on z/OS V1R9, z/OS V1R10, z/OS
V1R11, z/OS V1R12, z/OS V1R13 or z/OS V2R1 with PTFs for APAR OA42011
applied.

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF,ICSFMIG77A1_COPROCESSOR_ACTIVE)
INACTIVE
SEVERITY(MEDIUM) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF Administrator's
Guide.

Messages:
This check issues the following exception messages:
v CSFH0020E
v CSFH0021E

See in z/OS Cryptographic Services ICSF Messages.

ICSF checks

Chapter 13. IBM Health Checker for z/OS checks 465

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSFMIG77A1_TKDS_OBJECT
Description:

Detects any TKDS object that is too large to allow the TKDS to be read into
storage during ICSF initialization starting with ICSF FMID HCR77A1.

This check is inactive by default – in order to use this check you must activate
it. You should run this check on your system before installing the HCR77A1
release of ICSF.

Reason for check:
In ICSF FMID HCR77A1, ICSF introduces new common KDS record format for
CCA key tokens and PKCS #11 tokens and objects. This new format of the
record adds new fields for key utilization and metadata. Because of the size of
the new fields, some PKCS #11 objects in the TKDS may cause ICSF to fail to
start. This check will detect any TKDS object that is too large to allow the
TKDS to be loaded when ICSF is started.

z/OS releases the check applies to:
ICSF FMID HCR7770 or later running on z/OS V1R9, z/OS V1R10, z/OS
V1R11, z/OS V1R12, z/OS V1R13 or z/OS V2R1 with PTFs for APAR OA42011
applied.

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMICSF, ICSFMIG77A1_TKDS_OBJECT)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF Writing PKCS #11
Applications.

Messages:
This check issues the following exception messages:
v CSFH0025E

See in z/OS Cryptographic Services ICSF Messages.

ICSF checks

466 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSFMIG77A1_UNSUPPORTED_HW
Description:

Detects if system is supported by ICSF FMID HCR77A1.

This check is inactive by default – in order to use this check you must activate
it. You should run this check on your system before installing the HCR77A1
release of ICSF.

Reason for check:
ICSF FMID HCR77A1 does not support IBM Eserver System z 800 and 900
systems.

z/OS releases the check applies to:
ICSF FMID HCR7770 or later running on z/OS V1R9, z/OS V1R10, z/OS
V1R11, z/OS V1R12, z/OS V1R13 or z/OS V2R1 with PTFs for APAR OA42011
applied.

Type of check (local or remote):
Local

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a
MODIFYcommand. This statement may be copied and modified to override
the check defaults:
UPDATE
CHECK(IBMICSF, ICSFMIG77A1_UNSUPPORTED_HW)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’))

Parameters accepted:
No.

Verbose support:
No

Debug support:
No

Reference:
For more information see z/OS Cryptographic Services ICSF Overview.

Messages:
This check issues the following exception messages:
v CSFH0022E

See in z/OS Cryptographic Services ICSF Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ICSF checks

Chapter 13. IBM Health Checker for z/OS checks 467

Infoprint Server checks (IBMINFOPRINT)

INFOPRINT_PRINTWAY_MODE
Description:

Checks the type of Infoprint (IP) PrintWay™ mode that is being used.
Generates an exception if it detects use of Infoprint Basic mode.

Reason for check:
Infoprint Basic mode was stabilized in z/OS V1R5 and no further
enhancements will be done. In future releases, IBM will make enhancements
only to IP PrintWay extended mode. IP PrintWay extended mode uses the
SYSOUT Application Programming Interface (SAPI) to obtain output data sets
from the JES spool.

IP PrintWay extended mode provides better performance, improved usability,
and additional functions.

z/OS releases the check applies to:
z/OS V1R8 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMINFOPRINT, INFOPRINT_PRINTWAY_MODE)
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see:
v z/OS Infoprint Server Customization

v z/OS Infoprint Server User's Guide

v z/OS Infoprint Server Introduction

v z/OS Infoprint Server Operation and Administration

v z/OS V2R2 Migration

Messages:
This check issues the following exception messages:
v ANFH001E

See z/OS Infoprint Server Messages and Diagnosis.

SECLABEL recommended for MLS users:
SYSLOW

Infoprint Server checks

468 IBM Health Checker for z/OS User's Guide

INFOPRINT_V2DB_CHECK
Description:

The INFOPRINT_V2DB_CHECK provides information for customers who have
migrated to z/OS V1R12 and then fallen back to an earlier z/OS release. The
health check examines the Printer Inventory base directory (default is
/var/Printsrv) looking for Version 2 Printer Inventory files that were created
by Infoprint Server on z/OS V1R12. Infoprint Server on z/OS V1R12 uses only
the Version 2 Printer Inventory files. Both the Version 1 and Version 2 Printer
Inventory files may exist. However, Infoprint Server on z/OS V1R10 or V1R11
uses only the Version 1 Printer Inventory files. If the Version 2 Printer
Inventory files are found, the health check issues an exception to warn the
customer that the files exist but are not being updated. Before migrating back
to z/OS V1R12 again, IBM suggests that you remove file master.v2db file from
the base directory so that Infoprint Server creates a new Version 2 Printer
Inventory. Any changes that the administrator has made in the Version 1
Printer Inventory after falling back to z/OS V1R10 or V1R11 will be included
in the new Version 2 Printer Inventory. However, if you want to keep any
changes that the administrator made in the Version 2 Printer Inventory before
falling back to z/OS V1R10 or V1R11, do not remove file master.v2db. If file
master.v2db exists, Infoprint Server on z/OS V1R12 does not create a new
Version 2 Printer Inventory.

Reason for check:
The INFOPRINT_V2DB_CHECK provides information for customers who have
migrated to z/OS V1R12 and then fallen back to an earlier z/OS release. It
warns the customer that the Version 2 Printer Inventory files may become
stale.

z/OS releases the check applies to:
z/OS V1R10 and V1R11.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMINFOPRINT, INFOPRINT_V2DB_CHECK)
USS(YES)
VERBOSE(NO)
SEVERITY(LOW)
INTERVAL(ONETIME)
ACTIVE
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides additional detail in debug mode. You can put a check
into debug mode using any of the following: UPDATE, filters, DEBUG=ON
parameters on either the MODIFY command or in policy statement in an
HZSPRMxx parmlib member.

Verbose support:
No.

Reference:
For more information, see:

Infoprint Server checks

Chapter 13. IBM Health Checker for z/OS checks 469

v z/OS V2R2 Migration

Messages:
This check issues the following exception messages:
v AOPH1501E
v AOPH1503E
v AOPH1504E

See z/OS Infoprint Server Messages and Diagnosis.

SECLABEL recommended for MLS users:
SYSLOW

Output:
The following shows sample output of the exception because Version 2 Printer
Inventory files were found in the base directory.
CHECK(IBMINFOPRINT,INFOPRINT_V2DB_CHECK)
START TIME: 05/05/2010 15:30:10.317783
CHECK DATE: 20100301 CHECK SEVERITY: LOW

Printer Inventory Master.V2DB Existence Report
Inv Base

S Name Directory Name
- ---- ---
E AOP1 /var/Printsrv

* Low Severity Exception *
AOPH1501E The Infoprint Server base directory contains Version 2 Printer

Inventory files.

Explanation: File master.v2db was found in the Infoprint Server base
directory. This file indicates that Infoprint Server has reformatted
the Version 1 Printer Inventory and created a Version 2 Printer
Inventory on z/OS V1R12. The Version 1 Printer Inventory and the
Version 2 Printer Inventory both exist in the Infoprint Server base
directory. However, Infoprint Server on z/OS V1R10 or V1R11 uses
only the Version 1 Printer Inventory.

Before you start Infoprint Server on z/OS V1R12 again, IBM suggests
that you remove file master.v2db so that Infoprint Server creates a
new Version 2 Printer Inventory. Any changes that the administrator
has made in the Version 1 Printer Inventory after falling back to
z/OS V1R10 or V1R11 will be included in the new Version 2 Printer
Inventory. However, if you want to keep any changes that the
administrator made in the Version 2 Printer Inventory before falling
back to z/OS V1R10 or V1R11, do not remove file master.v2db. If file
master.v2db exists, Infoprint Server on z/OS V1R12 does not create a
new Version 2 Printer Inventory.

System Action: Processing continues.

Operator Response: Not applicable.

System Programmer Response: Examine the report that this check
produced. An "E" in the "S"(Status) column indicates that the
master.v2db file exists in the indicated base directory. If desired,
remove file master.v2db from the base directory. To remove
master.v2db, you must have an effective UID of 0 or be a member of
the RACF AOPADMIN group.

Problem Determination: Not applicable

Source: Infoprint Server

Reference Documentation: See the z/OS Migration Guide.

Infoprint Server checks

470 IBM Health Checker for z/OS User's Guide

Automation:

Check Reason: Warn if .v2db inventory files exist in the base
directory. Infoprint Server releases prior to V1R12 will ignore
these files.

END TIME: 05/05/2010 15:30:10.324205 STATUS: EXCEPTION-LOW
==

ZOSMIGV1R12_INFOPRINT_INVSIZE
Description:

This check verifies that Infoprint Server has sufficient space to create Version 2
Printer Inventory files.

Before activating this check, verify that Infoprint Server is active.

Reason for check:
When first started on z/OS V1R12, the Infoprint Server will create Version 2
Printer Inventory files from the Version 1 Printer Inventory files. Before starting
the conversion, Infoprint Server verifies that there is sufficient space to
successfully complete. If there is not sufficient space, Infoprint Server halts and
issues a message that there is insufficient space. The minimum available space
that is required is two times the space used by the Version 1 Printer Inventory
files. (Version 1 Printer Inventory files have the extension .db.) This check
determines if there is sufficient space for the conversion.

z/OS releases the check applies to:
z/OS V1R10 and V1R11.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(ZOSMIGV1R12_INFOPRINT_INVSIZE)
USS(YES)
VERBOSE(NO)
SEVERITY(MED)
INTERVAL(ONETIME)
INACTIVE
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides additional detail in debug mode. You can put a check
into debug mode using any of the following: UPDATE, filters, DEBUG=ON
parameters on either the MODIFY command or in policy statement in an
HZSPRMxx parmlib member.

Verbose support:
No.

Reference:
For more information, see:
v z/OS V2R2 Migration

Messages:
This check issues the following exception messages:

Infoprint Server checks

Chapter 13. IBM Health Checker for z/OS checks 471

v AOPH1511E
v AOPH1503E
v AOPH1504E

See z/OS Infoprint Server Messages and Diagnosis.

SECLABEL recommended for MLS users:
SYSLOW

Output:
The following shows sample output of the exception due to insufficient space
to create the Version 2 Printer Inventory files:
CHECK(IBMINFOPRINT,ZOSMIGV1R12_INFOPRINT_INVSIZE)
START TIME: 05/05/2010 09:29:49.720815
CHECK DATE: 20100301 CHECK SEVERITY: MEDIUM

Printer Inventory Migration Space Report
Inv File (MB)

S Name System Name Avail Needed Used
- ---- -- ------ ------ ------
E AOP1 VAR.PRINTSR1.ZFS 1470 2049 2341
/var/Printsrv

* Medium Severity Exception *

AOPH1511E The Infoprint Server file system has insufficient space to
reformat the Printer Inventory when you migrate to z/OS V1R12.

Explanation: The Infoprint Server file system does not have enough
available space for the Version 2 Printer Inventory. The first time
you start Infoprint Server on z/OS V1R12, Infoprint Server attempts
to reformat the Version 1 Printer Inventory and create a Version 2
Printer Inventory. If insufficient space exists, Infoprint Server
does not start. The minimum available space that is required is 2
times the space that the Version 1 Printer Inventory files currently
use. (Version 1 Printer Inventory files have extension .db.) The
health check produced a report that identifies the Infoprint Server
file system with its total available space and used space plus the
minimum available space required to create the Version 2 Printer
Inventory.

System Action: Processing continues. However, if you do not increase
the available space, Infoprint Server cannot start on z/OS V1R12.

Operator Response: Report this problem to the system programmer.

System Programmer Response: Examine the report that the health check
produced.

o An "E" in the "S"(Status) column indicates that the file system
does not have enough available space.

o An "N" in the "S"(Status) column indicates that file master.v2db
exists. The amount of available space was not checked because
Version 2 Printer Inventory files already exist.

After you increase the space in the file system, run this check
again to verify that enough available space exists.

Problem Determination: Not applicable

Source: Infoprint Server

Reference Documentation: z/OS Migration Guide

Automation:

Check Reason: Verify there is enough space to create the .v2db
inventory files from the .db files when migrating to V1R12.

END TIME: 05/05/2010 09:29:49.735897 STATUS: EXCEPTION-MED
===

Infoprint Server checks

472 IBM Health Checker for z/OS User's Guide

IOS checks (IBMIOS)

IOS_CAPTUCB_PROTECT
Description:

This check verifies that captured UCB protection is active on the system.
Captured UCB protection is suggested.

Reason for check:
UCBs (Unit Control Blocks) are control blocks in storage that define the
characteristics of devices. Legacy software may require a subset of these to
reside in the first 16 megabytes of storage. To accommodate 24-bit
addressability there is a service to capture the UCB and temporarily put the
UCB in the 24-bit addressable area. Captured UCB Protection places the UCBs
temporarily below the line in write protected storage, so legacy software
cannot interfere with the state of the devices. IBM recommends that Captured
UCB Protection is active.

You can verify the state of captured UCB protection using the following
console command:
DISPLAY IOS,CAPTUCB

In response to this command, the system issues message IOS088I to display the
state of captured UCB protection:
IOS088I 12.12.00 CAPTURED UCB DATA 243
CAPTURED UCB PROTECTION IS DISABLED

To change the state, see the SETIOS command in z/OS MVS System Commands.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
Yes, the following parameters are accepted:

PARM(‘PROTECT(state)')
Since, there may be a rare instance where captured UCB protection should
not be enabled, you can set the expected state of captured UCB protection
the check expects to either:
v PARM('PROTECT(YES)'), which is the default, indicates that the

expected captured UCB protection state is enabled.
v PARM('PROTECT(NO)') indicates that the expected captured UCB

protection state is disabled.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMIOS,IOS_CAPTUCB_PROTECT)
INACTIVE
SEVERITY(MED) INTERVAL(ONETIME) DATE(’date_of_the_change’)

Debug support:
No.

Verbose support:
No.

IOS checks

Chapter 13. IBM Health Checker for z/OS checks 473

Reference:
For more information, see information on the SETIOS command in z/OS MVS
System Commands.

Messages:
This check issues the following exception messages:
v IOSHC101E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

IOS_CMRTIME_MONITOR
Description:

Detects if any control units in the system are reporting inconsistent average
initial command response (CMR) time for their attached channel paths. The
check issues an exception if at least one control unit in the system has a path
with an average CMR time that is the highest among the other paths to the
control unit and meets the following conditions:
v The average CMR time for this path is greater than the THRESHOLD check

parameter value.
v The average CMR time for this path is significantly higher (as defined by the

RATIO check parameter) than the path with the lowest average CMR time
for this control unit. That is, the average CMR time for this path is at least 'x'
times the lowest average CMR time for this control unit (where 'x' is the
RATIO check parameter value).
Example:
Path 1, average CMR time = 11ms
Path 2, average CMR time = 3 ms
Path 3, average CMR time = 2 ms
Path 4, average CMR time = 4 ms

If THRESHOLD is 3ms and RATIO is 5, the check issues an exception
because path 1 has a CMR time (11ms) that is greater than 3ms and is also
greater than 5 times the CMR time for path 3 (2ms).

Reason for check:
Initial Command Response (CMR) time is a component of Response time and
measures the round trip delay of the fabric alone with minimal channel and
control unit involvement and thus can be a symptom of potential problems in
the fabric. By monitoring this measurement alone and comparing it among the
paths to a control unit, fabric problems like hardware errors, misconfiguration
and congestion may be more easily detected.

z/OS releases the check applies to:
z/OS V1R10 and later.

Parameters accepted:
Yes, the following parameters are accepted:
PARM(’THRESHOLD(threshold),RATIO(x),XTYPE(devtype),XCU(cu1,cu2,...,cux)’)

THRESHOLD(threshold)
THRESHOLD defines the value in milliseconds that is used in conjunction
with the RATIO parameter to determine whether an exception exists. If the
path with the highest average CMR time is greater than the THRESHOLD
value, then the RATIO value is used to further determine if an exception
exists.

IOS checks

474 IBM Health Checker for z/OS User's Guide

A THRESHOLD value of 0 means the highest average CMR time can be
any value and exceptions will be declared as defined by the RATIO value
alone.

Range: 0 to 100

Default: 3

RATIO(x)
RATIO defines the value used to determine if the path with the highest
average CMR time is significantly higher than the path with the lowest
average CMR time for this control unit using a factor of 'x'. This is used to
determine if an exception exists only after the THRESHOLD condition has
been met.

If the THRESHOLD condition has been met and if the path with the
highest average CMR time is at least 'x' times greater than the path with
the lowest average CMR time, an exception will be declared for the control
unit.

Range: 2 to 100

Default: 5

XTYPE(devtype)
devtype is the device type of control units that will be excluded from the
check and not reported on.

Supported device types: DASD,TAPE

Default: no value

XCU(cu1,cu2,...,cux)
XCU defines a list of specific control units that will be excluded from the
check and will not be reported on. Each control unit in this list is a
hexadecimal value representing the control unit number. This parameter
takes up to 40 different control unit numbers.

Range: 0 to FFFE

Default: no value

Note that if any parameter is changed, the check results may not reflect these
changes for several minutes because the check must gather a few minutes
worth of data before performing analysis using the new parameters.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMIOS,IOS_CMRTIME_MONITOR)
ACTIVE
VERBOSE(NO)
INTERVAL(00:05)
SEVERITY(MED)
DATE(’date_of_the_change’)
PARM(’THRESHOLD(3),RATIO(5),XCU(),XTYPE()’)
REASON(’Your reason for making the update’)

Debug support:
No.

IOS checks

Chapter 13. IBM Health Checker for z/OS checks 475

Verbose support:
Yes, if VERBOSE(YES) is specified on the check, the control units that were
excluded via the XTYPE and XCU parameters will be displayed in the report if
exceptions were found for them. This allows an easy way to temporarily obtain
information on ALL control units with an exception without the need for a
change to the XCU and XTYPE parameters.

Reference:
For more information on interpreting initial command response (CMR) time for
the affected control units, see "IOQUEUE - I/O Queuing Activity Report" in
z/OS RMF Report Analysis.

Messages:
This check issues the following exception messages:
v IOSHC112E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

IOS_DYNAMIC_ROUTING
Description:

In a switch environment, there are different methods to route I/O requests
from the channel to the control unit and from the control unit to the channel.
One such method is dynamic routing, where each I/O request can take a
different route through the fabric, allowing for improved workload balancing.
In order for the dynamic routing method to function properly, dynamic routing
must be supported by the processor and the connected devices. Dynamic
routing is a vendor-neutral name. Each vendor has its own name and
implementation of dynamic routing.

The system runs this check whenever any of the following occur:
v IBM Health Checker for z/OS starts.
v A change in the dynamic routing support within the storage area network

(SAN) is detected (for instance, the first device in a control unit is brought
online).

v A user requests it.

Reason for check:
When dynamic routing is enabled within the SAN, the processor and
controllers connected in the SAN must be able to support dynamic routing.
This check identifies any inconsistencies in the dynamic routing support within
the SAN.

z/OS releases the check applies to:
z/OS V2R1 (with APARs OA43308 and OA43309 installed) and later.

Parameters accepted:
None.

User override of IBM values:
The following statement shows the default keywords for the check, which you
can override on either a POLICY statement in the HZSPRMxx parmlib member
or on a MODIFY command. You can copy and modify this statement to
override the check defaults:
UPDATE
CHECK(IBMIOS,IOS_DYNAMIC_ROUTING)
ACTIVE

IOS checks

476 IBM Health Checker for z/OS User's Guide

VERBOSE(NO)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update’)

Debug support:
No.

Verbose support:
Yes. When VERBOSE=YES is specified on the check, the report will also include
the processor or any controllers that would need to support dynamic routing if
dynamic routing were enabled in the SAN. You can use this information to
help plan for the future enablement of dynamic routing in the SAN.

Reference:
For more information about enabling and disabling dynamic routing in the
SAN, see the documentation provided by your switch vendor.

Messages:
This check issues the following exception messages:
v IOSHC142E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

IOS_FABRIC_MONITOR
Description:

Reports if any switches which support CUP diagnostics capabilities have
indicated unusual health conditions on connected channel paths.

Typically, a fabric network requires careful planning, implementation, and
maintenance in order to provide healthy operation. When a switch determines
that there is a performance problem with a path, it will signal to z/OS that
such a problem has been found and that diagnostic data is available. This
action results in the route being monitored by z/OS. At regular intervals, z/OS
will obtain health diagnostic data. This health check report contains the
formatted diagnostic data.

The check issues an exception if a switch has indicated to z/OS there is a
possible health problem. The report will be updated at regular intervals with
the latest diagnostic data until two hours after the switch stops reporting a
health problem.

Example behavior:

A switch with CUP diagnostics support signals to z/OS that there is a health
problem. z/OS initiates monitoring for the path, requesting diagnostic data
from the switch at regular intervals. The problem may require intervention, i.e.
MVS system commands or I/O configuration. Once no errors or health issues
have been detected by the switch for at least 2 hours, the monitoring of the
route is stopped and will no longer appear in the report.

Report information:

The report will indicate path information, the time of the exception, and the
diagnostic data provided by the switch.

Reason for check:
While z/OS has historically provided sophisticated I/O monitoring and

IOS checks

Chapter 13. IBM Health Checker for z/OS checks 477

recovery, this report will expose newly available diagnostic data provided
directly from the switch. This health check may be able to provide insight into
their fabric problems such as hardware errors, I/O mis-configurations, or
congestion.

z/OS releases the check applies to:
z/OS V1R12 and later with APAR OA40548 and supporting switch hardware.

Parameters accepted:
Yes, the following parameters are accepted:
PARM('LOG(NO|YES),SHOW(LATEST|ALL)')

LOG(NO|YES)
LOG determines if z/OS should request that a diagnostic log should be
generated by the switch. The diagnostic log will only be generated when
the first unusual condition is detected if the YES option us used. The
switch log is not generated if the NO option is used.

The switch log may be useful in diagnosing the fabric problem and its
contents are defined by the switch vendor.

Supported values: NO and YES

Default: NO

SHOW(LATEST|ALL)
SHOW determines how many diagnostic records should be formatted in
the health check report. If LATEST is used, only the most recent diagnostic
data is reported. If ALL is used, all diagnostic records since monitoring
began will be provided.

The historical data may be useful in diagnosing the problem.

Supported values: LATEST and ALL

Default: LATEST

Note: If any parameter is changed, the check results may not reflect these
changes for several minutes because the check must gather a few minutes
worth of data before performing analysis using the new parameters.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMIOS,IOS_FABRIC_MONITOR)
ACTIVE
VERBOSE(NO)
INTERVAL(00:30)
SEVERITY(MED)
DATE('date_of_the_change')
PARM(’SHOW(LATEST),LOG(NO)’)
REASON('Your reason for making the update')

Debug support:
No.

Verbose support:
No.

IOS checks

478 IBM Health Checker for z/OS User's Guide

Reference:
For more information on interpreting switch diagnostic data, please consult
your hardware vendor's documentation.

Messages:
This check issues the following exception messages:
v IOSHC119E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

IOS_IORATE_MONITOR
Description:

Detects if any control units in the system are reporting inconsistent I/O rates
for their attached channel paths.

Typically, I/Os are distributed equally across all paths for a control unit. When
the system determines that there is a performance problem with a path, it will
direct I/Os away from that path. This action, taken by the system to correct
the performance problem, results in inconsistent I/O rates across the paths.

The check issues an exception if at least one control unit in the system has a
total I/O rate across all of its channel paths that exceeds the THRESHOLD
check parameter value, and at least one path with an I/O rate significantly
lower (as defined by the RATIO check parameter) than that of the channel path
with the highest I/O rate for the control unit.

Example:
Path 1, I/O rate = 600 I/Os per second
Path 2, I/O rate = 250 I/Os per second
Path 3, I/O rate = 300 I/Os per second

If THRESHOLD is 800 and RATIO is 2, the check issues an exception because
the total I/O rate of 1150 exceeds the threshold value, and path 2, (the path
with the lowest I/O rate of 250) is less than half the I/O rate for path 1 (the
path with the highest I/O rate).

Reason for check:
I/O rate measures the number of I/Os started down the channel path per
second. A lower than average I/O rate can be a symptom of potential
problems in the fabric. By monitoring this measurement alone and comparing
it among the paths to a control unit, fabric problems like hardware errors,
misconfiguration and congestion may be more easily detected.

z/OS releases the check applies to:
z/OS V1R12 and later with apar OA40548 on a zEC12 or later processor.

Parameters accepted:
Yes, the following parameters are accepted:
PARM('THRESHOLD(threshold),RATIO(x),XTYPE(devtype),XCU(cu1,cu2,...,cux)')

THRESHOLD(threshold)
THRESHOLD defines the value in number of I/Os per second that is used
in conjunction with the RATIO parameter to determine whether an
exception exists. If the total I/O rate of all of the paths to the control unit
exceed the THRESHOLD value, then the RATIO value is used to further
determine if an exception exists.

Range: 10 to 1000

IOS checks

Chapter 13. IBM Health Checker for z/OS checks 479

Default: 100

RATIO(ratio)
RATIO defines the value used to determine if the I/O rate of the path with
the lowest I/O rate is significantly lower than the path with the highest
I/O rate for this control unit, using a factor of 'ratio'. This is used to
determine if an exception exists only after the THRESHOLD condition has
been met.

If the THRESHOLD condition has been met and if the path with the lowest
I/O rate is at least a factor of 'ratio' less than the path with the highest I/O
rate, an exception will be declared for the control unit.

Range: 2 to 100

Default: 2

XTYPE(devtype)
devtype is the device type of control units that will be excluded from the
check and not reported on.

Supported device type values: DASD,TAPE

Default: no value

XCU(cu1,cu2,...,cux)
XCU defines a list of specific control units that will be excluded from the
check and will not be reported on. Each control unit in this list is a
hexadecimal value representing the control unit number. This parameter
takes up to 40 different control unit numbers.

Range: 0 to FFFE

Default: no value

Note: If any parameter is changed, the check results may not reflect these
changes for several minutes because the check must gather a few minutes
worth of data before performing analysis using the new parameters.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMIOS,IOS_IORATE_MONITOR)
ACTIVE
VERBOSE(NO)
INTERVAL(00:05)
SEVERITY(MED)
DATE('date_of_the_change')
PARM('THRESHOLD(100),RATIO(2),XCU(),XTYPE()')
REASON('Your reason for making the update')

Debug support:
No.

Verbose support:
Yes, if VERBOSE(YES) is specified on the check, the control units that were
excluded via the XTYPE and XCU parameters will be displayed in the report if
exceptions were found for them. This allows an easy way to temporarily obtain
information on ALL control units with an exception without the need for a
change to the XCU and XTYPE parameters.

IOS checks

480 IBM Health Checker for z/OS User's Guide

Reference:
For more information on interpreting initial command response (CMR) time for
the affected control units, see "IOQUEUE - I/O Queuing Activity Report" in
z/OS RMF Report Analysis.

Messages:
This check issues the following exception messages:
v IOSHC132E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

IOS_MIDAW
Description:

This check verifies that the modified indirect addressing word (MIDAW)
facility is enabled. MIDAWs are a more efficient way to issue I/O commands.

Reason for check:
MIDAW is a extension to I/O that allows better use of I/O bandwidth.

You can verify whether the MIDAW facility is enabled using the following
console command:
DISPLAY IOS,MIDAW

In response to this command, the system issues message IOS097I to display
whether MIDAW is active:
IOS097I 12.27.47 MIDAW FACILITY 279
MIDAW FACILITY IS ENABLED

To change MIDAW enablement, see the SETIOS command in z/OS MVS System
Commands.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
Yes, the following parameters are accepted:

PARM(‘MIDAW(state)')
Since, there may be a rare instance when MIDAW should not be enabled,
you can set the expected state of MIDAW enablement the check expects to
either:
v PARM('MIDAW(YES)'), which is the default, indicates that the expected

state the check expects is MIDAW enabled.
v PARM('MIDAW(NO)') indicates that the state expected by the check is

MIDAW disabled.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMIOS,IOS_MIDAW)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

IOS checks

Chapter 13. IBM Health Checker for z/OS checks 481

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see information on the SETIOS command in z/OS MVS
System Commands.

Messages:
This check issues the following exception messages:
v IOSHC105E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

IOS_STORAGE_IOSBLKS
Description:

This check verifies that control blocks used in IOS can reside in 31-bit
addressable storage.

Reason for check:
Control blocks used to initiate I/O were obtained in storage addressable in the
first 16 megabytes of storage so that 24-bit AMODE legacy software could
perform scans on them. However, forcing all I/O control blocks below the 16
megabyte line creates a constraint on the amount of storage below the line.
IBM recommends that the control blocks be allowed to be in 31-bit addressable
storage.

You can verify the state of IOS blocks using the following console command:
DISPLAY IOS,STORAGE

In response to this command, the system issues message IOS089I to display the
state of captured UCB protection:
IOS089I 12.21.54 STORAGE DATA 246
IOS BLOCKS RESIDE IN 31 BIT STORAGE

To change the state of the IOS blocks, see the SETIOS command in z/OS MVS
System Commands.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
Yes, the following parameters are accepted:

PARM(‘IOSBLKS(state)')
Since, there may be a rare instance where 31-bit IOS Blocks should not be
enabled, you can set the expected state of 31-bit IOS blocks the check
expects to either:
v PARM('IOSBLKS(31)') which is the default, indicates that the expected

state for IOS blocks is 31–bit.
v PARM('IOSBLKS(24)') indicates that the expected state for IOS blocks is

24–bit.

User override of IBM values:
The following shows the default keywords for the check, which you can

IOS checks

482 IBM Health Checker for z/OS User's Guide

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMIOS,IOS_STORAGE_IOSBLKS)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see information on the SETIOS command in z/OS MVS
System Commands.

Messages:
This check issues the following exception messages:
v IOSHC103E

See IOSHC messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

JES2 checks (IBMJES2)

JES2_UPGRADE_CKPT_LEVEL_JES2
Description:

This check determines if the system is ready to upgrade the JES2 checkpoint to
z22 mode. If the necessary preconditions are already satisfied on the
customer’s system, then a message is given recommending that the system be
upgraded to z22 mode. In the case where prerequisite conditions have not been
satisfied, an exception message is given indicating that the system is not ready
to upgrade to checkpoint level z22.

Reason for check:
IBM suggests that installations use JES2 z22 mode because it upgrades the JES2
checkpoint and enables the following functions:
v Job execution controls via the JOBGROUP JCL statement.
v A new method to reconfigure where the JES2 checkpoint data sets reside.
v The ability to resize a JES2 checkpoint data set (within the limits of the

device the data set resides on).
v Increased limits for JQEs, JOEs and BERTs. New limits are as follows:

– JQEs = 1,000,000
– JOEs = 2,500,000
– BERTs = 2,500,000

These new limits allow for more jobs and pieces of output to be handled by
the Job Entry Subsystem.

z/OS releases the check applies to:
z/OS V2R2 and later.

IOS checks

Chapter 13. IBM Health Checker for z/OS checks 483

|

|

|
|

|

|

|

|

|
|

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMJES2,JES2_UPGRADE_CKPT_LEVEL_JES2)

SEVERITY(LOW) INTERVAL(168:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see:
v z/OS JES2 Messages

v z/OS JES2 Initialization and Tuning Guide

v z/OS JES2 Commands

Messages:
This check issues the following exception messages:
v HASPH022E
v HASPH028E

See z/OS JES2 Messages.

SECLABEL recommended for MLS users:
SYSLOW

JES3 checks (IBMJES3)

JES3_DATASET_INTEGRITY
Description:

This check determines if DSI or NODSI has been specified on the JES3 entries
in the Program Properties Table (PPT). Specifying DSI enables Data Set
Integrity for JES3 data sets allocated via DYNALLOC statements. The check
generates an exception message when the current DSI setting does not match
the specified setting.

Reason for check:
JES3 uses the DSI PPT specification from the SCHEDxx member of
SYS1.PARMLIB. IBM recommends that you use DSI so there is an ENQUEUE
outstanding on all its data sets (major name=SYSDSN, minor name=dsname)
while JES3 is up and running.

JES3 does not hold any data set ENQUEUE when NODSI is specified which
allows other jobs or address spaces to access JES3 data sets. Updating JES3
data sets without using DSI can cause great damage with the ultimate result
being a cold start.

z/OS releases the check applies to:
z/OS V2R2 and later.

JES2 checks

484 IBM Health Checker for z/OS User's Guide

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

Type of check (local, remote, or REXX):
Local

Parameters accepted:
Yes, the following parameters are accepted:
v PARM('DSI(YES)'), which is the default, indicates the check should expect

JES3 data set integrity to be enabled with DSI in the PPT.
v PARM('DSI(NO)'), indicates the check should expect JES3 data set integrity

to be disabled with NODSI in the PPT.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMJES3,JES3_DATASET_INTEGRITY),
SEVERITY(LOW),
INTERVAL(ONETIME),
PARM(’DSI(YES)’)
DATE('date_of_the_change'),
REASON('your update reason')

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see:
v z/OS JES3 Initialization and Tuning Guide

v z/OS JES3 Commands

Messages:
This check issues the following exception messages:
v IATH003E

See the IATH messages in z/OS JES3 Messages.

SECLABEL recommended for MLS users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

JES3_DOT_POOL_USAGE
Description:

Checks the utilization of the JES3 DOT cellpool as a percentage of the pool's
total capacity. The check generates an exception message when current usage
exceeds a specified threshold.

Reason for check:
Check usage of JES3 DOT pool which is a finite resource. JES3 abends or
termination can result if the resource is exhausted.

z/OS releases the check applies to:
z/OS V2R2 and later.

Type of check (local, remote, or REXX):
Local

JES3 checks

Chapter 13. IBM Health Checker for z/OS checks 485

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|

Parameters accepted:
Yes, this check supports the dynamic severity setting and threshold keywords
to correspond with the severity levels. The severity of the exception is based
on the provided corresponding thresholds. The following parameters are
accepted:
PARM('[THRESHOLD_HIGH(value)]
[,THRESHOLD_MED(value)]
[,THRESHOLD_LOW(value)]
[,THRESHOLD_NONE(value)]')

value
An integer, 0-100 indicating the threshold percent of usage for the cellpool.
It may optionally be 1-100 followed by %.

You can use synonyms for the parameters, as follows:
THRESHOLD_HIGH: THRESHOLD_HI or THRESHOLD_H
THRESHOLD_MED: THRESHOLD_M
THRESHOLD_LOW: THRESHOLD_L
THRESHOLD_NONE: THRESHOLD_NO or THRESHOLD_N

At least one threshold parameter is required to indicate a threshold percentage
that the cellpool utilization should not exceed.

When specifying more than one threshold value, the value specified for a
higher severity threshold must be larger than the lower severity thresholds, as
shown in the following example:
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%),THRESHOLD_LOW(60%)')

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMJES3,JES3_DOT_POOL_USAGE),
INTERVAL(00:10),
SEVERITY(LOW),
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%)')
DATE('date_of_the_change'),
REASON(’your update reason’)

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see:
v z/OS JES3 Initialization and Tuning Guide

v z/OS JES3 Commands

Messages:
This check issues the following exception messages:
v IATH011E

See the IATH messages in z/OS JES3 Messages.

SECLABEL recommended for MLS users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

JES3 checks

486 IBM Health Checker for z/OS User's Guide

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|
|

JES3_JET_POOL_USAGE
Description:

Checks the utilization of the JES3 JET cellpool as a percentage of the pool's
total capacity. The check generates an exception message when current usage
exceeds a specified threshold.

Reason for check:
Check usage of JES3 JET pool which is a finite resource. JES3 abends or
termination can result if the resource is exhausted.

z/OS releases the check applies to:
z/OS V2R2 and later.

Type of check (local, remote, or REXX):
Local

Parameters accepted:
Yes, this check supports the dynamic severity setting and threshold keywords
to correspond with the severity levels. The severity of the exception is based
on the provided corresponding thresholds. The following parameters are
accepted:
PARM('[THRESHOLD_HIGH(value)]
[,THRESHOLD_MED(value)]
[,THRESHOLD_LOW(value)]
[,THRESHOLD_NONE(value)]')

value
An integer, 0-100 indicating the threshold percent of usage for the cellpool.
It may optionally be 1-100 followed by %.

You can use synonyms for the parameters, as follows:
THRESHOLD_HIGH: THRESHOLD_HI or THRESHOLD_H
THRESHOLD_MED: THRESHOLD_M
THRESHOLD_LOW: THRESHOLD_L
THRESHOLD_NONE: THRESHOLD_NO or THRESHOLD_N

At least one threshold parameter is required to indicate a threshold percentage
that the cellpool utilization should not exceed.

When specifying more than one threshold value, the value specified for a
higher severity threshold must be larger than the lower severity thresholds, as
shown in the following example:
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%),THRESHOLD_LOW(60%)')

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMJES3,JES3_JET_POOL_USAGE),
INTERVAL(00:10),
SEVERITY(LOW),
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%),THRESHOLD_LOW(60%)')
DATE('date_of_the_change'),
REASON(’your update reason’)

Debug support:
No.

JES3 checks

Chapter 13. IBM Health Checker for z/OS checks 487

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

Verbose support:
No.

Reference:
For more information, see:
v z/OS JES3 Initialization and Tuning Guide

v z/OS JES3 Commands

Messages:
This check issues the following exception messages:
v IATH012E

See the IATH messages in z/OS JES3 Messages.

SECLABEL recommended for MLS users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

JES3_OST_POOL_USAGE
Description:

Checks the utilization of the JES3 OST cellpool as a percentage of the pool's
total capacity. The check generates an exception message when current usage
exceeds a specified threshold.

Reason for check:
Check usage of JES3 OST pool which is a finite resource. JES3 abends or
termination can result if the resource is exhausted.

z/OS releases the check applies to:
z/OS V2R2 and later.

Type of check (local, remote, or REXX):
Local

Parameters accepted:
Yes, this check supports the dynamic severity setting and threshold keywords
to correspond with the severity levels. The severity of the exception is based
on the provided corresponding thresholds. The following parameters are
accepted:
PARM('[THRESHOLD_HIGH(value)]
[,THRESHOLD_MED(value)]
[,THRESHOLD_LOW(value)]
[,THRESHOLD_NONE(value)]')

value
An integer, 0-100 indicating the threshold percent of usage for the cellpool.
It may optionally be 1-100 followed by %.

You can use synonyms for the parameters, as follows:
THRESHOLD_HIGH: THRESHOLD_HI or THRESHOLD_H
THRESHOLD_MED: THRESHOLD_M
THRESHOLD_LOW: THRESHOLD_L
THRESHOLD_NONE: THRESHOLD_NO or THRESHOLD_N

At least one threshold parameter is required to indicate a threshold percentage
that the cellpool utilization should not exceed.

When specifying more than one threshold value, the value specified for a
higher severity threshold must be larger than the lower severity thresholds, as
shown in the following example:

JES3 checks

488 IBM Health Checker for z/OS User's Guide

|
|

|
|

|

|

|
|

|

|

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%),THRESHOLD_LOW(60%)')

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMJES3,JES3_OST_POOL_USAGE),
INTERVAL(00:10),
SEVERITY(LOW),
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%),THRESHOLD_LOW(60%)')
DATE('date_of_the_change'),
REASON(’your update reason’)

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see:
v z/OS JES3 Initialization and Tuning Guide

v z/OS JES3 Commands

Messages:
This check issues the following exception messages:
v IATH013E

See the IATH messages in z/OS JES3 Messages.

SECLABEL recommended for MLS users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

JES3_SEE_POOL_USAGE
Description:

Checks the utilization of the JES3 SEE cellpool as a percentage of the pool's
total capacity. The check generates an exception message when current usage
exceeds a specified threshold.

Reason for check:
Check usage of JES3 SEE pool which is a finite resource. JES3 abends or
termination can result if the resource is exhausted.

z/OS releases the check applies to:
z/OS V2R2 and later.

Type of check (local, remote, or REXX):
Local

Parameters accepted:
Yes, this check supports the dynamic severity setting and threshold keywords
to correspond with the severity levels. The severity of the exception is based
on the provided corresponding thresholds. The following parameters are
accepted:
PARM('[THRESHOLD_HIGH(value)]
[,THRESHOLD_MED(value)]
[,THRESHOLD_LOW(value)]
[,THRESHOLD_NONE(value)]')

JES3 checks

Chapter 13. IBM Health Checker for z/OS checks 489

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

value
An integer, 0-100 indicating the threshold percent of usage for the cellpool.
It may optionally be 1-100 followed by %.

You can use synonyms for the parameters, as follows:
THRESHOLD_HIGH: THRESHOLD_HI or THRESHOLD_H
THRESHOLD_MED: THRESHOLD_M
THRESHOLD_LOW: THRESHOLD_L
THRESHOLD_NONE: THRESHOLD_NO or THRESHOLD_N

At least one threshold parameter is required to indicate a threshold percentage
that the cellpool utilization should not exceed.

When specifying more than one threshold value, the value specified for a
higher severity threshold must be larger than the lower severity thresholds, as
shown in the following example:
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%),THRESHOLD_LOW(60%)')

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMJES3,JES3_SEE_POOL_USAGE),
INTERVAL(00:10),
SEVERITY(LOW),
PARM('THRESHOLD_HIGH(85%),THRESHOLD_MED(70%)')
DATE('date_of_the_change'),
REASON(’your update reason’)

Debug support:
No.

Verbose support:
No.

Reference:
For more information, see:
v z/OS JES3 Initialization and Tuning Guide

v z/OS JES3 Commands

Messages:
This check issues the following exception messages:
v IATH014E

See the IATH messages in z/OS JES3 Messages.

SECLABEL recommended for MLS users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Loadwait/Restart checks (IBMSVA)

SVA_AUTOIPL_DEFINED
Description:

Checks if the customer environment is capable of supporting an AutoIPL
policy and if it is, determines whether the AutoIPL policy is active.

JES3 checks

490 IBM Health Checker for z/OS User's Guide

|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|
|

Reason for check:
IBM suggests that you define the AutoIPL policy using the DIAGxx parmlib
member to minimize z/OS system downtime. AutoIPL can re-IPL MVS, take a
Stand Alone Dump (SADMP), or take a SADMP and have SADMP re-IPL MVS
when it has finished.

AutoIPL function requires the Program-Directed IPL feature. AutoIPL is not
appropriate in GDPS environment. If the check determines that the customer
does not have the hardware feature or that the AutoIPL policy is not active, the
check stops running.

z/OS releases the check applies to:
z/OS V1R11

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMSVA,SVA_AUTOIPL_DEFINED)
ACTIVE
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No.

Reference:

v For information about Exploiting the Automatic IPL Function, see z/OS MVS
Planning: Operations.

v For information about DIAGxx (Control common storage tracking and GFS
trace) see z/OS MVS Initialization and Tuning Reference

Debug support:
No

Verbose support:
No

Messages:
This check issues the following exception messages:
v BLWH0001E
v BLWH0011E

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
The following report is generated by the SVA_AUTOIPL_DEV_VALIDATION
check when the device validation fails for devices specified in the AutoIPL
policy:
AutoIPL Device Error
action Address Description

------- --------- ---
SADMP 03A0 Device is not DASD

In the output:

Loadwait/Restart checks

Chapter 13. IBM Health Checker for z/OS checks 491

AutoIPL action = The AutoIPL action (SADMP or MVS).
Device Address = The address of the device failing the device validation.
Error Description = The description of the problem

SVA_AUTOIPL_DEV_VALIDATION
Description:

Performs device validation for device(s) specified in the AutoIPL policy for
SADMP and/or MVS when an AutoIPL policy exists. Reports problems if the
device validation fails. If the check determines that there is no AutoIPL policy
defined, or that the customer does not have the appropriate hardware feature,
the check stops running.

Reason for check:
If an AutoIPL policy exists all of the following conditions must be met for the
device to pass device validation:
v The device must exist
v The device must be accessible
v The device must be DASD
v The device must not be specified as a secondary device in a Metro Mirror

pair. Use the report generated from this check to determine if there are
problems with device(s) specified in the AutoIPL policy.

z/OS releases the check applies to:
z/OS V1R11

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMSVA,SVA_AUTOIPL_DEV_VALIDATION)
ACTIVE
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No.

Reference:

v For information about Exploiting the Automatic IPL Function, see z/OS MVS
Planning: Operations.

v For information about DIAGxx (Control common storage tracking and GFS
trace) see z/OS MVS Initialization and Tuning Reference

Debug support:
No

Verbose support:
No

Messages:
This check issues the following exception messages:
v BLWH0002E

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

Loadwait/Restart checks

492 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

PDSE checks (IBMPDSE)

PDSE_SMSPDSE1
Description:

The PDSE_SMSPDSE1 check returns the current status of the SMSPDSE1
address space.

Reason for check:
IBM recommends that SMSPDSE1 address be set to active to prevent possible
PDSE related problems.

z/OS releases the check applies to:
z/OS V1R6 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMPDSE,PDSE_SMSPDSE1),
SEVERITY(LOW),

INTERVAL(ONETIME),
DATE(’date_of_the_change’)

Debug support:
No.

Verbose support:
No

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGWPH0101E

See the IGWPH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

Predictive failure analysis checks (IBMPFA)
Predictive failure analysis (PFA) is described in z/OS V2R2 Problem Management,
including the following:
v The PFA checks are described in Predictive Failure Analysis checks .

– All PFA checks follow the standard naming convention (IBMPFA,PFA_*) for
check owner and check name.

v General information about PFA is described as follows:
– Predictive failure overview and installation

Loadwait/Restart checks

Chapter 13. IBM Health Checker for z/OS checks 493

|
|

– Managing PFA checks

RACF checks (IBMRACF)

Write your own RACF resource checks!
You can create your own RACF installation-defined resource checks to see if your
resources have the security characteristics you want. Do the following for each
check you wish to create:
1. Define a RACF profile containing a list of the resources you want your RACF

installation-defined resource check to look at, along with the maximum
allowable general user access you want for each resource.
The check raises an exception if the profile which covers the resource allows
more than the specified access or there is no profile covering the resource and
default return code from the class is not 8. If you would like to prevent the
exception, define a profile which allows less access than indicated in the
installation-defined check. You can use a generic profile.
The format of each member list entry in the profile is as follows:
className/resourceName/volume/maxUacc

className
The class of the resource which is to be checked. Valid values are DATASET
and any RACF general resource class which is defined on the system.

Note that if the general resource class is a member/grouping class, the
class must already be RACLISTed.

resourceName
The name of the resource which is to be checked.

volume
If the className is DATASET then this is volume upon which the data set
resides. This parameter is optional. If it is not specified, then the catalog is
searched to find the volume serial for the dataset.

If the className is not DATASET, do not specify a volume. If you specify a
volume for a className other than DATASET, you will receive an error
message.

maxUacc
The maximum allowed general user access to the resource.

The following shows an example of a profile for a RACF installation-defined
resource check:
RDEFINE RACFHC MY_RESOURCE_LIST

ADDMEM(DATASET/PROD.VALUABLE.DATA/ZDR17B/NONE
DATASET/SEC.FILING.FORMS//NONE
DATASET/PUBLIC.REPORTS/REGVOL/READ
RACFHC/MY_RESOURCE_LIST//NONE)

ADDMEM member list entry considerations:
v You can specify any number of resource names up to the maximum amount

of data which can be placed into the member list portion of a profile using
the ADDMEM operand.

v Only the following types of data sets are allowed to be specified as
resources: Sequential, partitioned, library, or VSAM data sets.

Special values you can use in ADDMEM: To make defining your profile
easier, you can also use the following special values in ADDMEM:

PFA checks

494 IBM Health Checker for z/OS User's Guide

Value Description

IRR_APFLIST Examines all of the entries in the current APF list.

IRR_LINKLIST Examines all of the entries in the current link list

IRR_PARMLIB Examines all of the entries in the current PARMLIB

IRR_RACFDB Examines the current primary and backup RACF databases

IRR_SYSREXX Examines all of the SYSREXX data sets

IRR_ICHAUTAB Examines the entries in ICHAUTAB

If you specify one of these special ADDMEM values, you cannot specify any
other value, such as className, resourceName, volume, or maxUacc on that entry.
Note that the system does not validate the content of your profile when you
add or alter it. The system verifies the profile only when the check runs. The
system processes ADDMEM values in the following order:
v The syntax of the entire member list is validated
v The reports are processed.
v The individual resource names are processed

Possible profile errors reported when your RACF profile is validated:

Basic parameter errors: The system validates the following
v If the required RESOURCELIST keyword has not been specified, the system

issues message HZS1201E.
v If the RESOURCELIST value is greater than 128 characters, the system issues

message HZS1213E.
v If the RESOURCELIST value has not been specified, then the system issues

message HZS1201E.
v If the USER value is greater than 8 characters, the system issues message

HZS1213E.
v If the USER value has not been specified, then the system issues message

HZS1201E.

The system also issues messages for situations such as unexpected parameter.
In this case, the system issues message IRRH231I in addition to one of the
messages above, and the check is placed in the “parameter error” state.
The profile specified as the RESOURCELIST does not exist: If the profile
does not exist or cannot be retrieved, the system issues messages IRRH232I and
HZS1001E and the check is placed in the “parameter error” state. The check
will not run until the installation corrects the situation by defining the profile
or modifying the value specified in the PARM statement on the check on the
check registration to point to a properly defined profile and the reactivating the
check.
The profile exists, but the profile does not have any ADDMEM value: If
there is no member list, the system issues message IRRH233I and HZS1001E
and the check is placed into “parameter error” state. The check will not run
until the installation corrects the situation by adding a correct member list or
modifying the value specified in the PARM statement on the check on the
check registration to point to a properly defined profile and the reactivating the
check.
The profile exists with ADDMEM values, but there is an error in the
ADDMEM member list entry, such as :
v The specified class does not exist.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 495

v The length of the resource name does not match the maximum value allowed
for the class

v A volume serial was specified for a class other than data set
v The volume serial value is greater than six (6) characters
v The maximum “general user” access level a value other than “NONE”,

“READ”, “UPDATE”, “ALTER”, or “CONTROL”

For any ADDMEM entry with any of these errors, the system issues messages
IRRH234I and HZS1001E and places the check into “parameter error” state. The
check will not run until the installation corrects the situation by adding a
correct member list or modifying the value specified in the PARM statement on
the check on the check registration to point to a properly defined profile and
the reactivating the check. Message IRRH234I is issued once for each member
list entry which is in error. The message contains the entry number of the
incorrect member entry.

2. Choose a name for your RACF installation-defined resource check, and using
this name, define the check to IBM Health Checker for z/OS in an HZSPRMxx
parmlib member. The following shows an example of registering a RACF
installation-defined resource check in HZSPRMxx:
ADD CHECK(USER01,MY_INSTALLATION_HEALTH_CHECK)

CHECKROUTINE(IRRHCR00)
MESSAGETABLE(IRRHCM00)
ENTRYCODE(100)
PARM(’USER(USER01) RESOURCELIST(MY_RESOURCE_LIST)’)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)
GLOBAL
ACTIVE
SEVERITY(HIGH)
INTERVAL(08:00)

Reason for check:
Installation defined.

z/OS releases the check applies to:
z/OS V1R10 and later.

Parameters accepted:
Yes, the following parameters are accepted for an RACF installation-defined
resource check:

PARM('USER(userid)')
Optional parameter specifies an individual user ID whose the authority to
the resources listed in the profile the check will examine.

PARM('RESOURCELIST(resourcelist_profile)')
Required parameter specifies the resource list profile name defined for this
check. The check then examines the authority levels for the resources listed
in the profile named in this parameter.

The following shows an example of a PARM statement specified in a RACF
installation-defined resource check:
PARM(’USER(USER01) RESOURCELIST(MY_RESOURCE_LIST)’)

User override of IBM values:
There are no IBM default values for a RACF installation-defined resource
check. You can override the check values you defined with either a POLICY
statement in the HZSPRMxx parmlib member or on a MODIFY command.

RACF checks

496 IBM Health Checker for z/OS User's Guide

Debug support:
Yes

Verbose support:
No

Reference:
For more information on storage increments, see z/OS Security Server RACF
System Programmer's Guide.

Messages:
This check issues the following exception messages:
v IRRH237E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output: The following shows output from a RACF installation-defined resource
check:
CHECK(USER01,MY_INSTALLATION_HEALTH_CHECK)
START TIME: 01/10/2008 14:35:34.674057
CHECK DATE: 20070425 CHECK SEVERITY: HIGH
CHECK PARM: USER(USER01) RESOURCELIST(MY_RESOURCE_LIST)

Resource List from MY_RESOURCE_LIST

S Resource Name Class Vol UACC Warn ID* User
- -------------------------------- -------- ------ ---- ---- ---- ----
V PROD.VALUABLE.DATA DATASET ZDR17B
V SEC.FILING.FORMS DATASET
V PUBLIC.REPORTS DATASET REGVOL

MY_RESOURCE_LIST RACFHC None No ****

* High Severity Exception *

IRRH237E The MY_INSTALLATION_HEALTH_CHECK check has found
one or more potential errors in the
security controls for the installation-defined
resources specified in this check.

Explanation: The RACF security configuration check has found one or
more potential errors with the protection mechanisms for the
resources specified for this check.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator and the system auditor.

...

...

...

Check Reason: My sensitive resources

END TIME: 01/10/2008 14:35:34.701104 STATUS: EXCEPTION-HIGH

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 497

RACF_AIM_STAGE
Description:

The RACF_AIM_STAGE check examines the RACF database application
identity mapping (AIM) to see whether it is at AIM stage 3, which is
recommended. Your system programmer can convert your RACF database to
AIM stage 3 using the IRRIRA00 conversion utility.

Reason for check:
AIM stage 3 allows RACF to more efficiently handle authentication and
authorization requests from applications such as z/OS UNIX and is required to
use some RACF function. You should assign a unique UNIX UID for each user
and a unique GID for each group that needs access to z/OS UNIX functions
and resources. Assigning unique IDs rather than shared IDs improves overall
security and increases user accountability. However, if you have a large
number of users without OMVS segments who need access to z/OS UNIX
services, such as FTP, you might choose not to assign UNIX identities in
advance of their need to use the services. In these cases, when your RACF
database has been converted to AIM stage 3, you can enable RACF to
automatically assign unique UNIX UIDs and GIDs at the time they are needed.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
No

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE,
CHECK(IBMRACF,RACF_AIM_STAGE)
SEVERITY(MED),INTERVAL(24:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:

v For information on running the IRRIRA00 conversion utility, see z/OS
Security Server RACF System Programmer's Guide.

v For information about enabling RACF for automatic assignment of unique
UNIX identities, see z/OS Security Server RACF Security Administrator's Guide.

Messages:
This check issues the following exception messages:
v IRRH501E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:

v The following shows the output from a RACF_AIM_STAGE check that finds
the system at stage 3:

RACF checks

498 IBM Health Checker for z/OS User's Guide

CHECK(IBMRACF,RACF_AIM_STAGE)
START TIME: 05/06/2011 10:51:02.926675
CHECK DATE: 20110101 CHECK SEVERITY: MEDIUM

IRRH500I The RACF database is at the suggested stage of application
identity mapping (AIM). The database is at AIM stage 03.

END TIME: 05/06/2011 10:51:02.927390 STATUS: SUCCESSFUL

v The following shows the output from an exception for RACF_AIM_STAGE:
CHECK(IBMRACF,RACF_AIM_STAGE)
START TIME: 05/06/2011 11:06:27.618944
CHECK DATE: 20110101 CHECK SEVERITY: MEDIUM

* Medium Severity Exception *

IRRH501E The RACF database is not at the suggested stage of application
identity mapping (AIM). The database is at AIM stage 00.

Explanation: The RACF_AIM_STAGE check has determined that the RACF
database is not at the suggested stage of application identity
mapping (AIM). Your system programmer can convert your RACF database
using the IRRIRA00 conversion utility. See z/OS Security Server RACF
System Programmer’s Guide for information about running the IRRIRA00
conversion utility.

Stage 3 of application identity mapping allows RACF to more
efficiently handle authentication and authorization requests from
applications such as z/OS UNIX and is required to use some RACF
function. You should assign a unique UNIX UID for each user and a
unique GID for each group that needs access to z/OS UNIX functions
and resources. Assigning unique IDs rather than shared IDs improves
overall security and increases user accountability. However, if you
have a large number of users without OMVS segments who need access
to z/OS UNIX services, such as FTP, you might choose not to assign
UNIX identities in advance of their need to use the services. In
these cases, when your RACF database has been converted to AIM stage
3, you can enable RACF to automatically assign unique UNIX UIDs and
GIDs at the time they are needed. See z/OS Security Server RACF
Security Administrator’s Guide for information about enabling RACF
for automatic assignment of unique UNIX identities.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator.

System Programmer Response: If you want to use RACF function such as
support for automatically assigning unique UNIX UIDs and GIDs at the
time that they are needed, run the IRRIRA00 utility to advance the
RACF database to application identity mapping stage 3. For details
about using the IRRIRA00 utility, see z/OS Security Server RACF
System Programmer’s Guide.

Problem Determination:

Source:

Reference Documentation:
z/OS Security Server RACF System Programmer’s Guide
z/OS Security Server RACF Security Administrator’s Guide

Automation: None.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 499

Check Reason: AIM Stage 3 is suggested.

END TIME: 05/06/2011 11:06:27.620454 STATUS: EXCEPTION-MED

RACF_CERTIFICATE_EXPIRATION
Description:

The RACF_CERTIFICATE_EXPIRATION check:
v Extracts each certificate from the RACF database.
v Examines the ending date of the certificate and lists the certificate in the

check output if the ending date is equal to or less than the warning date.
The warning date is the current date adjusted by the “warning period” that
the installation has specified as a parameter to the check.

v If the certificate is either a TRUST or HIGHTRUST then the certificate is
marked as an exception.

The RACF_CERTIFICATE_EXPIRATION check has the following columns in its
report:

Table 53. RACF_CERTIFICATE_EXPIRATION report columns

Column Description

s The status of the certificate. This column contains an “E” if the certificate
is marked as an exception.

Cert Owner This column contains the “anchor point” for the certificate. Valid values
are “SITE”, “CERTAUTH”, and “ID(user-ID).”

Certificate
Label

This is the label that has been assigned to the certificate.

End Date The end date assigned to the certificate. This is the date after which the
certificate is not valid.

Trust The trust status of the certificate. Valid values are “No”, “Yes”, and
“High”.

Rings The number of rings with which this certificate is associated.

If there are no certificates selected for inclusion in the report, then only the title
and headers are presented, along with the “No exceptions found” message.

Note: The check end date and the current date are evaluated as follows:
v If the CERTEND date/time is earlier than the current date/time, then the

certificate is considered “expired”.
v If the CERTEND date/time is not earlier than the current date/time, then

the current date/time value is subtracted from the CERTEND date/time and
the result converted to minutes. This value is compared to the number of
days in the warning period multiplied by the number of minutes in a day
(1440).

The RACF_CERTIFICATE_EXPIRED check is registered with these attributes:

Table 54. RACF_CERTIFICATE_EXPIRED attributes

Attribute Setting

Severity Medium

State Active

Interval Run once a day on each system

Date 20111010

RACF checks

500 IBM Health Checker for z/OS User's Guide

Table 54. RACF_CERTIFICATE_EXPIRED attributes (continued)

Attribute Setting

Reason Operational certificates should not be allowed to expire.

Parameter DAYS(nnn), where “nnn” is between 0 and 366, with a default of 60 if
DAYS is not specified explicitly.

Reason for check:
RACF_CERTIFICATE_EXPIRATION allows RACF to identify all certificates
which have expired, identify all certificates which are going to expire within
the next few days, and ensures that the user has defined a proper baseline set
of protections within the z/OS environment.

z/OS releases the check applies to:
z/OS V2R1 and later.

Parameters accepted:
The value of DAYS(nnn), where “nnn” is between 0 and 366.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE
CHECK(IBMRACF,RACF_CERTIFICATE_EXPIRATION)
ACTIVE
SEVERITY(MED)
DATE(’20111010’)
REASON(’Operational certificates should not expire.’)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Reference:

v For information on running the IRRIRA00 conversion utility, see z/OS
Security Server RACF System Programmer's Guide.

v For information about enabling RACF for automatic assignment of unique
UNIX identities, see z/OS Security Server RACF Security Administrator's Guide.

Messages:
This check issues the following exception messages:
v IRRH276E
v IRRH277I

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
The following shows the output from a RACF_CERTIFICATE_EXPIRATION
check:
CHECK(IBMRACF,RACF_CERTIFICATE_EXPIRATION)
START TIME: 01/23/2012 08:10:01.603497
CHECK DATE: 20111010 CHECK SEVERITY: MEDIUM

Certificates Expiring in 60 Days

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 501

S Cert Owner Certificate Label End Date Trust Rings
- ------------ -------------------------------- ---------- ----- -----
IRRH277I No exceptions are detected. Expired certificates that are not
trusted or are associated with only a virtual key ring are not
exceptions.
END TIME: 01/23/2012 08:10:01.643285 STATUS: SUCCESSFUL

RACF_classname_ACTIVE
Description: Each of the RACF_classname_ACTIVE checks examine the status of a
single RACF general resource class:
v RACF_UNIXPRIV_ACTIVE
v RACF_FACILITY_ACTIVE
v RACF_TAPEVOL_ACTIVE
v RACF_TEMPDSN_ACTIVE
v RACF_TSOAUTH_ACTIVE
v RACF_OPERCMDS_ACTIVE
v RACF_CSFKEYS_ACTIVE
v RACF_CSFSERV_ACTIVE

Reason for check:
An effective RACF implementation requires that the baseline group of RACF
general resource classes listed above be active.

z/OS releases the check applies to:
z/OS V1R5 and later.

Parameters accepted:
No.

User override of IBM values:
The following shows keywords you can use to override RACF check values on
either a POLICY statement in the HZSPRMxx parmlib member or on a
MODIFY command:
UPDATE,
CHECK(IBMRACF,RACF_classname_ACTIVE),
SEVERITY(MED),INTERVAL(24:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides additional error detail in debug mode. You can put a
check into debug mode using any of the following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF.

Verbose support:
No.

Reference:
For more information on storage increments, see z/OS Security Server RACF
Security Administrator's Guide .

Messages:
This check issues the following exception messages:
v IRRH229E

See z/OS Security Server RACF Messages and Codes.

RACF checks

502 IBM Health Checker for z/OS User's Guide

|

|

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:

RACF_FACILITY_ACTIVE check - no exception found:
1CHECK(IBMRACF,RACF_FACILITY_ACTIVE)
START TIME: 03/02/2006 14:50:57.305795
CHECK DATE: 20051111 CHECK SEVERITY: MEDIUM
CHECK PARM: FACILITY

IRRH228I The class FACILITY is active.

END TIME: 03/02/2006 14:50:57.314865 STATUS: SUCCESSFUL

RACF_TAPEVOL_ACTIVE check - class inactive exception found:
1CHECK(IBMRACF,RACF_TAPEVOL_ACTIVE)
START TIME: 03/02/2006 14:50:57.304859
CHECK DATE: 20051111 CHECK SEVERITY: MEDIUM
CHECK PARM: TAPEVOL

* Medium Severity Exception *

IRRH229E The class TAPEVOL is not active.

Explanation: The class is not active. IBM recommends that the
security administrator evaluate the need for this class, define
profiles in it as appropriate, and activate the class.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator and the system auditor.

System Programmer Response: None.

Problem Determination: See the RACF Security Administrator’s Guide,
the RACF Auditor’s Guide and the RACF System Programmer’s Guide.

Source:
RACF Security Administrator’s Guide
RACF Auditor’s Guide
RACF System Programmer’s Guide

Reference Documentation:
RACF Security Administrator’s Guide
RACF Auditor’s Guide
RACF System Programmer’s Guide

Automation: None.

Check Reason: IBM recommends activating this class

END TIME: 03/02/2006 14:50:57.314816 STATUS: EXCEPTION-MED

RACF_class_name_ACTIVE check - no exceptions found (the class is active):
CHECK(IBMRACF,RACF_TSOAUTH_ACTIVE)
START TIME: 11/16/2005 13:17:30.931923
CHECK DATE: 20050820 CHECK SEVERITY: MEDIUM
CHECK PARM: TSOAUTH
IRRH228I The class TSOAUTH is active.
END TIME: 11/16/2005 13:17:30.945682 STATUS: SUCCESSFUL

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 503

RACF_ENCRYPTION_ALGORITHM
Description:

The RACF_ENCRYPTION_ALGORITHM check verifies that the KDFAES
algorithm is used for password protection.

Reason for check:
RACF_ENCRYPTION_ALGORITHM allows RACF to verify that the KDFAES
algorithm is used for password protection.

z/OS releases the check applies to:
z/OS V2R1 and later.

Parameters accepted:
None

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE
CHECK(IBMRACF,RACF_ENCRYPTION_ALGORITHM)
ACTIVE
SEVERITY(MED)
DATE(’20140131’)
REASON(’Default values for RACF Encryption Algorithm.’)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Reference:
See z/OS Security Server RACF System Programmer's Guide and z/OS Security
Server RACF Security Administrator's Guide.

Messages:
This check issues the following exception messages:
v IRRH293E
v IRRH295E
v IRRH298E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
Output when KDFAES is not enabled and ICHDEX01 is not installed:
CHECK(IBMRACF,RACF_ENCRYPTION_ALGORITHM)
START TIME: 01/31/2014 09:44:29.892717
CHECK DATE: 20140131 CHECK SEVERITY: MEDIUM
* Medium Severity Exception *
IRRH293E KDFAES encryption is not enabled on this system.
* Medium Severity Exception *
IRRH295E The RACF_ENCRYPTION_ALGORITHM check has detected an exception.
ICHDEX01 is not in use on END TIME: 01/31/2014 09:44:29.893680 STATUS: EXCEPTION-MED

Output when KDFAES is enabled and ICHDEX01 is not installed:
CHECK(IBMRACF,RACF_ENCRYPTION_ALGORITHM)
START TIME: 01/31/2014 09:44:29.892717
CHECK DATE: 20140131 CHECK SEVERITY: MEDIUM

RACF checks

504 IBM Health Checker for z/OS User's Guide

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

IRRH294I KDFAES encryption is enabled on this system. If present, ICHDEX01 is used
only for password IRRH299I No exceptions are detected.
END TIME: 01/31/2014 09:44:29.893680 STATUS: SUCCESSFUL

Output when KDFAES is enabled and ICHDEX01 is installed:
CHECK(IBMRACF,RACF_ENCRYPTION_ALGORITHM)
START TIME: 01/31/2014 09:44:29.892717
CHECK DATE: 20140131 CHECK SEVERITY: MEDIUM
IRRH294I KDFAES encryption is enabled on this system. If present, ICHDEX01 is used
only for password IRRH296I ICHDEX01 is in use on this system.
ICHDEX01 Return Codes
Installation DES DES Installation DES DES
Only Only Only Only Only Only
(RC=00) (RC=04) (RC=08) (RC=12) (RC=16) (RC=OTHER)
------------ ------- ------- ------------- --------- ----------
NO YES NO NO NO NO
IRRH299I No exceptions are detected.
END TIME: 01/31/2014 09:44:29.893680 STATUS: SUCCESSFUL

Output when KDFAES is not enabled, and ICHDEX01 is installed.
CHECK(IBMRACF,RACF_ENCRYPTION_ALGORITHM)
START TIME: 01/31/2014 09:44:29.892717
CHECK DATE: 20140131 CHECK SEVERITY: MEDIUM
* Medium Severity Exception *
IRRH293E KDFAES encryption is not enabled on this system.
IRRH296I ICHDEX01 is in use on this system.
ICHDEX01 Return Codes
Installation Mask DES Installation DES then Other
Only Only Only Only Mask
(RC=0) (RC=04) (RC=08) (RC=12) (RC=16) (RC=OTHER)
------------ ------- ------- ------------- --------- ----------
NO NO YES NO NO NO
IRRH297I ICHDEX01 indicates that only DES encryption is in use.
END TIME: 01/31/2014 09:44:29.893680 STATUS: EXCEPTION-MED

Note: For performance reasons the RACF_ENCRYPTION_ALGORITHM check
only detects selected calls made to ICHDEX01. If ICHDEX01 is present and the
health check reports that no return codes were set, rerun the check.

RACF_GRS_RNL
Description: Check evaluates whether the RACF ENQ names are in either the
installation system exclusion resource name list (SERNL) or the system inclusion
resource name list (SIRNL).

During its normal course of processing, RACF performs numerous serialization
requests using the Global Resource Serialization (GRS) RESERVE, ENQ, and DEQ
services. These serialization requests allow RACF to ensure that changes to the
RACF database and RACF control blocks are done in a consistent manner,
maintaining the integrity of RACF data.

Depending on the type of the serialization that RACF requires, RACF serializes at
either the address space (SCOPE=STEP), single MVS image (SCOPE=SYSTEM) or
multiple MVS image/Sysplex level (SCOPE=SYSTEMS). GRS identifies a
serialization request by an eight character QNAME (or major name) and RNAME
(or minor name) of up to 255 characters.

GRS allows installations to tailor the processing of RESERVE, ENQ, and DEQ
requests through the use of Resource Name Lists (RNLs). RNLs allow an
installation to influence the scope of RESERVE, ENQ, and DEQ processing. GRS
supports three types of RNLs:
v The System Inclusion RNL (SIRNL), which promotes a local ENQ

(SCOPE=SYSTEM) to a global ENQ (SCOPE=SYSTEMS
v The System Exclusion RNL (SERNL), which demotes a global ENQ

(SCOPE=SYSTEMS) to a local ENQ (SCOPE=SYSTEM)

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 505

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

v The Reserve Conversion (RCRNL), which suppresses a hardware RESERVE, in
effect allowing it to be a global (SCOPE=SYSTEMS) ENQ

The RACF service team has debugged several customer problems and outages and
found that the problem or outage was caused by a customer's RNL changing the
scope of a RACF serialization request. With z/OS V1R6, GRS introduced an
enhanced ISGQUERY service which allows an application to specify the QNAME
and RNAME of an ENQ and determine if the ENQ name is on an RNL.

RACF's ENQ names fall into three general categories:
v Names which consist of constant values, such as the SYSZRACF/RACF ENQ
v Names which consist of values, which the check can easily determine, such as

SYSZRACF/racf_data_set_name or SYSZRAC2/RACGLIST_classname

v Names which consist of values which the check cannot easily determine, such as
SYSZRAC2/IRRDPI08hhhh where hhhh is a hexadecimal address. However, since
ISGQUERY supports wildcard characters when searching for entries in the RNL,
many of these cases can be detected.

The RACF_GRS_RNL check produces a report which identifies the RACF ENQs
would have their scope changed by an entry in a GRS RNL. For SYSTEMS level
ENQs, the RACF_GRS_RNL check flags as error that match entries in the SERNL.
For a SYSTEM level ENQ, the RACF_GRS_RBL check flags as errors RACF ENQ
names which matches entries in the SIRNL.

When it runs, the RACF_GRS_RNL check calls the GRS ISGQUERY service for
each of the ENQ names documented in Table 55 and Table 56 on page 507. If one
or more ENQs are on an RNL that affects the scope of the ENQ, then the
RACF_GRS_RNL check identifies the ENQs that have their scope changed.

Table 55. Systems Level ENQs that RACF_GRS_RNL checks

Major Name Minor Name

SYSZRACF racf_data_set_name

RACF data set names are derived from the data set name table on
which the check executes. The check looks at all of the data sets in the
primary RACF data base as well as all of the data sets in the backup
RACF data base.

SYSZRACF SETROPTS

SYSZRACF DSDTDSDTDSDT...DSDT

The minor name is the string DSDT repeated twelve times.

SYSZRACF DSDTPREP...DSDTPREP

The minor name is the string DSDTPREP repeated six times.

SYSZRAC2 IRRCV05

SYSZRAC2 RACGLIST_class_name

class_name is derived from the list of classes defined on the system
upon which the check executes.

SYSZRAC2 GLOBALGLOBALGLOBAL

SYSZRAC2 PROGRAMPROGRAMPROGRAM

SYSZRAC2 TEMPLATE-LOCK

SYSZRAC4 BPX.NEXT.USER

RACF checks

506 IBM Health Checker for z/OS User's Guide

Table 55. Systems Level ENQs that RACF_GRS_RNL checks (continued)

Major Name Minor Name

SYSZRAC5 ALIAS

SYSZRAC5 IRRIRA00

Table 56. System Level ENQs that RACF_GRS_RNL checks

Major Name Minor Name

SYSZRAC2 SSTABLE1

SYSZRAC2 SSTABLE2

SYSZRACF RACF

SYSZRACF CNSTGNLP*class_name

class_name is derived from the list of classes defined on the system
upon which the check executes.

SYSZRACF CNSTRCLP*class_name

class_name is derived from the list of classes defined on the system
upon which the check executes.

SYSZRACF racf_data_set_name

RACF data set names are derived from the data set name table on
which the check executes. The check looks at all of the data sets in the
primary RACF data base as well as all of the data sets in the backup
RACF data base.

SYSZRACF DSDTDSDTDSDT...DSDT

The minor name is the string DSDT repeated twelve times.

SYSZRAC2 IRRCV05

SYSZRACF CNSTRCLP*class_name

class_name is derived from the list of classes defined on the system
upon which the check executes.

SYSZRACF CNSTRCLP*class_name

class_name is derived from the list of classes defined on the system
upon which the check executes.

SYSZRAC2 DSDTABPT0000

SYSZRAC2 ICHSEC00

SYSZRAC2 IRRDPI80000

SYSZRAC2 RCVTDPTB000

SYSZRAC2 XMCAXMCA...XMCA

The minor name is the string XMCA repeated twelve times.

SYSZRAC2 CONNECT...CONNECT

The minor name is the string CONNECT repeated six times.

Reason for check:
Installations that convert RACF SYSTEM ENQs to SYSTEM ENQs can corrupt
the RACF data base and experience outages.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 507

z/OS releases the check applies to:
z/OS V1R5 and later.

Parameters accepted:
No

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE,
CHECK(IBMRACF,RACF_GRS_RNL)
SEVERITY(HI),INTERVAL(08:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides output displays all the ENQ names being looked at
plus additional error detail in debug mode. You can put a check into debug
mode using any of the following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF..

Verbose support:
Yes, the check output displays all the ENQ names being looked at in verbose
mode. You can put a check into verbose mode using the
UPDATE,filters,VERBOSE=ON parameters on either the MODIFY command or
in a POLICY statement in an HZSPRMxx parmlib member.

Reference:
For more information on storage increments, see z/OS MVS Planning: Global
Resource Serialization and z/OS Security Server RACF System Programmer's Guide.

Messages:
This check issues the following exception messages:
v IRRH202E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output: The report that RACF_GRS_RNL produces is shown below. The columns
in this report are as follows:

S Status. An E in this column indicates an exception.

Major
The major name of the ENQ

Minor
The minor name of the ENQ

Type
The type of the ENQ. SERNL indicates that the ENQ is a SYSTEMS-level ENQ
and that it was found on the system exclusion resource name list, which would
change its scope to SYSTEM-level and potentially destroy RACF's serialization.

Qname
The QNAME of the RNL entry

RACF checks

508 IBM Health Checker for z/OS User's Guide

Rname
The RNAME of the RNL entry

Type
The type of the RNL entry. The values are SPEC for specific and GEN for
generic

RACF_GRS_RNL check report with exceptions:
START TIME: 11/10/2004 10:13:10.341622 IBMRACF, RACF_GRS_RNL
OWNER DATE: 20040703

RACF_GRS_RNL Report

S Major Minor Type QName Rname Type
- -------- -------------------- ----- -------- ----------------- ----
E SYSZRACF SETROPTS SERNL SYSZRACF SETROPTS SPEC
E SYSZRAC2 IRRCRV05 SERNL SYSZRAC2 IRRCRV05 SPEC
E SYSZRAC2 IRRCRV05 SIRNL SYSZRAC2 IRRCRV05 SPEC
E SYSZRAC5 ALIAS SERNL SYSZRAC5 AL GEN
* High severity Exception *

IRRH202E One or more RACF ENQ names were found in a GRS Resource Name
List.

Explanation:
The RACF RACF_GRS_RNL check has detected that a RACF resource
is covered by an entry in the specified GRS resource name list
(RNL). RACF resource names should not be in either the system
inclusion RNL (SIRNL) or the system exclusion RNL (SERNL).

System Action:
The check continues processing. There is no effect on the system.

Operator Response:
Report this problem to the system programmer.

System Programmer Response:
Ensure that the RACF resource names are removed from the specified
resource name list (RNL).

Problem Determination:
See "MVS Planning: Global Resource Serialization" for details on
resource name lists (RNLs). Ensure that the RACF ENQ names do not
match any of your resource name list entries. A list of the RACF
ENQ names may be found in the RACF Systems Programmer’s Guide.

Source:
RACF Systems Programmer’s Guide

Reference documentation:
RACF Systems Programmer’s Guide MVS Planning: Global Resource
Serialization
Automation:

None.

IBMRACF Reason: None of the RACF ENQ names should be in RNLs.
Check parameters: N/A

END TIME: 01/08/2005 20:47:54.819710 RESULT: 0000000C DIAG:
00000000_00000000

RACF_GRS_RNL check report without exceptions:

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 509

START TIME: 11/14/2004 23:11:39.610978 IBMRACF, RACF_GRS_RNL
OWNER DATE: 20040703

RACF_GRS_RNL Report

S Major Minor Type QName Rname Type
- -------- -------------------- ----- -------- ----------------- ----

IRRH203I No RACF ENQ names were found in the GRS Resource Name List.

END TIME: 11/14/2004 23:11:39.613687 RC: 00000000 RSN: 00000000

RACF_GRS_RNL check report in debug mode:
START TIME: 11/14/2004 23:17:12.648857 IBMRACF, RACF_GRS_RNL
OWNER DATE: 20040703

RACF_GRS_RNL Report

S Major Minor Type QName Rname Type
- -------- -------------------- ----- -------- ----------------- ----

SYSZRACF SETROPTS SERNL
SYSZRACF DSDTDSDTDSDTDSDTDSDT SERNL
SYSZRACF DSDTPREPDSDTPREPDSDT SERNL
SYSZRACF RACF SIRNL
SYSZRACF DSDTDSDTDSDTDSDTDSDT SIRNL
SYSZRAC2 IRRCRV05 SERNL
SYSZRAC2 GLOBALGLOBALGLOBAL SERNL
SYSZRAC2 TEMPLATE-LOCK SERNL
SYSZRAC2 PROGRAMPROGRAMPROGRA SERNL
. . .

RACF_GRS_RNL check report in a GRS=NONE environment:
START TIME: 11/18/2004 22:29:54.701040 IBMRACF, RACF_GRS_RNL
OWNER DATE: 20040703

IRRH201I The RACF check RACF_GRS_RNL cannot be executed in a
GRS=NONE environment.

HZS1004E (IBMRACF,RACF_GRS_RNL)
THE CHECK IS NOT APPLICABLE IN THE CURRENT SYSTEM ENVIRONMENT.

END TIME: 11/18/2004 22:29:54.861360 RC: 00000000 RSN: 00000000

RACF_IBMUSER_REVOKED
Description: Check looks to see if the IBMUSER user ID is still active.

Reason for check:
The IBMUSER user ID is intended for use only during the initial installation
process. After installation, the IBMUSER user ID should be revoked so that it
cannot be used by unauthorized users.

z/OS releases the check applies to:
z/OS V1R5 and later.

Parameters accepted:
No.

RACF checks

510 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows keywords you can use to override RACF check values on
either a POLICY statement in the HZSPRMxx parmlib member or on a
MODIFY command:
UPDATE,
CHECK(IBMRACF,RACF_IBMUSER_REVOKED),
SEVERITY(MED),INTERVAL(24:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides additional error detail in debug mode. You can put a
check into debug mode using any of the following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF.

Verbose support:
No.

Reference:
For more information on storage increments, see z/OS Security Server RACF
Security Administrator's Guide .

Messages:
This check issues the following exception messages:
v IRRH225E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:

RACF_IBMUSER_REVOKED check - IBMUSER not revoked exception found:
CHECK(IBMRACF,RACF_IBMUSER_REVOKED)
START TIME: 12/02/2005 16:43:31.614417
CHECK DATE: 20050820 CHECK SEVERITY: MEDIUM
* Medium Severity Exception *
IRRH225E The user ID IBMUSER is not revoked.
Explanation: The user ID IBMUSER has not been revoked. IBM recommends
revoking IBMUSER.
System Action: The check continues processing. There is no effect on
the system.
Operator Response: Report this problem to the system security
administrator and the system auditor.
System Programmer Response: Revoke IBMUSER.
Problem Determination: See the RACF Auditor’s Guide and the RACF
System Programmer’s Guide.
Source:
RACF System Programmer’s Guide
RACF Auditor’s Guide
Reference Documentation:
RACF System Programmer’s Guide
RACF Auditor’s Guide
Automation: None.
Check Reason: IBMUSER should be revoked.
END TIME: 12/02/2005 16:43:31.653215 STATUS: EXCEPTION-MED

RACF_IBMUSER_REVOKED check - no exceptions found, IBMUSER has been
revoked:

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 511

1CHECK(IBMRACF,RACF_IBMUSER_REVOKED)
START TIME: 03/02/2006 14:50:57.307193
CHECK DATE: 20051111 CHECK SEVERITY: MEDIUM

IRRH224I The user ID IBMUSER is revoked.

END TIME: 03/02/2006 14:50:57.315063 STATUS: SUCCESSFUL

RACF_ICHAUTAB_NONLPA
Description:

The RACF_ICHAUTAB_NONLPA check examines the RACF Authorized Caller
Table (ICHAUTAB) and reports if there are any non-LPA entries in it. The
output format is similar to the report format for the ICHAUTAB Report in
RACF_SENSITIVE_RESOURCES, with the exception that LPA-resident
modules are not listed.

Reason for check:
IBM recommends that installations have no entries in the ICHAUTAB table.

z/OS releases the check applies to:
z/OS V1R10 and later.

Type of check:
Local

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRACF,RACF_ICHAUTAB_NONLPA)
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
z/OS Security Server RACF System Programmer's Guide

Messages:
This check issues the following exception messages:
v IRRH240E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for MLS users:
SYSLOW

Output: The following shows ICHAUTAB Non-LPA report:
v Successful case:

CHECK(IBMRACF,RACF_ICHAUTAB_NONLPA)
START TIME: 03/14/2008 15:52:22.756461
CHECK DATE: 20070411 CHECK SEVERITY: MEDIUM

RACF checks

512 IBM Health Checker for z/OS User's Guide

ICHAUTAB Non-LPA Report

S Module REQUEST= REQUEST= Location
VERIFY LIST

- -------- -------- -------- --------

IRRH239I There are no ICHAUTAB programs on this system.

END TIME: 03/14/2008 15:52:22.762403 STATUS: SUCCESSFUL

v Exception case:
START TIME: 11/13/2007 18:42:44.876179
CHECK DATE: 20070411 CHECK SEVERITY: MEDIUM

ICHAUTAB Non-LPA Report

S Module REQUEST= REQUEST= Location
VERIFY LIST

- -------- -------- -------- --------
TRESPOND YES YES NON-LPA

* Medium Severity Exception *

IRRH240E The RACF_ICHAUTAB_NONLPA check has found
one or more non-LPA ICHAUTAB entries.
non-LPA ICHAUTAB entries. IBM recommends that ICHAUTAB contain no
entries. An entry in ICHAUTAB represents a program whose access
should be controlled using PROGRAM CONTROL and restricted to a known
set of trusted users or trusted started tasks.

LPA-resident ICHAUTAB entries are listed in the
RACF_SENSITIVE_RESOURCES check.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: None.

System Programmer Response: If the modules in ICHAUTAB are no longer
in use, they should be deleted from ICHAUTAB. If the modules are
still in use and the privileges granted by ICHAUTAB are still
required, the modules should be protected using PROGRAM CONTROL and
their use should be restricted to a known set of trusted users or
trusted started tasks.

Problem Determination:

Source:

Reference Documentation:
IBM Health Checker for z/OS: User’s Guide
z/OS Security Server RACF Security Administrator’s Guide

Automation: None.

Check Reason: ICHAUTAB entries must be protected.
END TIME: 11/13/2007 18:42:44.885582 STATUS: EXCEPTION-MED

RACF_PASSWORD_CONTROLS
Description:

The RACF_PASSWORD_CONTROLS health check examines the client's RACF
password control settings and raises an exception when recommended settings
are not being used.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 513

|

|
|
|
|

Using the IBM supplied default Health Check parameter values, an exception
would be raised if either:
v RACF is not enabled for mixed-case passwords.
v The invalid password revocation count is greater than three (3).
v The maximum days a password/passphrase is valid is greater than 90.
v The INITSTATS function is not in effect.

Reason for check:
RACF_PASSWORD_CONTROLS allows RACF to examine the client's RACF
password control settings and raises an exception when recommended settings
are not being used.

z/OS releases the check applies to:
z/OS V2R1 and later.

Parameters accepted:

v MIXEDCASE(YES|NO). The default is YES.
v REVOKE(“nnn”) where “nnn” is between 0 and 255. A value of 0 indicates

that the number of consecutive unsuccessful attempts is ignored. The default
is 3.

v INITSTATS(YES|NO). The default is YES.
v INTERVAL(“nnn”) where “nnn” is between 1 and 254. The default is 90.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE
CHECK(IBMRACF,RACF_PASSWORD_CONTROLS)
ACTIVE
SEVERITY(MED)
DATE(’20140118’)
REASON(’Default values for RACF Password Controls.’)
PARM(’REVOKE(3),MIXEDCASE(YES),INTERVAL(90),INITSTATS(YES) ’)
INTERVAL(24:00)

Debug support:
No

Verbose support:
No

Reference:

v For information on running the IRRIRA00 conversion utility, see z/OS
Security Server RACF System Programmer's Guide.

v For information about enabling RACF for automatic assignment of unique
UNIX identities, see z/OS Security Server RACF Security Administrator's Guide.

Messages:
This check issues the following exception messages:
v IRRH283E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
The output of RACF_PASSWORD_CONTROLS when no exception is raised:

RACF checks

514 IBM Health Checker for z/OS User's Guide

|
|

|

|

|

|

|
|
|
|

|
|

|

|

|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|

|
|
|

|
|

CHECK(IBMRACF,RACF_PASSWORD_CONTROLS)
SYSPLEX: LOCAL SYSTEM: RACFR22
START TIME: 11/05/2014 11:03:51.323496
CHECK DATE: 20140118 CHECK SEVERITY: MEDIUM
CHECK PARM: REVOKE(3),MIXEDCASE(YES),INTERVAL(90),INITSTATS(YES)

RACF Password Controls

S Control Value Target
- --- ----- ------

Mixed case passwords are allowed YES YES
INITSTATS in effect YES YES
Maximum number of consecutive failed logon attempts 003 003
Maximum days before a password/phrase expires 030 090

IRRH284I No exceptions are detected.

END TIME: 11/05/2014 11:03:51.324034 STATUS: SUCCESSFUL

The output of RACF_PASSWORD_CONTROLS when an exception is raised:
CHECK(IBMRACF,RACF_PASSWORD_CONTROLS)
SYSPLEX: LOCAL SYSTEM: RACFR22
START TIME: 11/05/2014 10:52:43.553089
CHECK DATE: 20140118 CHECK SEVERITY: MEDIUM
CHECK PARM: REVOKE(3),MIXEDCASE(YES),INTERVAL(90),INITSTATS(YES)

RACF Password Controls

S Control Value Target
- --- ----- ------

Mixed case passwords are allowed YES YES
E INITSTATS in effect NO YES
E Maximum number of consecutive failed logon attempts N/A 003

Maximum days before a password/phrase expires 030 090

* Medium Severity Exception *

IRRH283E The RACF_PASSWORD_CONTROLS check found an exception
with one or more password control settings.

The check has the following columns in its report:

Table 57. RACF_PASSWORD_CONTROLS report columns

Column Description

S The status of the particular password control
check. This column contains an “E” if the
the check found an exception.

Control This describes the particular password
control check.

Value This is the actual value, either defaulted to
or specified as a SETROPTS PASSWORD
suboperand, used by RACF for password
control.

Target This is the RACF_PASSWORD_CONTROLS
Health Check parameter value being being
used as the recommended setting.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 515

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

||

||
|
|

||
|

||
|
|
|

||
|
|
|

RACF_RRSF_RESOURCES
Description:

The RACF_RRSF_RESOURCES check examines the security characteristics of
the RRSF INMSG/OUTMSG workspace data sets. This check is functionally
the same as the RACF_SENSITIVE_RESOURCES check. As its own check, it
can be disabled when the Health Checker address space is not authorized to
use R_admin to retrieve RRSF INMSG/OUTMSG data set names.

For each of these, the check examines:
v That the data set exists on the expected volume. If the data set does not exist

on the volume, a V (volume exception) is placed in the Status (S) column.
v That the resource has baseline protection. The RRSF INMSG/OUTMSG data

sets can have a general access as high as NONE.

The check verifies the protection of each data set by extracting its profile and
examining the UACC, WARNING status, and the ID(*) entry in the access list
if one exists. In addition, if there is no profile protecting a data set, then if
NOPROTECTALL or PROTECTALL(WARN) is in effect, the check flags the
data set as an exception. The customer can optionally specify a user ID to the
check which, if specified, is used to perform a RACF authorization check for
the next higher access authority after the highest expected general access
authority.

The APIs used by this Health Check require that the user ID assigned to the
Health Checker for z/OS address space has the following access:
v IRR.RADMIN.EXTRACT.RRSF in the FACILITY class. READ authority is

required to use R_admin to extract RRSF information.
v <subsystem>.TARGET.LIST in the OPERCMDS class. If this resource is

protected, READ authority is required.

Reason for check:
RACF_RRSF_RESOURCES allows RACF to examines the security
characteristics of the RRSF INMSG/OUTMSG workspace data sets.

z/OS releases the check applies to:
z/OS V2R2 and later.

Parameters accepted:
userid

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE
CHECK(IBMRACF,RACF_RRSF_RESOURCES)
ACTIVE
SEVERITY(HIGH)
DATE(’20140630’)
REASON(’Default values for RACF RRSF Resources.’)
INTERVAL(4:00)

Debug support:
No

Verbose support:
No

Reference:

RACF checks

516 IBM Health Checker for z/OS User's Guide

|

|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

v For information on running the IRRIRA00 conversion utility, see z/OS
Security Server RACF System Programmer's Guide.

v For information about enabling RACF for automatic assignment of unique
UNIX identities, see z/OS Security Server RACF Security Administrator's Guide.

Messages:
This check issues the following exception messages:
v IIRH204E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
If the health checker address space is not authorized to use the RACF R_admin
callable service, then the check STATE becomes ACTIVE(DISABLED), the check
status is UNEXPECTED ERROR, and the RACF_RRSF_RESOURCES report
contains:
IRRH320I The Health Checker address space is not authorized to use the
RACF R_admin callable service. SAF Return code = 8, RACF Return code =
8, RACF Reason code = 24.
HZS1002E CHECK(IBMRACF,RACF_RRSF_RESOURCES):
AN ERROR OCCURRED, DIAG: 00000000_00000000

If the health checker address space is authorized to use the RACF R-admin and
RRSF has not defined any nodes, then the check contains:

RRSF INMSG/OUTMSG Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----

IRRH321I There are no RRSF INMSG/OUTMSG datasets in use on this system.

IRRH205I The RACF_RRSF_RESOURCES check has not found any errors in the
security controls on this system.

If RRSF has nodes defined and there is an exception, then the check report
contains:

RRSF INMSG/OUTMSG Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----

A.RACFR22.INMSG PAGE08 None No ****
E A.RACFR22.OUTMSG PAGE08

B.RACFR22.B.INMSG PAGE08 None No ****
B.RACFR22.B.OUTMSG PAGE08 None No ****

E C.RACFR22.C.INMSG PAGE08
E C.RACFR22.C.OUTMSG PAGE08

* High Severity Exception *

IRRH204E The RACF_RRSF_RESOURCES check has found one or
more potential errors in the security controls on this system.

If RRSF has nodes defined, and there no exception, then the check report
contains:

RRSF INMSG/OUTMSG Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----

A.RACFR22.INMSG PAGE08 None No ****

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 517

|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

A.RACFR22.OUTMSG PAGE08 None No ****

IRRH205I The RACF_RRSF_RESOURCES check has not found any errors in the
security controls on this system.

The RACF_RRSF_RESOURCES check has the following columns in its report.

Table 58. RACF_RRSF_RESOURCES report columns

Column Description

S Status. An E in this column indicates that the check found an
exception and that there is excessive access authority allowed to the
data set. A V in this column indicates that the data set is not on the
volume. A U in this column indicates that the check did not
complete because the dataset was in use by another user.

Data set Name The name of the data set.

Vol The volume upon which the data set resides.

UACC The UACC of the profile that covers the data set.

WARN The WARNING attribute of the profile that covers the data set.

ID(*) The access level assigned to the * user ID on the access list.

User If the installation specified a user ID in the PARMLIB entry for the
RACF_RRSF_RESOURCES check PARMLIB, the User column
contains the string >xxxx, where xxxx is either Read or None.

RACF_SENSITIVE_RESOURCES
Description: The RACF_SENSITIVE_RESOURCES check examines the security
characteristics of several system-critical data sets and general resources other than
data sets. The output of this check is a list of exceptions flagged.

For each of these, the check examines:
v For system-critical data sets, that the data set exists on the expected volume. If

the data set does not exist on the volume, a V (volume exception) is placed in
the Status (S) column.

v That the resource has baseline protection. For example, APF data sets can have a
general access as high as READ, while the data sets which comprise the RACF
data base must have a general access of NONE.

The check verifies the protection of each resource by extracting its profile and
examining the UACC, WARNING status, and the ID(*) entry in the access list if
one exists. In addition, if there is no profile protecting a data set, then if
NOPROTECTALL or PROTECTALL(WARN) is in effect, the check flags the data
set as an exception. The customer can optionally specify a user ID to the check
which, if specified, is used to perform a RACF authorization check for the next
higher access authority after the highest expected general access authority.

The resources above are all “discrete resources”, that is, the resource name is a
predictable value. There are other “sensitive” resource names which contain a
variable value, often in the form of a data set name or module name. This support
enhances the RACF_SENSITIVE_RESOURCES check to examine these resources for
a proper baseline protection. These are shown in “Additional “Generic” General
Resources for RACF_SENSITIVE_RESOURCES.”

RACF checks

518 IBM Health Checker for z/OS User's Guide

|
|
|
|
|

|

||

||

||
|
|
|
|

||

||

||

||

||

||
|
|
|

|

Table 59. Additional “Generic” General Resources for RACF_SENSITIVE_RESOURCES

Class Resource Maximum Public Access

FACILITY CSVAPF.data_set_name (excluding
CSVAPF.MVS.SETPROG.FORMAT.
DYNAMIC)

READ

FACILITY CSVDYLPA.ADD.module_name READ

FACILITY CSVDYLPA.DELETE.module_name READ

FACILITY CSVDYNEX.exit_name.function.
modname (excluding CSVDYNEX.LIST,
CSVDYNEX.exit_name.RECOVER, and
CSVDYNEX.exit_name.CALL)

READ

FACILITY CSVDYNL.lnklstname. function
(excluding
CSVDYNL.lnklstname.DEFINE and
CSVDYNL.lnklstname.UNDEFINE)

READ

FACILITY BPX.FILEATTR.SHARELIB NONE

FACILITY BPX.JOBNAME NONE

FACILITY BPX.POE NONE

FACILITY BPX.SMF NONE

FACILITY BPX.STOR.SWAP NONE

FACILITY BPX.UNLIMITED.OUTPUT NONE

UNIXPRIV SUPERUSER.IPC.RMID NONE

UNIXPRIV SUPERUSER.FILESYS.PFSCTL NONE

UNIXPRIV SUPERUSER.FILESYS.QUIESCE NONE

UNIXPRIV SUPERUSER.FILESYS.VREGISTER NONE

UNIXPRIV SUPERUSER.SETPRIORITY NONE

SURROGAT BPX.SRV.userid NONE

The RACF_SENSITIVE_RESOURCE health check will report on each resource
name that it finds, flagging exceptions in a manner consistent with the existing
exception flagging. No new messages are planned.

The RACF_SENSITIVE_RESOURCE check will not validate any portion of the
“variable” portion of the resource name.

The RACF_SENSITIVE_RESOURCE check will evaluate only the names which
begin with the specific high level qualifier. Profiles which contain generic qualifiers
or RACF variables in the high level qualifier will not be flagged.

Because of the change in the resources that are checked in the
RACF_SENSITIVE_RESOURCES check, the date associated with the check is
changed to '20120106' (6 January 2012).

Reason for check:
The system is critically exposed if these resources are not properly protected.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
Yes, you can specify a user ID as a parameter. The following example shows

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 519

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

keywords you can use to specify an user ID (GENUSER) in the PARM field for
RACF_SENSITIVE_RESOURCES. You can specify the following keywords on
either HZSPRMxx or on a MODIFY command:
CHECK(RACF_SENSITIVE_RESOURCES)
OWNER(IBMRACF)
DATE(’date_of_the_change’)
PARM(GENUSER)
REASON(’Your reason for making the update.’)

The check verifies that the specified user ID is a syntactically valid user ID,
that the user ID exists, and that the user ID is active and has not been revoked.
If any of these conditions is not true, an error message is written to the IBM
Health Checker for z/OS log and the check continues processing as if no
parameter had been specified to the check.

User override of IBM values:
The following shows keywords you can use to override RACF check values on
either a POLICY statement in the HZSPRMxx parmlib member or on a
MODIFY command:
UPDATE,
CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES),
SEVERITY(HI),INTERVAL(08:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes, the check provides additional error detail in debug mode. You can put a
check into debug mode using any of the following:
v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member
v Overwrite the OFF value with the ON value in the DEBUG column of the

CK panel in SDSF.

Verbose support:
No.

Reference:
For more information on storage increments, see z/OS Security Server RACF
Security Administrator's Guide and z/OS Security Server RACF Auditor's Guide.

Messages:
This check issues the following exception messages:
v IRRH204E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
The report that RACF_GRS_RNL produces is shown below. The columns in
this report are as follows:

S Status. An E in this column indicates that the check found an exception
and that there is excessive access authority allowed to the data set. A V in
this column indicates that the data set is not on the volume. A U in this
column indicates that the check did not complete because the dataset was
in use by another user.

Data set name
The name of the data set

RACF checks

520 IBM Health Checker for z/OS User's Guide

Vol
The volume upon which the data set resides

UACC
The UACC of the profile that covers the data set

WARN
The WARNING attribute of the profile that covers the data set

ID(*)
The access level assigned to the * user ID on the access list

User
If the installation specified a user ID in the PARMLIB entry for the
RACF_SENSITIVE_RESOURCES check PARMLIB, the User column
contains the string >xxxx, where xxxx is either Read or None.

RACF_SENSITIVE_RESOURCES report without an exception, without a user
ID:
1CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)
SYSPLEX: LOCAL SYSTEM: RACFR21
START TIME: 05/24/2013 13:13:46.412092
CHECK DATE: 20120106 CHECK SEVERITY: HIGH

APF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
ASM.SASMMOD1 ZDR21 Read No ****
CBC.SCCNCMP ZDR21 Read No ****
CBC.SCLBDLL ZDR21 Read No ****
CBC.SCLBDLL2 ZDR21 Read No ****
CEE.SCEERUN ZDR21 Read No ****
CEE.SCEERUN2 ZDR21 Read No ****
CSF.SCSFMOD0 ZDR21 Read No ****
EOY.SEOYLOAD ZDR21 Read No ****
FFST.V120ESA.SEPWMOD1 ZDR21
FFST.V120ESA.SEPWMOD2 ZDR21
GDDM.SADMMOD ZDR21 Read No ****
GIM.SGIMLMD0 ZDR21 Read No ****
ISF.SISFLINK ZDR21 Read No ****
ISF.SISFLOAD ZDR21 Read No ****
ISP.SISPLOAD ZDR21 Read No ****
ISP.SISPLPA ZDR21 Read No ****
RACFDRVR.ATC.AUTHLIB D79PK5
RACF321.MIGLIB D97107
SYS1.CMDLIB ZDR21 Read No ****
SYS1.DFQLLIB ZDR21 Read No ****
SYS1.DGTLLIB ZDR21 Read No ****
SYS1.LINKLIB ZDR21 Read No ****
SYS1.SBDTLIB ZDR21 Read No ****
SYS1.SBDTLINK ZDR21 Read No ****
SYS1.SCBDHENU ZDR21 Read No ****
SYS1.SERBLINK ZDR21 Read No ****
SYS1.SHASLNKE ZDR21 Read No ****
SYS1.SHASMIG ZDR21 Read No ****
SYS1.SIATLIB ZDR21 Read No ****
SYS1.SIATLINK ZDR21 Read No ****
SYS1.SIATLPA ZDR21 Read No ****
SYS1.SIATMIG ZDR21 Read No ****
SYS1.SICELINK ZDR21 Read No ****
SYS1.SIEALNKE ZDR21 Read No ****
SYS1.SIOALMOD ZDR21 Read No ****
SYS1.SISTCLIB ZDR21 Read No ****
SYS1.SVCLIB ZDR21 Read No ****
SYS1.VTAMLIB ZDR21 Read No ****
TCPIP.SEZADSIL ZDR21 Read No ****
TCPIP.SEZALNK2 ZDR21 Read No ****
TCPIP.SEZALOAD ZDR21 Read No ****
TCPIP.SEZATCP ZDR21 Read No ****

RACF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
RACFDRVR.RACF31D RDB31D None No ****

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 521

PARMLIB Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
RACFDRVR.PARMLIB.ZR10 D94RF4 Read No ****
RACFDRVR.PARMLIB.ZR11 D94RF4 Read No ****
RACFDRVR.PARMLIB.ZR12 D94RF4 Read No ****
RACFDRVR.PARMLIB.ZR13 D94RF4 Read No ****
RACFDRVR.PARMLIB.Z21 D94RF4 Read No ****
SYS1.PARMLIB ZDR21 Read No ****
SYS1.PARMLIB.INSTALL ZDR21
SYS1.PARMLIB.POK ZDR21

Current Link List Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
ASM.SASMMOD1 ZDR21 Read No ****
CBC.SCLBDLL ZDR21 Read No ****
CEE.SCEERUN ZDR21 Read No ****
CEE.SCEERUN2 ZDR21 Read No ****
COMMON.LOOKFEEL.LINKLIB ZDR21
CSF.SCSFMOD0 ZDR21 Read No ****
EOY.SEOYLOAD ZDR21 Read No ****
GDDM.SADMMOD ZDR21 Read No ****
GIM.SGIMLMD0 ZDR21 Read No ****
ISF.SISFLINK ZDR21 Read No ****
ISF.SISFLOAD ZDR21 Read No ****
ISF.SISFMIG ZDR21 Read No ****
ISF.SISFMOD1 ZDR21 Read No ****
ISP.SISPLOAD ZDR21 Read No ****
RACF321.MIGLIB D97107
RACF321.SIEALNKE D97107
SYS1.CMDLIB ZDR21 Read No ****
SYS1.CSSLIB ZDR21 Read No ****
SYS1.DFQLLIB ZDR21 Read No ****
SYS1.DGTLLIB ZDR21 Read No ****
SYS1.LINKLIB ZDR21 Read No ****
SYS1.MIGLIB ZDR21 Read No ****
SYS1.SERBLINK ZDR21 Read No ****
SYS1.SHASLNKE ZDR21 Read No ****
SYS1.SHASMIG ZDR21 Read No ****
SYS1.SIATLIB ZDR21 Read No ****
SYS1.SIATLINK ZDR21 Read No ****
SYS1.SIATLPA ZDR21 Read No ****
SYS1.SIATMIG ZDR21 Read No ****
SYS1.SICELINK ZDR21 Read No ****
SYS1.SIEALNKE ZDR21 Read No ****
SYS1.SIEAMIGE ZDR21 Read No ****
SYS1.SIOALMOD ZDR21 Read No ****
SYS1.SORTLIB ZDR21 Read No ****
SYS1.VTAMLIB ZDR21 Read No ****
SYS2.CSSLIB ZDR21
SYS2.LINKLIB ZDR21
SYS2.MIGLIB ZDR21
SYS2.SIEALNKE ZDR21
SYS2.SIEAMIGE ZDR21
TCPIP.SEZALOAD ZDR21 Read No ****

System Rexx Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
SYS1.SAXREXEC ZDR21 Read No ****

ICSF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
SYSTEMA.PKDS
SYSTEMA.CKDS

Sensitive General Resources Report

S Resource Name Class UACC Warn ID* User
- --------------------------------------- -------- ---- ---- ---- ----
BPX.DAEMON FACILITY None No ****
BPX.DEBUG FACILITY None No ****
BPX.FILEATTR.APF FACILITY None No ****
BPX.FILEATTR.PROGCTL FACILITY None No ****
BPX.SERVER FACILITY None No ****
BPX.SUPERUSER FACILITY None No ****
BPX.WLMSERVER FACILITY None No ****
CSVAPF.RACFDEV.**.LOAD FACILITY Read No ****

RACF checks

522 IBM Health Checker for z/OS User's Guide

CSVDYLPA.ADD.MODULE01 FACILITY Read No ****
CSVDYLPA.DELETE.MODULE01 FACILITY Read No ****
CSVDYLPA.ADD.* FACILITY Read No ****
CSVDYLPA.DELETE.* FACILITY Read No ****
CSVDYNEX.EXITNAME_READ.MODNAME01 FACILITY Read No ****
CSVDYNEX.*.DEFINE FACILITY Read No ****
CSVDYNEX.* FACILITY Read No ****
CSVDYNL.ADD FACILITY None No ****
CSVDYNL.LINKLIST01.ADD FACILITY None No ****
CSVDYNL.LINKLIST01.DELETE FACILITY None No ****
CSVDYNL.*.ADD FACILITY None No ****
CSVDYNL.*.DELETE FACILITY None No ****
IEAABD.DMPAKEY FACILITY None No ****
IEAABD.DMPAUTH FACILITY None No ****
ICHBLP FACILITY None No ****
IRR.PASSWORD.RESET FACILITY None No ****
MVS.SET.PROG OPERCMDS Read No ****
MVS.SETPROG OPERCMDS Read No ****
MVS.SLIP OPERCMDS Read No ****
ACCT TSOAUTH None No ****
CONSOLE TSOAUTH None No ****
OPER TSOAUTH None No ****
PARMLIB TSOAUTH None No ****
TESTAUTH TSOAUTH None No ****
SUPERUSER.FILESYS UNIXPRIV
SUPERUSER.FILESYS.CHANGEPERMS UNIXPRIV
SUPERUSER.FILESYS.CHOWN UNIXPRIV
SUPERUSER.FILESYS.MOUNT UNIXPRIV
SUPERUSER.PROCESS.GETPSENT UNIXPRIV
SUPERUSER.PROCESS.KILL UNIXPRIV
SUPERUSER.PROCESS.PTRACE UNIXPRIV

ICHAUTAB Report

S Module REQUEST= REQUEST= Location
VERIFY LIST

- -------- -------- -------- --------

IRRH239I There are no ICHAUTAB programs on this system.

IRRH205I The RACF_SENSITIVE_RESOURCES check has not found any errors in
the security controls on this system.

END TIME: 05/24/2013 13:13:48.281732 STATUS: SUCCESSFUL

RACF_SENSITIVE_RESOURCES report with exceptions, with a user ID:

RACF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
E RACFDRVR.RACF317 RDB317 None No **** >None
* High severity Exception *

RACF_SENSITIVE_RESOURCES report without exceptions:Note that no user
ID was specified for this report.
START TIME: 11/18/2004 16:54:09.533912 IBMRACF,
RACF_SENSITIVE_RESOURCES
OWNER DATE:

APF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----
MVSSTORE.SRVLIB.ZOS15.NUCLEUS DRVPSL None No ****
SYS1.LINKLIB ZDR17B Read No ****
SYS1.NFSLIB ZDR17B Read No ****
SYS1.SIATLPA ZDR17B Read No ****
SYS1.SVCLIB ZDR17B **** **** ****

RACF Dataset Report

S Data Set Name Vol UACC Warn ID* User
- --------------------------------------- ------ ---- ---- ---- ----

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 523

RACFDRVR.RACF317 RDB317 None No ****

IRRH205I The RACF check RACF_SENSITIVE_RESOURCES has not found
any errors in the security controls on this system.

RACF_UNIX_ID
Description:

z/OS V1R13 is the last release that supports default UNIX identities
implemented using the BPX.DEFAULT.USER profile in the FACILITY class. To
replace this function you can do one of the following:
v Use the replacement BPX.UNIQUE.USER profile function provided in z/OS

R11 to enable RACF to automatically generate unique UIDs and GIDs.
v Define OMVS segments for all users and groups who require UNIX services.

The RACF_UNIX_ID check detects whether RACF is enabled to perform the
best practice of automatically assigning unique UNIX identities when users
without OMVS segments access the system to use UNIX services. This
determination is based on whether the BPX.UNIQUE.USER and
BPX.DEFAULT.USER profiles are defined in the FACILITY class. The following
table summarizes the actions of the check:

Table 60. RACF_UNIX_ID check actions based on whether the BPX.UNIQUE.USER and BPX.DEFAULT.USER
profiles are defined in the FACILITY class

BPX.UNIQUE.USER
defined in Facility

BPX.DEFAULT.USER
defined in Facility Check action

No No RACF is not enabled to assign z/OS UNIX identities to users or groups who do
not have OMVS segments.

The check issues informational message IRRH504I (see "“RACF_UNIX_ID”")
and does not raise an exception, but you should use the best practice of
assigning a unique UID and a unique GID to each user and group which needs
access to z/OS UNIX functions and resources using either the
BPX.UNIQUE.USER profile or by defining OMVS segments manually.

No Yes The presence of the BPX.DEFAULT.USER profile without the
BPX.UNIQUE.USER profile indicates an intent to use default OMVS segment
support, which is not recommended.

The check raises a medium severity exception and issues error message
IRRH505E. See "“RACF_UNIX_ID”".

Yes Yes or No The presence of the BPX.UNIQUE.USER profile (with or without
BPX.DEFAULT.USER) indicates an intent to have RACF automatically generate
unique UNIX UIDs and GIDs, as is recommended.

The check issues informational message IRRH502I and then verifies
requirements for the automatic generation of unique UNIX IDs. IRRH502I
includes a report showing whether all requirements have been met. See a
sample of IRRH502I in "“RACF_UNIX_ID”" The check's action then depends on
whether it finds that requirements have been met or not:

v If all requirements have been met, the check raises no exceptions and issues
informational message IRRH506I.

v If the check detects that not all requirements have been met, the check raises
a medium severity exception and issues error message IRRH503E.

Note that if both the BPX.UNIQUE.USER and BPX.DEFAULT.USER profiles are
defined, RACF automatically assigns unique UNIX IDs. In this case, RACF does
not use the BPX.DEFAULT.USER profile and, therefore does not do default
OMVS segment processing.

Reason for check:
IBM recommends that a unique UNIX UID be assigned to each user and that a
unique GID be assigned to each group that needs access to z/OS UNIX

RACF checks

524 IBM Health Checker for z/OS User's Guide

functions and resources. Assigning unique identities, rather than shared
identities, improves overall security and increases user accountability.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
No

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE,
CHECK(IBMRACF,RACF_UNIX_ID)
SEVERITY(MED),INTERVAL(24:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
z/OS Security Server RACF Security Administrator's Guide

Messages:
This check issues the following exception messages:
v IRRH503E
v IRRH505E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:

v The following shows the output from a RACF_UNIX_ID check that finds
neither the BPX.UNIQUE.USER or BPX.DEFAULT.USER profiles are defined:
CHECK(IBMRACF,RACF_UNIX_ID)
START TIME: 05/11/2011 10:26:01.195890
CHECK DATE: 20110101 CHECK SEVERITY: MEDIUM

IRRH504I RACF is not enabled to assign UNIX IDs when users or groups
that do not have OMVS segments use certain z/OS UNIX services. If you
choose not to define UNIX IDs for each user of UNIX functions, you can
enable RACF to automatically generate unique UNIX UIDs and GIDs for you.

END TIME: 05/11/2011 10:26:01.201875 STATUS: SUCCESSFUL

v The following shows the output from an exception for RACF_UNIX_ID
when the presence of the BPX.DEFAULT.USER profile without the
BPX.UNIQUE.USER profile indicates an intent to use default OMVS segment
support, which is not recommended:
CHECK(IBMRACF,RACF_UNIX_ID)
START TIME: 05/10/2011 16:02:41.125401
CHECK DATE: 20110101 CHECK SEVERITY: MEDIUM

* Medium Severity Exception *

IRRH505E The BPX.DEFAULT.USER profile in the FACILITY class
indicates that you want RACF to assign shared default UNIX

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 525

IDs when users or groups that do not have OMVS segments use
certain z/OS UNIX services.

Explanation: The RACF UNIX identity check has found the
BPX.DEFAULT.USER profile in the FACILITY class. The presence of this
profile indicates an intent to have RACF assign shared default UNIX
UIDs and GIDs when users without OMVS segments access the system to
use certain UNIX services.

On z/OS V1R13 and below, you have the option of enabling RACF to
assign default z/OS UNIX identities, however it is not suggested.
You should either define OMVS segments for user and group profiles,
with unique UIDs and GIDs, or you should enable RACF to
automatically assign unique z/OS UNIX identities when users without
OMVS segments access the system to use certain UNIX services.
Assigning unique identities rather than shared identities improves
overall security and increases user accountability.

See z/OS Security Server RACF Security Administrator’s Guide for
more information about how to assign a user identifier (UID) to a
RACF user and how to assign a group identifier (GID) to a RACF
group. z/OS Security Server RACF Security Administrator’s Guide also
contains information about how to enable RACF to automatically
assign unique UNIX identities.

Note: z/OS V1R13 is the last release that supports default UNIX
identities. After z/OS V1R13, users and groups that need to access
z/OS UNIX functions and resources must be assigned unique UNIX UIDs
and unique GIDs in advance of their need to access these services,
or you must enable RACF to automatically assign unique z/OS UNIX
identities when users without OMVS segments access the system to use
certain UNIX services. The FACILITY class BPX.DEFAULT.USER profile
will no longer be used and can be deleted.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator.

System Programmer Response: None.

Problem Determination:

Source:

Reference Documentation:
z/OS Security Server RACF Security Administrator’s Guide

Automation: None.

Check Reason: Unique UNIX identities are recommended.

END TIME: 05/10/2011 16:02:41.126280 STATUS: EXCEPTION-MED

v The following shows the output from a RACF_UNIX_ID check that finds
that the requirements for the automatic generation of unique UNIX IDs have
been met:
CHECK(IBMRACF,RACF_UNIX_ID)
START TIME: 05/11/2011 09:54:50.971115
CHECK DATE: 20110101 CHECK SEVERITY: MEDIUM

IRRH502I RACF attempts to assign unique UNIX IDs when users or groups
that do not have OMVS segments use certain z/OS UNIX services.

Requirements for this support:

RACF checks

526 IBM Health Checker for z/OS User's Guide

S Requirement
- --

FACILITY class profile BPX.UNIQUE.USER is defined
RACF database is at the required AIM stage:

AIM stage = 03
UNIXPRIV class profile SHARED.IDS is defined
UNIXPRIV class is active
UNIXPRIV class is RACLISTed
FACILITY class profile BPX.NEXT.USER is defined
BPX.NEXT.USER profile APPLDATA is specified (not verified):

APPLDATA = 1/0

IRRH506I The RACF UNIX identity check has detected no exceptions.

END TIME: 05/11/2011 09:54:50.972634 STATUS: SUCCESSFUL

v The following shows the output from a RACF_UNIX_ID check that finds
that the requirements for the automatic generation of unique UNIX IDs have
NOT been met and raises an exception:
CHECK(IBMRACF,RACF_UNIX_ID)
START TIME: 05/11/2011 09:44:58.682612
CHECK DATE: 20110101 CHECK SEVERITY: MEDIUM

IRRH502I RACF attempts to assign unique UNIX IDs when users or groups
that do not have OMVS segments use certain z/OS UNIX services.

Requirements for this support:

S Requirement
- --

FACILITY class profile BPX.UNIQUE.USER is defined
RACF database is at the required AIM stage:

AIM stage = 03
E UNIXPRIV class profile SHARED.IDS is not defined
E UNIXPRIV class is not active
E UNIXPRIV class is not RACLISTed
E FACILITY class profile BPX.NEXT.USER is not defined

* Medium Severity Exception *

IRRH503E RACF cannot assign unique UNIX IDs when users or groups that
do not have OMVS segments use certain z/OS UNIX services. One or more
requirements are not satisfied.

Explanation: The RACF UNIX identity check has determined that you
want RACF to assign unique UNIX IDs when users or groups without
OMVS segments use certain z/OS UNIX services. However, RACF is not
able to assign unique UNIX identities for z/OS UNIX services because
one or more of the following requirements are not satisfied:

1. The RACF database is enabled for application identity mapping
(AIM) stage 3.

2. The UNIXPRIV class profile SHARED.IDS is defined and the UNIXPRIV
class is active and RACLISTed.

3. The FACILITY class profile BPX.NEXT.USER is defined and its
APPLDATA field has valid ID values or ranges.

4. The FACILITY class profile BPX.UNIQUE.USER is defined.

See z/OS Security Server RACF Security Administrator’s Guide for
more information about enabling RACF for automatic assignment of
unique UNIX identities.

System Action: The check continues processing. There is no effect on
the system.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 527

Operator Response: Report this problem to the system security
administrator.

System Programmer Response: None.

Problem Determination: The check produces a report listing the
requirements. An "E" in the "S" (Status) column indicates that a
requirement is not satisfied. For example, if the RACF database has
not been enabled for AIM stage 3, this requirement is flagged as an
exception. If the "S" field is blank, the requirement is satisfied.
One or more requirements are not satisfied and have been flagged as
an exception in the Status column.

Source:

Reference Documentation:
z/OS Security Server RACF Security Administrator’s Guide

Automation: None.

Check Reason: Unique UNIX identities are recommended.

END TIME: 05/11/2011 09:44:58.740914 STATUS: EXCEPTION-MED

ZOSMIGV1R13_DEFAULT_UNIX_ID
Description:

This check determines whether a client is relying on RACF to assign default
z/OS UNIX identities for users without OMVS segments who are accessing
UNIX services. IBM recommends that a unique UNIX UID be assigned to each
user and that a unique GID be assigned to each group that needs access to
z/OS UNIX functions and resources.

Starting with z/OS V1R13, support for the default UNIX identity, implemented
using the BPX.DEFAULT.USER profile in the FACILITY class, is no longer
available, so a migration action may be required if you are using it. The need
for a migration action is based on whether the BPX.UNIQUE.USER and
BPX.DEFAULT.USER profiles are defined in the FACILITY class. The following
table summarizes:

Table 61. ZOSMIGV1R13_DEFAULT_UNIX_ID check actions and migration actions

BPX.UNIQUE.USER
defined in Facility

BPX.DEFAULT.USER
defined in Facility Check action and migration action required:

No No RACF is not enabled to assign z/OS UNIX identities to users or groups who do
not have OMVS segments.

The check issues informational message IRRH504I (see
"“ZOSMIGV1R13_DEFAULT_UNIX_ID”") and does not raise an exception, but
you should use the best practice of assigning a unique UID and a unique GID
to each user and group which needs access to z/OS UNIX functions and
resources using either the BPX.UNIQUE.USER profile or by defining OMVS
segments manually.

Migration action: Not required; the installation continues to perform as before.

RACF checks

528 IBM Health Checker for z/OS User's Guide

Table 61. ZOSMIGV1R13_DEFAULT_UNIX_ID check actions and migration actions (continued)

BPX.UNIQUE.USER
defined in Facility

BPX.DEFAULT.USER
defined in Facility Check action and migration action required:

No Yes The presence of the BPX.DEFAULT.USER profile without the
BPX.UNIQUE.USER profile indicates an intent to use default OMVS segment
support, which is not recommended.

The check raises a low severity exception and issues error message IRRH505E.
See "“ZOSMIGV1R13_DEFAULT_UNIX_ID” on page 528".

Migration action: Required, because default OMVS segment support is not
supported in z/OS V1R13 or later. Do one of the following:

v Use the replacement BPX.UNIQUE.USER profile function provided in z/OS
R11 to enable RACF to automatically generate unique UIDs and GIDs.

v Define OMVS segments for all users and groups who require UNIX services.

Yes Yes or No The presence of the BPX.UNIQUE.USER profile (with or without
BPX.DEFAULT.USER) indicates an intent to have RACF automatically generate
unique UNIX UIDs and GIDs, as is recommended.

The check issues informational message IRRH502I and then verifies
requirements for the automatic generation of unique UNIX IDs. IRRH502I
includes a report showing whether all requirements have been met. See a
sample of IRRH502I in "“ZOSMIGV1R13_DEFAULT_UNIX_ID” on page 528"
The check's action then depends on whether it finds that requirements have
been met or not:

v If all requirements have been met, the check raises no exceptions and issues
informational message IRRH506I.

v If the check detects that not all requirements have been met, it issues
informational message IRRH507I and does not raise an exception

Migration action: Not required - requirements for the automatic generation of
unique UNIX IDs are an issue of enablement rather than migration.

Reason for check:
Starting with z/OS V1R13, support for the default UNIX identity, implemented
using the BPX.DEFAULT.USER profile in the FACILITY class, is no longer
available, so a migration action may be required if you are using it

z/OS releases the check applies to:
z/OS V1R12 and z/OS V1R13

Parameters accepted:
No

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command:
UPDATE,
CHECK(IBMRACF,ZOSMIGV1R13_DEFAULT_UNIX_ID)
SEVERITY(LOW),INTERVAL(ONETIME),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
z/OS Security Server RACF Security Administrator's Guide

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 529

Messages:
This check issues the following exception messages:
v IRRH505E

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:

v The following shows the output from a ZOSMIGV1R13_DEFAULT_UNIX_ID
check that finds neither the BPX.UNIQUE.USER or BPX.DEFAULT.USER
profiles are defined:
CHECK(IBMRACF,ZOSMIGV1R13_DEFAULT_UNIX_ID)
START TIME: 05/11/2011 10:34:11.210824
CHECK DATE: 20110101 CHECK SEVERITY: LOW

IRRH504I RACF is not enabled to assign UNIX IDs when users or groups
that do not have OMVS segments use certain z/OS UNIX services. If you
choose not to define UNIX IDs for each user of UNIX functions, you can
enable RACF to automatically generate unique UNIX UIDs and GIDs for you.

END TIME: 05/11/2011 10:34:11.211004 STATUS: SUCCESSFUL

v The following shows the output from an exception for
ZOSMIGV1R13_DEFAULT_UNIX_ID when the presence of the
BPX.DEFAULT.USER profile without the BPX.UNIQUE.USER profile
indicates an intent to use default OMVS segment support, which is not
recommended:
CHECK(IBMRACF,ZOSMIGV1R13_DEFAULT_UNIX_ID)
START TIME: 05/11/2011 10:36:31.611960
CHECK DATE: 20110101 CHECK SEVERITY: LOW

* Low Severity Exception *

IRRH505E The BPX.DEFAULT.USER profile in the FACILITY class
indicates that you want RACF to assign shared default UNIX
IDs when users or groups that do not have OMVS segments use
certain z/OS UNIX services.

Explanation: The RACF UNIX identity check has found the
BPX.DEFAULT.USER profile in the FACILITY class. The presence of this
profile indicates an intent to have RACF assign shared default UNIX
UIDs and GIDs when users without OMVS segments access the system to
use certain UNIX services.

On z/OS V1R13 and below, you have the option of enabling RACF to
assign default z/OS UNIX identities, however it is not suggested.
You should either define OMVS segments for user and group profiles,
with unique UIDs and GIDs, or you should enable RACF to
automatically assign unique z/OS UNIX identities when users without
OMVS segments access the system to use certain UNIX services.
Assigning unique identities rather than shared identities improves
overall security and increases user accountability.

See z/OS Security Server RACF Security Administrator’s Guide for
more information about how to assign a user identifier (UID) to a
RACF user and how to assign a group identifier (GID) to a RACF
group. z/OS Security Server RACF Security Administrator’s Guide also
contains information about how to enable RACF to automatically
assign unique UNIX identities.

Note: z/OS V1R13 is the last release that supports default UNIX
identities. After z/OS V1R13, users and groups that need to access

RACF checks

530 IBM Health Checker for z/OS User's Guide

z/OS UNIX functions and resources must be assigned unique UNIX UIDs
and unique GIDs in advance of their need to access these services,
or you must enable RACF to automatically assign unique z/OS UNIX
identities when users without OMVS segments access the system to use
certain UNIX services. The FACILITY class BPX.DEFAULT.USER profile
will no longer be used and can be deleted.

System Action: The check continues processing. There is no effect on
the system.

Operator Response: Report this problem to the system security
administrator.

System Programmer Response: None.

Problem Determination:

Source:

Reference Documentation:
z/OS Security Server RACF Security Administrator’s Guide

Automation: None.

Check Reason: Migration check for BPX.DEFAULT.USER removal.

END TIME: 05/11/2011 10:36:31.612823 STATUS: EXCEPTION-LOW

v The following shows the output from a ZOSMIGV1R13_DEFAULT_UNIX_ID
check that finds that the requirements for the automatic generation of
unique UNIX IDs have been met:
CHECK(IBMRACF,ZOSMIGV1R13_DEFAULT_UNIX_ID)
START TIME: 05/11/2011 11:02:39.632614
CHECK DATE: 20110101 CHECK SEVERITY: LOW

IRRH502I RACF attempts to assign unique UNIX IDs when users or groups
that do not have OMVS segments use certain z/OS UNIX services.

Requirements for this support:

S Requirement
- --

FACILITY class profile BPX.UNIQUE.USER is defined
RACF database is at the required AIM stage:

AIM stage = 03
UNIXPRIV class profile SHARED.IDS is defined
UNIXPRIV class is active
UNIXPRIV class is RACLISTed
FACILITY class profile BPX.NEXT.USER is defined
BPX.NEXT.USER profile APPLDATA is specified (not verified):

APPLDATA = 1/0

IRRH506I The RACF UNIX identity check has detected no exceptions.

END TIME: 05/11/2011 11:02:39.634310 STATUS: SUCCESSFUL

v The following shows the output from a ZOSMIGV1R13_DEFAULT_UNIX_ID
check that finds that the requirements for the automatic generation of
unique UNIX IDs have NOT been met and raises an exception:
CHECK(IBMRACF,ZOSMIGV1R13_DEFAULT_UNIX_ID)
START TIME: 05/11/2011 11:05:26.315471
CHECK DATE: 20110101 CHECK SEVERITY: LOW

IRRH502I RACF attempts to assign unique UNIX IDs when users or groups
that do not have OMVS segments use certain z/OS UNIX services.

Requirements for this support:

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 531

S Requirement
- --

FACILITY class profile BPX.UNIQUE.USER is defined
RACF database is at the required AIM stage:

AIM stage = 03
UNIXPRIV class profile SHARED.IDS is defined

E UNIXPRIV class is not active
UNIXPRIV class is RACLISTed
FACILITY class profile BPX.NEXT.USER is defined
BPX.NEXT.USER profile APPLDATA is specified (not verified):

APPLDATA = 1/0

IRRH507I RACF cannot assign unique UNIX IDs when users or groups that do
not have OMVS segments use certain z/OS UNIX services. One or more
requirements are not satisfied.

END TIME: 05/11/2011 11:05:26.317215 STATUS: SUCCESSFUL

Reconfiguration checks (IBMRCF)

RCF_PCCA_ABOVE_16M
Description:

Checks to see whether the residency mode (RMODE), specified for the PCCA
control block in the CBLOC parameter of the DIAGxx parmlib member, is the
expected value. The default RMODE for the PCCA control block is RMODE 31.
The check will look for RMODE 31 for the PCCA control block unless you
specify an RMODE of 24 in the RMODE parameter for the check.

Reason for check:
The suggested RMODE for the PCCA control block is RMODE 31.

z/OS releases the check applies to:
z/OS V1R12 and higher.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMRCF,RCF_PCCA_ABOVE_16M),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’CBLOC(31)’),
DATE(’date_of_the_change’)
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:

v CBLOC(31), which is the default, specifies that you want the check to
generate an exception if it finds that IHAPCCA had been specified within
the CBLOC VIRTUAL24 parameter of the DIAGxx parmlib member.

RACF checks

532 IBM Health Checker for z/OS User's Guide

v CBLOC(24) specifies that you want the check to generate an exception if it
finds that IHAPCCA either:
– Had been specified within the CBLOC VIRTUAL31 parameter of the

DIAGxx parmlib member.
– Had not been specified within the CBLOC VIRTUAL24 parameter of the

DIAGxx parmlib member (because CBLOC VIRTUAL31 is the default for
the PCCA).

Reference:
See the CBLOC parameter in the DIAGxx parmlib member in z/OS MVS
Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IEAVEH101E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R12_RCF_PCCA_ABOVE_16M
Description:

Checks to see whether the residency mode (RMODE), specified for the PCCA
control block in the CBLOC parameter of the DIAGxx parmlib member, is the
expected value. The default RMODE for the PCCA control block on z/OS
systems at the pre-z/OS R12 level is RMODE 24. The check will look for
RMODE 24 for the PCCA control block unless you specify an RMODE of 31 in
the RMODE parameter for the check.

Reason for check:
The default RMODE for the PCCA control block is changing from RMODE 24
to RMODE 31 in z/OS V1R12.

z/OS releases the check applies to:
z/OS V1R10 and V1R11.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMSUP,ZOSMIGV1R12_RCF_PCCA_ABOVE_16M),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’CBLOC(31)’),
DATE(’date_of_the_change’)
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:

RCF checks

Chapter 13. IBM Health Checker for z/OS checks 533

v CBLOC(31), which is the default, specifies that you want the check to
generate an exception if it finds that IHAPCCA had been specified within
the CBLOC VIRTUAL24 parameter of the DIAGxx parmlib member.

v CBLOC(24) specifies that you want the check to generate an exception if it
finds that IHAPCCA either:
– Had been specified within the CBLOC VIRTUAL31 parameter of the

DIAGxx parmlib member.
– Had not been specified within the CBLOC VIRTUAL24 parameter of the

DIAGxx parmlib member (because CBLOC VIRTUAL24 is the default for
the PCCA).

Reference:
See the CBLOC parameter in the DIAGxx parmlib member in z/OS MVS
Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IEAVEH101E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RMM checks (IBMRMM)

ZOSMIGV1R10_RMM_REJECTS_DEFINED
Description:

The purpose of this check is to ensure that an installation knows they are
affected by the change in DFSMSrmm default processing when moving from
systems below z/OS V1R10.

The RACF userid used for the System REXX check, (REXX checks run under
the security assigned to the IBM Health Checker for z/OS procedure, hzsproc.),
issues the RMM LISTCONTROL subcommand and so needs one of the
following:
v CONTROL access to STGADMIN.EDG.LISTCONTROL in the FACILITY

class
v CONTROL access to STGADMIN.EDG.MASTER in the FACILITY class

Reason for check:
The check is intended to identify when a migration action is needed when
migrating from a release below z/OS V1R10.

z/OS releases the check applies to:
z/OS V1.8 and z/OS V1.9

Type of check (local, remote, or REXX):
REXX

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

RCF checks

534 IBM Health Checker for z/OS User's Guide

UPDATE
CHECK(IBMRMM,ZOSMIGV1R10_RMM_REJECTS_DEFINED)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
INACTIVE
REASON(’Your reason for making the update.’)

Debug support:
Yes, additional information is written to REXXOUT data set.

Verbose support:
Yes, when also used with DEBUG, additional information is written to
REXXOUT data set.

Parameters accepted:
No

Reference:
For additional information about partitioning and open rules see Using the
Parmlib Member EDGRMMxx in z/OS DFSMSrmm Implementation and
Customization Guide.

Messages:
This check issues the following exception messages:
v EDGH8001E

See the EDGH messages in z/OS MVS System Messages, Vol 5 (EDG-GFS).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R10_RMM_VOL_REPLACE_LIM
Description:

Use this check to determine whether the hard coded volume replacement limit,
LIMIT=1, value has changed and to show how to set the same limit at z/OS
V1R10 and later releases using MEDINF NAME(IBM)
REPLACE(PERM(value)).

This check uses the AMASPZAP tool to verify contents of a load module in
LINKLIB. The RACF userid used for the System REXX check, (REXX checks
run under the security assigned to the IBM Health Checker for z/OS
procedure, hzsproc), needs READ access to the LINKLIB library, and if
AMASPZAP is under program control, the userid also needs READ access to
AMASPZAP.

Reason for check:
The check is intended to identify when a migration action is needed when
migrating from a release below z/OS V1R10.

z/OS releases the check applies to:
z/OS V1.8 and z/OS V1.9

Type of check (local, remote, or REXX):
REXX

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

RMM checks

Chapter 13. IBM Health Checker for z/OS checks 535

UPDATE
CHECK(IBMRMM,ZOSMIGV1R10_RMM_VOL_REPLACE_LIM)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
INACTIVE
REASON(’Your reason for making the update.’)
PARM(’LINKLIB(SYS1.LINKLIB)’)

Debug support:
Yes, additional information is written to REXXOUT data set.

Verbose support:
Yes, when also used with DEBUG, additional information is written to
REXXOUT data set.

Parameters accepted:
Optional PARM('LINKLIB(linklib_dsname)') is supported. linklib_dsname is a
fully qualified data set name, specified without quotes, where load modules
targeted to the LINKLIB DDDEF name reside. The load module EDGMUPD
must be in this data set.

When no PARM value is provided, the check uses SYS1.LINKLIB.

Reference:
For additional information about use of EDGRMMxx parmlib parameter
MEDINF with REPLACE, see Defining Media Information: MEDINF in z/OS
DFSMSrmm Implementation and Customization Guide.

Messages:
This check issues the following exception messages:
v EDGH8002E

See the EDGH messages in z/OS MVS System Messages, Vol 5 (EDG-GFS).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R10_RMM_VRS_DELETED
Description:

This check ensures that an installation has no VRSes which conflict with the
new 'DELETED' VRS support. If your installation has VRSes with either
DSNAME('DELETED') or JOBNAME(DELETED) you should be aware of the
conflict with new 'DELETED' VRS support when migrating from a release
below z/OS V1R10.

The check should be run once for each DFSMSrmm CDS. The RACF userid
used for the System REXX check, (REXX checks run under the security
assigned to the IBM Health Checker for z/OS procedure, hzsproc), issues the
RMM SEARCHVRS subcommand and so needs READ access to
STGADMIN.EDG.VRS in the FACILITY class.

Reason for check:
This check identifies when a migration action is needed when migrating from a
release below z/OS V1R10.

z/OS releases the check applies to:
z/OS V1.8 and z/OS V1.9

Type of check (local, remote, or REXX):
REXX

RMM checks

536 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMRMM,ZOSMIGV1R10_RMM_VRS_DELETED)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
INACTIVE
REASON(’Your reason for making the update.’)

Debug support:
Yes, additional information is written to REXXOUT data set.

Verbose support:
Yes, when also used with DEBUG, additional information is written to
REXXOUT data set.

Parameters accepted:
Optional PARM('LINKLIB(linklib_dsname)') is supported. linklib_dsname is a
fully qualified data set name, specified without quotes, where load modules
targeted to the LINKLIB DDDEF name reside. The load module EDGMUPD
must be in this data set.

When no PARM value is provided, the check uses SYS1.LINKLIB.

Reference:
For additional information about deleted tape data set support see
Considerations for Retaining Data Sets and Volumes in z/OS DFSMSrmm
Implementation and Customization Guide.

Messages:
This check issues the following exception messages:
v EDGH8003E

See theEDGH messages in z/OS MVS System Messages, Vol 5 (EDG-GFS).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R11_RMM_DUPLICATE_GDG
Description:

This check is used to determine if an installation has changed the hard coded
switches in EDGVREC load module which control VRSEL GDG processing,
and to show them how to enable the same limit at z/OS V1R11 and later
releases using OPTION GDG.

This is a System REXX check, which means that it runs under the security
assigned to the IBM Health Checker for z/OS procedure, hzsproc. The RACF
user ID used for the System REXX check must have READ access to the
LINKLIB library, and if AMASPZAP is under program control, the userid also
needs READ access to AMASPZAP.

Reason for check:
The check is intended to identify when a migration action is needed when
migrating from a release below z/OS V1R11.

RMM checks

Chapter 13. IBM Health Checker for z/OS checks 537

z/OS releases the check applies to:
z/OS V1.9 and z/OS V1.10

Type of check (local, remote, or REXX):
REXX

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMRMM,ZOSMIGV1R11_RMM_DUPLICATE_GDG)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
INACTIVE
REASON(’Your reason for making the update.’)
PARM(’LINKLIB(SYS1.LINKLIB)’)

Debug support:
Yes, additional information is written to REXXOUT data set.

Verbose support:
Yes, when also used with DEBUG, additional information is written to
REXXOUT data set.

Parameters accepted:
An optional PARM('LINKLIB(linklib_dsname)') is supported. linklib_dsname is a
fully qualified data set name, specified without quotes, where load modules
targeted to the LINKLIB DDDEF name reside. The load module EDGVREC
must be in this data set.

When no PARM is provided the check uses SYS1.LINKLIB.

Reference:
For additional information about use of EDGRMMxx parmlib OPTION GDG
see Defining System Options: OPTION in z/OS DFSMSrmm Implementation and
Customization Guide.

Messages:
This check issues the following exception messages:
v EDGH8004E
v EDGH8005E

See the EDGH messages in z/OS MVS System Messages, Vol 5 (EDG-GFS).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R11_RMM_REXX_STEM
Description:

This check is used to determine if installation written Rexx EXECs that issued
RMM TSO subcommands do either of the following:
v Use stem variables which are removed in z/OS V1R11 and later systems.
v Reference one or more key or special stem .0 variables that are now only

created for specific RMM TSO subcommands

RMM checks

538 IBM Health Checker for z/OS User's Guide

The check uses ISRSUPC tool to verify the contents of each EXEC. The RACF
userid used for the System Rexx check, (REXX checks run under the security
assigned to the IBM Health Checker for z/OS procedure, hzsproc), needs READ
access to the LIBRARY data set.

Reason for check:
The check is intended to identify when a migration action might be needed
when migrating from a release below z/OS V1R11.

z/OS releases the check applies to:
z/OS V1.9 and z/OS V1.10

Type of check (local, remote, or REXX):
REXX

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMRMM,ZOSMIGV1R11_RMM_REXX_STEM)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
INACTIVE
REASON(’Your reason for making the update.’)
PARM()

Debug support:
Yes, additional information is written to REXXOUT data set.

Verbose support:
Yes, when also used with DEBUG, additional information is written to
REXXOUT data set.

Parameters accepted:
A required PARM('LIBRARY(library_dsname)') is supported. library_dsname is a
fully qualified data set name, specified without quotes, which contains one or
more members that use RMM Rexx variables.

Reference:
For additional information about using ISRSUPC, z/OS V2R2 ISPF User's Guide
Vol II.

Messages:
This check issues the following exception messages:
v EDGH8006E
v EDGH8008E

See the EDGH messages in z/OS MVS System Messages, Vol 5 (EDG-GFS).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R11_RMM_VRSEL_OLD
Description:

This check is used to determine if an installation is still using OPTION
VRSEL(OLD) despite migration actions in earlier z/OS releases.

RMM checks

Chapter 13. IBM Health Checker for z/OS checks 539

DFSMSrmm must be active for this check to be run. The check should be run
once for each system to enable each of the parmlib settings to be verified.

The RACF userid used for the System REXX check, (REXX checks run under
the security assigned to the IBM Health Checker for z/OS procedure, hzsproc.),
issues the RMM LISTCONTROL subcommand and so needs one of the
following:
v CONTROL access to STGADMIN.EDG.LISTCONTROL in the FACILITY

class
v CONTROL access to STGADMIN.EDG.MASTER in the FACILITY class

Reason for check:
The check is intended to identify when a migration action is needed when
migrating from a release below z/OS V1R11.

z/OS releases the check applies to:
z/OS V1.9 and z/OS V1.10

Type of check (local, remote, or REXX):
REXX

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMRMM,ZOSMIGV1R11_RMM_VRSEL_OLD)
INTERVAL(ONETIME)
SEVERITY(MED)
DATE(’date_of_the_change’)
INACTIVE
REASON(’Your reason for making the update.’)')

Debug support:
Yes, additional information is written to REXXOUT data set.

Verbose support:
Yes, when also used with DEBUG, additional information is written to
REXXOUT data set.

Parameters accepted:
None.

Reference:
For additional information about migration to VRSEL(NEW) see
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/
DGT2R370/5.2.4?SHELF=EZ2ZO10L&DT=20080515141920.

Messages:
This check issues the following exception messages:
v EDGH8007E

See the EDGH messages in z/OS MVS System Messages, Vol 5 (EDG-GFS).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RMM checks

540 IBM Health Checker for z/OS User's Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DGT2R370/5.2.4?SHELF=EZ2ZO10L&DT=20080515141920
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DGT2R370/5.2.4?SHELF=EZ2ZO10L&DT=20080515141920

RRS checks (IBMRRS)

RRS_ArchiveCFStructure
Description:

The check evaluates the coupling facility structure in which the RRS Archive
log resides.

Reason for check:
IBM recommends that each RRS log stream reside in its own coupling facility
structure. This is particularly important for the archive log. Allowing the RRS
archive log stream to share its coupling facility structure with another log
stream is likely to result in sub-optimal use of the storage in the coupling
facility structure, which could affect system performance.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_ARCHIVECFSTRUCTURE)
SEVERITY(LOW),INTERVAL(8:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Debug support:
No

Verbose support:
No

Messages:
This check issues the following exception messages:
v ATRH010E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RRS_DUROffloadSize
Description:

The check evaluates the size of the Delayed UR log's offload data set.

Reason for check:
The size of the Delayed UR log's offload data set should be at least as large as
the space allocated for the log stream's CF structure. Why? Because a small
offload data set may cause multiple offload data sets to be created for each
offload of the CF. The increased overhead in allocating data sets can degrade
offload performance and the performance of RRS when reading the log stream.

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 541

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_DUROFFLOADSIZE)
SEVERITY(LOW),INTERVAL(8:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH02E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RRS_MUROffloadSize
Description:

The check evaluates the size of the Main UR log's offload data set.

Reason for check:
The size of the Main UR log's offload data set should be at least as large as the
space allocated for the log stream's CF structure. Why? Because a small offload
dataset may cause multiple offload data sets to be created for each offload of
the CF. The increased overhead in allocating datasets can degrade offload
performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_MUROFFLOADSIZE)
SEVERITY(LOW),INTERVAL(8:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:

RRS checks

542 IBM Health Checker for z/OS User's Guide

v ATRH02E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RRS_RMDataLogDuplexMode
Description:

The duplexing scheme used to protect the RM Data log stream is evaluated.

Reason for check:
Choose a duplexing scheme more reliable than local buffer duplexing for the
RM Data log stream. For example, choose to use staging data sets. Why?
Because local buffer duplexing can result in a loss of data in the log stream if
both the CF and the local buffers are on the same machine. A loss of data in
the RRS RM Data log stream will eventually require an RRS cold start to repair
the log stream and may also require a cold start of any resource manager using
RRS at the time of the RRS cold start. For more details on protecting log
streams, see z/OS MVS Programming: Resource Recovery.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_RMDATALOGDUPLEXMODE)
SEVERITY(MEDIUM),INTERVAL(8:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH01E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RRS_RMDOffloadSize
Description:

The check evaluates the size of the RM Data log's offload data set.

Reason for check:
The size of the RM Data log's offload data set should be at least as large as the
space allocated for the log stream's CF structure. Why? Because a small offload
dataset may cause multiple offload data sets to be created for each offload of

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 543

the CF. The increased overhead in allocating datasets can degrade offload
performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_RMDOFFLOADSIZE)
SEVERITY(LOW),INTERVAL(8:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH02E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RRS_RSTOffloadSize
Description:

The check evaluates the size of the Restart log's offload data set.

Reason for check:
The size of the Restart log's offload data set should be at least as large as the
space allocated for the log stream's CF structure. Why? Because a small offload
dataset may cause multiple offload data sets to be created for each offload of
the CF. The increased overhead in allocating datasets can degrade offload
performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_RSTOFFLOADSIZE)
SEVERITY(LOW),INTERVAL(8:00),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

RRS checks

544 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v ATRH02E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RRS_Storage_NumLargeLOGBlks
Description:

Monitor the level of virtual storage usage in the RRS address space to prevent
a terminating failure.

Reason for check:
If the count of large log buffer blocks in RRS grows too big then RRS might
encounter a terminating failure.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_STORAGE_NUMLARGELOGBLKS)
ACTIVE
SEVERITY(HI),INTERVAL(0:05),DATE(’date_of_the_change’)
PARM(’1000’)
REASON(’Your reason for making the update.’)

Parameters accepted:
The threshold for number of large message blocks in use by RRS; in the range
of '0' to '99999999'. The threshold for number of transaction related blocks in
use by RRS; in the range of '0' to '99999999'. The default is '1000'.

Debug support:
No

Verbose support:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH020E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Ouptut:

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 545

ATR020E - The current number of large log buffer blocks in RRS
is currblks which exceeds current threshold of maxblks

Explanation: The number of large message blocks being processed
within RRS at this time has exceeded the threshold specified in
the health check. This can be an indication of a potential
storage usage failure in RRS.

System Program Response:
Use the available RRS data collection techniques (panels,
console display command, or batch program) to assess the level
of transaction activity in RRS and determine if it is unusual or
unexpected.

If the level of activity is determined to be a problem then use
the data collection methods to determine if it is a problem with
a specific work manager then check with that work manager
function for problems.

If not a work manager problem then use the data collection
methods to determine if it is a problem with a specific resource
manager.

If it appears to be neither a specific work manager nor a
specific resource manager problem then monitor RRS using this
health check until either the exception is resolved or the count
continues to grow.

RRS_Storage_NumLargeMSGBlks
Description:

Monitor the level of virtual storage usage in the RRS address space to prevent
a terminating failure.

Reason for check:
If the count of large message blocks in RRS grows too big then RRS might
encounter a terminating failure.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_STORAGE_NUMLARGEMSGBLKS)
ACTIVE
SEVERITY(HI),INTERVAL(0:05),DATE(’date_of_the_change’)
PARM(’10000’)
REASON(’Your reason for making the update.’)

Parameters accepted:
The threshold for number of large message blocks in use by RRS; in the range
of '0' to '99999999'. The threshold for number of transaction related blocks in
use by RRS; in the range of '0' to '99999999'. The default is '1000'.

Debug support:
No

Verbose support:
No

RRS checks

546 IBM Health Checker for z/OS User's Guide

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH018E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Ouptput:
ATR018E - The current number of large message blocks in RRS is
currblks which exceeds current threshold of maxblks

Explanation: The number of large message blocks being processed
within RRS at this time has exceeded the threshold specified in
the health check. This can be an indication of a potential
storage usage failure in RRS.

System Program Response:
Use the available RRS data collection techniques (panels,
console display command, or batch program) to assess the level
of transaction activity in RRS and determine if it is unusual or
unexpected.

If the level of activity is determined to be a problem then use
the data collection methods to determine if it is a problem with
a specific work manager then check with that work manager
function for problems.

If not a work manager problem then use the data collection
methods to determine if it is a problem with a specific resource
manager.

If it appears to be neither a specific work manager nor a
specific resource manager problem then monitor RRS using this
health check until either the exception is resolved or the count
continues to grow.

RRS_Storage_NumServerReqs
Description:

Monitor the level of virtual storage usage in the RRS address space to prevent
a terminating failure.

Reason for check:
If the count of server requests within RRS grows too big then RRS might be
encountering a hang situation.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 547

UPDATE
CHECK(IBMRRS,RRS_STORAGE_NUMSERVERREQS)
ACTIVE
SEVERITY(HI),INTERVAL(0:05),DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Debug support:
No

Verbose support:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH016E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Ouptut:
ATR016E The current number of server task requests in RRS is
curreqs which exceeds the threshold

Explanation: The number of server task requests in RRS has
exceeded the manageable threshold and could be an indication of
a potential problem in RRS. Please monitor the level of
activity in RRS and the associated resource managers and see if
anything indicates a slow down or complete halt to transaction
processing.

System Program Response:
Use the available RRS data collection techniques (panels,
console display command, or batch program) to assess the level
of transaction activity in RRS and determine if it is unusual or
unexpected.

If the level of activity is determined to be a problem then use
the data collection methods to determine if it is a problem with
a specific work manager then check with that work manager
function for problems.

RRS_Storage_NumTransBlks
Description:

Monitor the level of virtual storage usage in the RRS address space to prevent
a terminating failure.

Reason for check:
If the count of transactions that RRS is managing grows too big then RRS
might encounter a terminating failure.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can

RRS checks

548 IBM Health Checker for z/OS User's Guide

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMRRS,RRS_STORAGE_NUMTRANSBLKS)
ACTIVE
SEVERITY(HI),INTERVAL(0:05),DATE(’date_of_the_change’)
PARM(’10000’)
REASON(’Your reason for making the update.’)

Parameters accepted:
The threshold for number of transaction related blocks in use by RRS; in the
range of '0' to '99999999'. The default is '10000'.

Debug support:
No

Verbose support:
No

Reference:
For more information, see z/OS MVS Programming: Resource Recovery.

Messages:
This check issues the following exception messages:
v ATRH014E

See the ATRH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Ouptput:
ATR014E The current number of active RRS transactions is
currtrans which exceeds the current threshold of maxtrans

Explanation:
The number of transactions being managed by RRS at the current
time has exceeded the threshold specified in the health check.
This can be an indication of a potential storage usage failure
in RRS.

System Program Response:
Use the available RRS data collection techniques (panels,
console display command, or batch program) to assess the level
of transaction activity in RRS and determine if it is unusual or
unexpected.

If the level of activity is determined to be a problem then use
the data collection methods to determine if it is a problem with
a specific work manager then check with that work manager
function for problems.

If not a work manager problem then use the data collection
methods to determine if it is a problem with a specific resource
manager.

If it appears to be neither a specific work manager nor a
specific resource manager problem then monitor RRS using this
health check until either the exception is resolved or the count
continues to grow.

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 549

RSM checks (IBMRSM)

RSM_HVSHARE
Description:

Checks the configured size and current allocation of the high virtual shared
area (HVSHARE in IEASYSxx). This check will issue a warning when the
allocation of high virtual storage exceeds a predetermined threshold, and/or
when the size of the high virtual shared area is less than the default minimum.

Note: The IBMRSM,RSM_HVSHARE check will be disabled if the current
setting of HVSHARE in IEASYSxx is 0.

Reason for check:
The HVSHARE setting controls the size of the shared area above 2GB, directly
affecting how much virtual storage may be shared by jobs on the system.
Setting this value too low may cause jobs relying on shared high virtual
storage to fail. The default suggested value for this area is 510T.

z/OS releases the check applies to:
z/OS V1R5 and later in z/Architecture® mode only.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMRSM,RSM_HVSHARE),
INTERVAL(00:15),
SEVERITY(LOW),
PARM(’THRESHOLD(80%),SIZE(510T)’),
DATE(’date_of_the_change’)

Parameters accepted:
Yes:
v An integer, 0-100, indicating the warning threshold percent (keyword:

THRESHOLD, percent sign optional)
v Number of bytes with optional suffix (K,M,G,T,P,E), indicating shared area

size (keyword: SIZE)

Default: THRESHOLD(80%),SIZE(510T)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IARH110E

See the IARH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RSM checks

550 IBM Health Checker for z/OS User's Guide

|
|

RSM_MEMLIMIT
Description:

Checks the MEMLIMIT parameter in SMFPRMxx, which affects the amount of
high virtual storage available to jobs on the system.

Reason for check:
IBM suggests that jobs requiring virtual storage above 2G use the MEMLIMIT
option on the associated JCL EXEC statement to control high virtual storage
usage. Additionally, IBM suggests that the IEFUSI exit be used as a secondary
limit on the allocation of high virtual storage. Finally, a system wide default
MEMLIMIT should be set in SMFPRMxx. This check will issue an exception
when the MEMLIMIT setting in SMFPRMxx has been set to zero.

z/OS releases the check applies to:
z/OS V1R4 and later in z/Architecture mode only.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMRSM,RSM_MEMLIMIT),
INTERVAL(ONETIME),
SEVERITY(LOW),
DATE(’date_of_the_change’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference, z/OS
MVS Programming: Extended Addressability Guide, and z/OS MVS Installation
Exits.

Messages:
This check issues the following exception messages:
v IARH109E

See the IARH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RSM_MAXCADS
Description:

The setting of MAXCADS in IEASYSxx, and the number of in-use common
area data spaces. A warning will be issued if the number of common area
dataspaces exceeds a predetermined threshold.

Reason for check:
Once the number of in use common area dataspaces reaches the value
specified in MAXCADS, no more common area dataspaces can be created. This
may adversely affect starting new jobs, or the continued operation of jobs
already running. This check will help to ensure that the MAXCADS setting is
adequate.

z/OS releases the check applies to:
z/OS V1R4 and later in z/Architecture mode only.

User override of IBM values:
The following shows the default keywords for the check, which you can

RSM checks

Chapter 13. IBM Health Checker for z/OS checks 551

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMRSM,RSM_MAXCADS),
INTERVAL(00:15),
SEVERITY(MED),
PARM(’THRESHOLD(80%)’),
DATE(’date_of_the_change’)

Parameters accepted:
An integer, 0-100, indicating the warning threshold percent (keyword:
THRESHOLD, percent sign optional)

Default: THRESHOLD(80%)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IARH108E

See the IARH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RSM_AFQ
Description:

Whether available frame queue threshold values used for reclaiming storage
frames are too low.

Reason for check:
To avoid situations where the system does not start to reclaim storage frames
soon enough, you should evaluate the values for storage. If you are running in
ESA mode, both the MCCAFCTH and the MCCAECTH values are used. If you
are running in z/Architecture mode, only the MCCAFCTH value is used. For
migrations to a 64-bit environment, this check is critical because using the
same value that was used in ESA mode could introduce problems. IBM
suggests that the IEAOPTxx parameters are set as follows:
v MCCAFCTH specifies the low and the OK threshold values for central

storage. The lowvalue indicates the number of frames on the available frame
queue when stealing begins. The okvalue indicates the number of frames on
the available frame queue when stealing ends. You can monitor actual
conditions on the RMF Paging Activity Report (RMF Monitor 1) or a
equivalent performance monitoring product and adjust accordingly.

v MCCAECTH specifies the low and the OK threshold values for expanded
storage. The lowvalue indicates the number of frames on the available frame
queue when real storage manager (RSM) frame stealing begins. The okvalue
indicates the number of frames on the available frame queue when stealing
ends. You can monitor actual conditions on the RMF Paging Activity Report
(RMF Monitor 1) or equivalent performance monitoring product and adjust
accordingly.

In 31–bit mode, the defaults are sufficient. For these two parameters, the
defaults are MCCAFCTH=(50,100), and MCCAECTH=(150,300). The OK point

RSM checks

552 IBM Health Checker for z/OS User's Guide

for available frames in a 31-bit mode implementation is 400 frames, 100 from
central storage and 300 from expanded storage.

For 64–bit mode (after the installations of APARs OW55902 and OW55729), the
default values for MCCAFCTH are (400,600). These are IBM's minimum
suggested settings. Although IBM suggests using the defaults, higher values
are acceptable.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMRSM,RSM_AFQ),
INTERVAL(ONETIME),
SEVERITY(HI),
PARM(’AFQLOW(400),AFQOK(600)’),
DATE(’date_of_the_change’)

Parameters accepted:

1. The number of frames for the MCCAFCTH LOW threshold (keyword:
AFQLOW)

2. The number of frames for the MCCAFCTH OK threshold (keyword:
AFQOK)

3. The number of frames for the MCCAECTH LOW threshold (ESA only,
keyword: EXPLOW)

4. The number of frames for the MCCAECTH OK threshold (ESA only,
keyword: EXPOK)

Reference:
For more information on MCCAFCTH and MCCAECTH IEAOPTxx
parameters, see z/OS MVS Initialization and Tuning Reference. For more
information on using the Paging Activity report, see z/OS RMF Report Analysis
and the whitepaper, WP100269 “z/OS Performance: Managing Processor
Storage in a 64–bit environment”.

Messages:
This check issues the following exception messages:
v IARH100E

See the IARH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RSM_REAL
Description:

The REAL setting in IEASYSxx, which controls the amount of central storage
that can be allocated concurrently for ADDRSPC=REAL (V=R) jobs.

Reason for check:
IBM suggests that the REAL setting should be set to 0. However, this would
not be valid if you have a need to run V=R jobs. Setting REAL=0 in IEASYSxx
will improve performance.

RSM checks

Chapter 13. IBM Health Checker for z/OS checks 553

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMRSM,RSM_REAL),
INTERVAL(ONETIME),
SEVERITY(LOW),
DATE(’date_of_the_change’)

Parameters accepted:
No.

Reference:
For more information on real storage, see z/OS MVS Initialization and Tuning
Reference.

Messages:
This check issues the following exception messages:
v IARH101E

See the IARH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RSM_RSU
Description:

The RSU setting in IEASYSxx, which controls the amount of central storage
that can be reconfigured.

Reason for check:
IBM suggest that the RSU setting should be set to 0. However, this would not
be valid if you have a need to reconfigure storage. Setting RSU=0 in IEASYSxx
will improve performance.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMRSM,RSM_RSU),
INTERVAL(ONETIME),
SEVERITY(LOW),
DATE(’date_of_the_change’)

Parameters accepted:
No.

Reference:
For more information on reconfigurable storage, see z/OS MVS Initialization and
Tuning Reference.

RSM checks

554 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v IARH102E

See the IARH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RTM checks (IBMRTM)

RTM_IEAVTRML
Description:

Validate that no resource manager module names are specified in CSECT
IEAVTRML of load module IGC0001C.

Reason for check:
Installations should use the RESMGR service instead of IEAVTRML to define
End of Task (EOT) and End of Memory (EOM) resource managers to the
system. If installations use IEAVTRML, RTM calls the resource manager for
every EOT and EOM in the system. In most situations, this results in
thousands of unnecessary invocations of the resource manager per day which
impacts system performance.

z/OS releases the check applies to:
z/OS V1R11 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMRTM,RTM_IEAVTRML)
ACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
PARM(’ALL’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
Yes. When VERBOSE(YES) is specified, all of the resource managers found in
IEAVTRML will be listed in the message log whether or not an exception is
raised.

Parameters accepted:

v PARM('ALL') specifies that exceptions should be issued for all module
names specified in IEAVTRML. This is the system default.

v PARM('NEW(value)') specifies that the current contents of IEAVTRML are to
be treated as correct and exceptions should be issued only for new module
names added to IEAVTRML after this time. This specification persists across
restarts of the Health Checker, including IPLs. Note that the system only
recognizes changes to IEAVTRML via an IPL with CLPA.

RSM checks

Chapter 13. IBM Health Checker for z/OS checks 555

Reference:
For more information about EOT and EOM resource managers, see Using
Resource Managers in the z/OS MVS Programming: Authorized Assembler Services
Guide.

Messages:
This check issues the following exception messages:
v IEAVTRH03I

See the IEAVTRH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SDSF checks (IBMSDSF)

SDSF_CLASS_SDSF_ACTIVE
Description:

Checks that the SAF class SDSF is active.

Reason for check:
SAF based security is used to protect SDSF functions.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMSDSF,SDSF_CLASS_SDSF_ACTIVE),
INTERVAL(ONETIME),
SEVERITY(LOW),
DATE(’date_of_the_change’)

Debug support:
Yes, causes diagnostic message containing the return and reason codes from
the RACROUTE service to be issued.

Verbose support:
No.

Parameters accepted:
None.

Reference:
For more information, see z/OS SDSF Operation and Customization.

Messages:
This check issues the following exception messages:
v ISFH1016E

See SDSF messages in z/OS SDSF Operation and Customization.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

RTM checks

556 IBM Health Checker for z/OS User's Guide

SDSF_ISFPARMS_IN_USE
Set-up for check:

If you run the SDSF server, no set-up is required for this check - the server will
automatically register SDSF health checks with IBM Health Checker for z/OS
during server initialization.

If you do not run the SDSF server, you must do some set-up to define this
check to IBM Health Checker for z/OS in the PROGxx parmlib member. To do
this, copy sample member ISFSPROG from ISF.SISFJCL into your PROGxx
member. Then, issue the SET PROG=xx command to activate that PROGxx
parmlib member.

If you want to define the check to the system dynamically, you can issue the
SETPROG command as follows:
SETPROG EXIT,ADD,EXITNAME(HZSADDCHECK),MODNAME(ISFHCADC)

Then, issue the MODIFY command to add all new checks to the system:
F hzsproc,ADDNEW

Description:

v Checks that SDSF dynamic statements in ISFPRMxx are being used for
configuration options to avoid reassembly of ISFPARMS.

v Checks that if ISFPARMS is being used, only default values have been
specified.

Reason for check:
SDSF's internal parameters are used for specifying global configuration
options, panel formats, and security for SDSF function. There are two
alternatives for SDSF's internal parameters:
v Assembler macros that you define, assemble and link into the SDSF load

library (ISFPARMS)
v Statements that reside in parmlib member ISFPRMxx.

IBM suggests that you use parmlib member ISFPRMxx rather than the
assembler format ISFPARMS because some options are only available using the
statement format. In addition, you must assemble the macros with every
release, and the ISFPARMS from one release cannot be shared with the
ISFPARMS from another release.

z/OS releases the check applies to:
z/OS V1R8 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMSDSF,SDSF_ISFPARMS_IN_USE),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM('SERVER(SDSF)'),
DATE(’date_of_the_change’)

Debug support:
No

SDSF checks

Chapter 13. IBM Health Checker for z/OS checks 557

Verbose support:
Yes. Controls whether additional messages are issued describing ISFPARMS
keywords that have been found to be customized.

Parameters accepted:
Yes; SDSF server name to be processed (keyword SDSF). The default value is
SDSF.

Reference:
For more information, see z/OS SDSF Operation and Customization.

Messages:
This check issues the following exception messages:
v ISFH1005E

See SDSF messages in z/OS SDSF Operation and Customization.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SDUMP checks (IBMSDUMP)

SDUMP_AVAILABLE
Description:

Ensures that SDUMP is enabled to collect SVC Dumps.

Reason for check:
When a system program experiences a condition requiring a snapshot of
virtual storage, it can request an SVC dump.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMSDUMP,SDUMP_AVAILABLE)
SEVERITY(MEDIUM)
INTERVAL(OneTime)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No.

Reference:
For more information on SDUMP, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Messages:
This check issues the following exception messages:
v IEAH701I
v IEAH703I

See the IEAH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SDSF checks

558 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SDUMP_AUTO_ALLOCATION
Description:

Checks to see whether automatic allocation of SVC dump data sets is enabled.

Reason for check:
Automatic allocation of SVC dump data sets.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMSDUMP,SDUMP_AUTO_ALLOCATION)
SEVERITY(MEDIUM)
INTERVAL(OneTime)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No.

Reference:
For more information, see z/OS MVS Diagnosis: Tools and Service Aids.

Messages:
This check issues the following exception messages:
v IEAH701I
v IEAH703I

See See the IEAH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Serviceability checks (IBMSLIP)

SLIP_PER
Description:

Checks to see whether a SLIP PER trap has been continuously active for longer
than the threshold.

Reason for check:
An active, but not needed, SLIP PER trap can cause degraded system
performance

z/OS releases the check applies to:
z/OS V2R1 and higher.

Parameters accepted:
Yes, the following parameters are accepted:

SDUMP checks

Chapter 13. IBM Health Checker for z/OS checks 559

TIME(DAYS,n) or TIME(HOURS,n)

TIME(DAYS,n) or TIME(HOURS,n)
Each of which identifies the length of time that a SLIP PER trap must be
active before the exception is raised. “n” may range from 1-9999.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE,

CHECK(IBMSLIP,SLIP_PER),
INTERVAL(4:00),
SEVERITY(LOW),
PARM('TIME(DAYS,30)’),
DATE('20130901'),
Reason('Your reason for making the update.')

Debug support:
No.

Verbose support:
No.

Reference:
See the SLIP command in z/OS MVS System Commands.

Messages:
This check issues the following exception messages:
v IEAH101E

See IEAH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for MLS users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SMB checks (IBMSMB)

SMB_NO_ZFS_SYSPLEX_AWARE
Description:

Determines if the DFS/SMB File Server is running in a sysplex and if so,
determines if any member of the sysplex is running zFS sysplex aware.

Reason for check:

In a sysplex environment, exportation of a zFS file system and subsequent
sharing by the DFS/SMB server can only take place on the system that owns
the file system and is not running zFS sysplex aware. Beginning with z/OS
V1R11, the SMB server cannot export zFS read/write file systems when zFS is
running sysplex-aware on either:
v The same system where the SMB server is running
v The system that owns the zFS file system

If you want to export zFS file systems using the SMB server, you must
configure zFS as non-sysplex aware (by specifying sysplex=off in the zFS
IOEFSPRM configuration file).

z/OS releases the check applies to:
z/OS V1R11 and later.

SLIP checks

560 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMSMB,SMB_NO_ZFS_SYSPLEX_AWARE)
SEVERITY(MEDIUM)
INTERVAL(ONETIME)

DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For additional information see z/OS Distributed File Service SMB Administration.

Messages:
This check issues the following exception messages:
v IOEWH0011E

See z/OS Distributed File Service Messages and Codes.

ZOSMIGREC_SMB_RPC
Description:

Determines if the DFS/SMB File Server is running in conjunction with
Distributed Computing Environment(DCE) or DCE DFS or both

Reason for check:

Beginning with z/OS V1R11, SMB can still run with DCE and DCE/DFS using
the RPC protocol, but this environment might not be supported by IBM much
longer. To prepare for this change, migrate data in DCE/DFSD Episode file
systems to TFS, HFS, or zFS file systems.

z/OS releases the check applies to:
z/OS V1R11 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. You can copy and modify this statement to override
the check defaults:
UPDATE
CHECK(IBMSMB,ZOSMIGREC_SMB_RPC)
SEVERITY(MEDIUM)
INTERVAL(ONETIME)
DATE(20090219)
REASON(’Checks whether or not SMB is running on conjunction with the

Distributed Computing Environment (DCE) as well as the DCE/DFS File Server')

Debug support:
No

Verbose support:
No

SMB checks

Chapter 13. IBM Health Checker for z/OS checks 561

Parameters accepted:
No

Reference:
For additional information see z/OS Distributed File Service SMB Administration.

Messages:
This check issues the following exception messages:
v IOEWH0020E

See z/OS Distributed File Service Messages and Codes.

SMS checks (IBMSMS)

SMS_CDS_REUSE_OPTION
Description:

This check verifies that the active control data set (ACDS) and communications
data set (COMMDS) are defined with the REUSE option.

Reason for check:
As a best practice, defining ACDS or COMMDS with the REUSE option helps
to avoid running into space problems (SMS reason code 6068) as result of
subsequent ACDS or COMMDS updates, or IMPORT/EXPORT functions.

z/OS releases the check applies to:
z/OS V1R12 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMSMS, SMS_CDS_REUSE_OPTION)
SEVERITY(MED)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For additional information see Allocating an ACDS and Allocating a COMMDS
in z/OS DFSMSdfp Storage Administration.

Messages:
This check issues the following exception messages:
v IGDH1011E

See z/OS MVS System Messages, Vol 8 (IEF-IGD).

SMB checks

562 IBM Health Checker for z/OS User's Guide

SMS_CDS_SEPARATE_VOLUMES
Description:

This check verifies that the active control data set (ACDS) and communications
data set (COMMDS) are not residing on same volume.

Reason for check:
To ease recovery in case of failure, the ACDS should reside on a different
volume than the COMMDS. Also, you should allocate a spare ACDS on a
different volume. The control data set (ACDS or COMMDS) must reside on a
volume that is not reserved by other systems for a long period of time because
the control data set (ACDS or COMMDS) must be available to access for SMS
processing to continue.

z/OS releases the check applies to:
z/OS V1R12 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMSMS, SMS_CDS_SEPARATE_VOLUMES)
SEVERITY(MED)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
For additional information see Allocating an ACDS and Allocating a COMMDS
in z/OS DFSMSdfp Storage Administration.

Messages:
This check issues the following exception messages:
v IGDH1001E

See z/OS MVS System Messages, Vol 8 (IEF-IGD).

Supervisor checks (IBMSUP)

IEA_ASIDS
Description:

This check reports on available "normal" and "replacement" ASIDs

Reason for check:
ASIDs are a finite resource. It is important to know how many remain
available. Running the system in exception has no consequence. The exception
is intended to alert to the possibilities.

z/OS releases the check applies to:
z/OS V1R9 and later.

SMS checks

Chapter 13. IBM Health Checker for z/OS checks 563

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMSUP,IEA_ASIDS),
INTERVAL(01:00),
SEVERITY(LOW),
PARM(’NORMAL(5%),REPLACEMENT(5%),DAYSUNTILIPL(1)’

),
DATE(’20060424’)
Reason(’ASIDs are a finite resource. It is important to ’,

’know how many remain available.’)

Debug support:
No

Verbose support:
Yes. When VERBOSE mode is in effect, information about individual
connections to non-reusable ASIDs is provided

Parameters accepted:

v NORMAL(n) specifies an integer 1-ASVTMAXI or a percent 1-100 (which is
applied to the value of ASVTMAXI, the number of total possible normal
ASIDs). If the number of available normal ASIDs falls below the limit, an
exception message is issued. The default is 5%.

v REPLACEMENT(n) specifies an integer 1-ASVTNONR or a percent 1-100
(which is applied to the value of ASVTNONR, the number of total possible
replacement ASIDs). If the number of available replacement ASIDs falls
below the limit, an exception message is issued. The default is 5%.

v DAYSUNTILIPL(n) specifies an integer 1-99999. If the system will run out of
ASIDs in n days, given the rate of ASID depletion calculated from the
currently available information, an exception message is issued. The default
is 1.

Reference:

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Initialization and Tuning Guide

Messages:
This check issues the following exception messages:
v IEAVEH020E,
v IEAVEH021E,
v IEAVEH060E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Supervisor checks

564 IBM Health Checker for z/OS User's Guide

IEA_LXS
Description:

This check reports on available system and non-system LXs and extended LXs
(ELXs)

Reason for check:
LXs are a finite resource. It is important to know how many remain available.
Running the system in exception has no consequence. The exception is
intended to alert to the possibilities.

z/OS releases the check applies to:
z/OS V1R9 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE,
CHECK(IBMSUP,IEA_LXS),
INTERVAL(01:00),
SEVERITY(LOW),
PARM(’LX(15%),ELX(15%),SYSLX(15%),SYSELX(15%)’

),
DATE(’20060424’)
REASON(’LXs are a finite resource. It is important to ’,

’know how many remain available.’)

Debug support:
No

Verbose support:
Yes. When VERBOSE mode is in effect, information about each individual LX
is provided

Parameters accepted:

v LX(n) specifies an integer 0-SvtxLXNSysDefined, or a percent 1-100 (which is
applied to the value of SvtxLXNSysDefined, the number of defined
non-system LXs). If the number of non-system LXs falls below the limit, an
exception message is issued. The default is 15%.

v ELX(n) specifies an integer 0-SvtxBLXNSysDefined, or a percent 1-100
(which is applied to the value of SvtxBLXNSysDefined, the number of
defined non-system extended LXs). If the number of non-system extended
LXs falls below the limit, an exception message is issued. The default is 15%.

v SYSLX(n) specifies an integer 0-SvtxLXSysDefined, or a percent 1-100 (which
is applied to the value of SvtxLXSysDefined, the number of defined system
LXs). If the number of system LXs falls below the limit, an exception
message is issued. The default is 15%.

v SYSELX(n) specifies an integer 0-SvtxBLXSysDefined, or a percent 1-100
(which is applied to the value of SvtxBLXSysDefined, the number of defined
system extended LXs). If the number of system extended LXs falls below the
limit, an exception message is issued. The default is 15%.

Reference:

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Initialization and Tuning Guide

Supervisor checks

Chapter 13. IBM Health Checker for z/OS checks 565

Messages:
This check issues the following exception messages:
v IEAVEH050E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SUP_HIPERDISPATCH
Description:

This check verifies whether the check's expected HiperDispatch state matches
the actual HiperDispatch state of the system. The following terms are used to
describe the Hiperdispatch State (where terms appearing on the same line are
used interchangeably):
v YES and enabled
v NO and disabled

The check's expected HiperDispatch state is determined by the parameters
specified or defaulted for this check. See the parameters section for further
details.

Note that the system will register this check only on machines that support
HiperDispatch. IBM System z10® is the first machine that supports
HiperDispatch.

Reason for check:
HiperDispatch provides a performance improvement by optimizing the use of
system cache. The performance gain HiperDispatch provides typically increases
with a newer hardware generation and can improve with newer releases of
z/OS.

Before enabling HiperDispatch for the first time, review the "Planning
Considerations for HiperDispatch Mode" White Paper located on IBM Techdocs
at http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/
WP101229.

When a machine of a newer hardware generation is installed, for any z/OS
partition(s) that are running with HiperDispatch disabled, the system
programmer should reevaluate whether those z/OS partition(s) should be
migrated to run with HiperDispatch enabled in the new environment.

When a new z/OS release contains a noteworthy performance improvement
for HiperDispatch=YES, the date of the Health Check will be updated. The
date is updated to alert the system programmer that partitions running with
HiperDispatch disabled should be reevaluated to see if it is appropriate to
migrate those partitions to HiperDispatch enabled.

On any z/OS release running on IBM System z10 hardware, HiperDispatch
disabled is the default. On IBM System z10 systems, customers are encouraged
to try running with HiperDispatch enabled.

Beginning with z/OS V1R13 on zEnterprise 196 hardware, HiperDispatch
enabled is the default. With zEnterprise 196 hardware, z/OS partitions with
share greater than two physical processors will typically experience improved
processor efficiency with HiperDispatch enabled. z/OS partitions with share
less than 2 physical processors typically do not receive a detectable
performance improvement with HiperDispatch enabled, but IBM recommends

Supervisor checks

566 IBM Health Checker for z/OS User's Guide

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101229
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101229

running those partitions with HiperDispatch enabled when the performance
improvement is greater than or equal to HiperDispatch disabled. Initially all
z/OS partitions on non-IBM System z10 machines that run HiperDispatch
disabled will result in this Health Check raising an exception. The system
programmer can supply the machine type to this Health Check to indicate that
a partition is intentionally running with HiperDispatch disabled on a particular
machine type.

IBM suggests that all partitions that experience improved or equivalent
processor efficiency with HiperDispatch enabled continue running with
HiperDispatch enabled.

z/OS releases the check applies to:
z/OS V1R13 with apar OA36150 on a zEnterprise 196.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMSUP, SUP_HIPERDISPATCH)
ACTIVE
SEVERITY(MED)
INTERVAL(24:00)
DATE(’date_of_the_change’)
PARM(’HIPERDISPATCH(YES),MachTypes(aaaa,bbbb,...)’)
REASON(’Your reason for making the update.’);

Debug support:
No

Verbose support:
No

Parameters accepted: Yes:

v If the HIPERDISPATCH keyword has a value of 'YES', the check expects
HiperDispatch to be enabled on the machine. The default is 'YES'.

v If the HIPERDISPATCH keyword has a value of 'NO' and the machine is an
IBM System z10, the check expects that HiperDispatch is disabled on the
machine.

v If the HiperDispatch keyword has a value of 'NO' and the machine is not an
IBM System z10, the check's expected HiperDispatch state depends on the
MachTypes parameter.

v MachTypes is optional parameter that contains a list of up to 10 machine
types (for example, the zEnterprise 196 machine type is 2817). When
specified, the MachTypes parameter is always syntactically validated, but it
has no effect on the check's expected HiperDispatch state when the system is
a IBM System z10 or the HIPERDISPATCH(YES) parameter was specified or
defaulted. The MachTypes parameter can only affect the check's expected
HiperDispatch state on a non-IBM System z10 machine with the
HiperDispatch(NO) parameter specified. In this case, the check's expected
HiperDispatch state is determined as follows
– When the current machine type is not in the MachTypes list or the

MachTypes parameter is not specified, the check expects HiperDispatch to
be enabled.

Supervisor checks

Chapter 13. IBM Health Checker for z/OS checks 567

– When the current machine type is in the MachTypes list, the check
expects HiperDispatch to be disabled.

Reference:

v IEAOPTxx (OPT parameters) inz/OS MVS Initialization and Tuning Reference

v SET command in z/OS MVS System Commands

v White Paper titled "Planning Considerations for HiperDispatch Mode"
located on IBM Techdocs: http://www-03.ibm.com/support/techdocs/
atsmastr.nsf/WebIndex/WP101229

Messages:
This check issues the following exception messages:
v IEAVEH071E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SUP_HiperDispatchCPUConfig
Description:

This check monitors the number of CPUs installed and HiperDispatch state of
the system. On systems where HiperDispatch is disabled, this check provides a
warning when the highest CPU ID of any CPU configured to this system is
close to the maximum allowed (X'3F'). On systems where HiperDispatch is
enabled, this check is always successful.

The system runs this check whenever any of the following occur:
v IBM Health Checker for z/OS starts
v HiperDispatch mode switch
v A CPU is dynamically added to the system's configuration

Note that you can only add this check on z/OS releases that support CPU ids
greater than X'3F' and hardware capable of supporting more than 64 CPUs.

Reason for check:
A system with HiperDispatch disabled can use CPU ID 0 through CPU ID
X'3F'. For the system to use CPU IDs above X'3F', the system must have
HiperDispatch enabled.

z/OS releases the check applies to:
z/OS V1R11 and above with APAR OA30476 installed running on z hardware
capable of running with more than 64 CPUs.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMSUP, SUP_HiperDispatchCPUConfig)
ACTIVE
SEVERITY(LOW)
INTERVAL(ONETIME)

Supervisor checks

568 IBM Health Checker for z/OS User's Guide

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101229
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101229

DATE(’date_of_the_change’)
PARM(’CpusLeftB4NeedHd(8)’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, for a machine with HiperDispatch disabled.
PARM('CpusLeftB4NeedHd(n)') specifies the minimum number of remaining
CPUs which must be able to be installed and used with HiperDispatch
disabled for the check to succeed. This value can be from 0 - 63. The default is
8. If you specify a value of 0 for this parameter, the check will never find an
exception.

The system ignores this parameter when HiperDispatch is enabled.

Reference:

v IEAOPTxx (OPT parameters) inz/OS MVS Initialization and Tuning Reference

v Information on HiperDispatch mode in z/OS MVS Planning: Workload
Management

v SET command in z/OS MVS System Commands.

Messages:
This check issues the following exception messages:
v IEAVEH081E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SUP_LCCA_ABOVE_16M
Description:

Checks to see whether the residency mode (RMODE), specified for the LCCA
control block in the CBLOC parameter of the DIAGxx parmlib member, is the
expected value. The default RMODE for the LCCA control block is RMODE 31.
The check will look for RMODE 31 for the LCCA control block unless you
specify an RMODE of 24 in the RMODE parameter for the check.

Reason for check:
The suggested RMODE for the LCCA control block is RMODE 31.

z/OS releases the check applies to:
z/OS V1R12 and higher.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMRCF,SUP_LCCA_ABOVE_16M),
INTERVAL(ONETIME),

Supervisor checks

Chapter 13. IBM Health Checker for z/OS checks 569

SEVERITY(LOW),
PARM(’CBLOC(31)’),
DATE(’date_of_the_change’)
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:

v CBLOC(31), which is the default, specifies that you want the check to
generate an exception if it finds that IHALCCA had been specified within
the CBLOC VIRTUAL24 parameter of the DIAGxx parmlib member.

v CBLOC(24) specifies that you want the check to generate an exception if it
finds that IHALCCA either:
– Had been specified within the CBLOC VIRTUAL31 parameter of the

DIAGxx parmlib member.
– Had not been specified within the CBLOC VIRTUAL24 parameter of the

DIAGxx parmlib member (because CBLOC VIRTUAL31 is the default for
the LCCA)..

Reference:
See the CBLOC parameter in the DIAGxx parmlib member in z/OS MVS
Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IEAVEH091E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SUP_SYSTEM_SYMBOL_TABLE_SIZE
Description:

Checks to see whether the size of the static system symbol table has exceeded
the threshold. The check is initially run once and is also run when the
SETLOAD xx,IEASYM command is successfully processed.

Reason for check:
Monitor the size of the system symbol table.

z/OS releases the check applies to:
z/OS V2R1 and higher.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMSUP,SUP_SYSTEM_SYMBOL_TABLE_SIZE),
INTERVAL(ONETIME),

Supervisor checks

570 IBM Health Checker for z/OS User's Guide

SEVERITY(LOW),
PARM('LIMIT(85%)’),
DATE('20100901'),
Reason('Your reason for making the update.')

Debug support:
No

Verbose support:
No

Parameters accepted:
LIMIT({n | p%}) which defines a threshold value. The value of n may be a
decimal number in the range 1 to 57088. The value of p% identifies a
percentage p in the range 1 to 100, from which the system calculates the
threshold value, based on the system maximum symbol table size of 57088
bytes.

Reference:
See the following in z/OS MVS Initialization and Tuning Reference:
v What are system symbols?
v IEASYMxx
v LOADxx
v

Messages:
This check issues the following exception messages:
v IEAVEH111E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
Example of success message:
IEAVEH110I The system symbol table size is 264 bytes. This has not
exceeded the installation-specified threshold of 264 bytes.
The maximum size is 57088 bytes.

Example of exception message:
IEAVEH111E The system symbol table size is 268 bytes.
The installation-specified threshold of 264 bytes has been exceeded.
The maximum size is 57088 bytes.

Explanation: The check determined
that the system symbol table size has exceeded the
installation-specified threshold.

System Action: The system continues processing.

Operator Response: N/A

System Programmer Response: If you think you will need to add
additional symbols in the future, see if you can consolidate or
eliminate ones that already are defined.

Problem Determination: N/A

Source: Supervisor

Reference Documentation: "What are system symbols", IEASYMxx, and

Supervisor checks

Chapter 13. IBM Health Checker for z/OS checks 571

LOADxx in z/OS MVS Initialization and Tuning Reference

Automation: N/A

Check Reason: Monitor the size of the system symbol table

ZOSMIGV1R12_SUP_LCCA_ABOVE_16M
Description:

Checks to see whether the residency mode (RMODE), specified for the LCCA
control block in the CBLOC parameter of the DIAGxx parmlib member, is the
expected value. The default RMODE for the LCCA control block on z/OS
systems at the pre-z/OS R12 level is RMODE 24. The check will look for
RMODE 24 for the LCCA control block unless you specify an RMODE of 31 in
the RMODE parameter for the check.

Reason for check:
The default RMODE for the LCCA control block is changing from RMODE 24
to RMODE 31 in z/OS V1R12.

z/OS releases the check applies to:
z/OS V1R10 and V1R11.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMSUP,ZOSMIGV1R12_SUP_LCCA_ABOVE_16M),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’CBLOC(31)’),
DATE(’date_of_the_change’)
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:

v CBLOC(31), which is the default, specifies that you want the check to
generate an exception if it finds that IHAPCCA had been specified within
the CBLOC VIRTUAL24 parameter of the DIAGxx parmlib member.

v CBLOC(24) specifies that you want the check to generate an exception if it
finds that IHAPCCA either:
– Had been specified within the CBLOC VIRTUAL31 parameter of the

DIAGxx parmlib member.
– Had not been specified within the CBLOC VIRTUAL24 parameter of the

DIAGxx parmlib member (because CBLOC VIRTUAL24 is the default for
the PCCA).

Reference:
See the CBLOC parameter in the DIAGxx parmlib member in z/OS MVS
Initialization and Tuning Reference.

Supervisor checks

572 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v IEAVEH091E

See the IEAVEH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

System logger checks (IBMIXGLOGR)

IXGLOGR_STAGINGDSFULL
Description:

Reports on log streams that have encountered staging data set full conditions.
When a staging data set is full, new write operations to the log stream fail.
Applications using log streams with a staging data set that fills might
experience a slow down or an outage if the condition is not resolved in a
timely fashion. SMF must be active for system logger to report on staging
dataset full conditions when log streams remain connected.

Reason for check:
IBM recommends that tuning actions be taken to avoid future full conditions.
For more details see message description for IXGH008E.

After conditions are sufficiently corrected before a certain time, set that as a
TIME(mm/dd/yyyy hh:mm:ss) parameter in an UPDATE statement. This will
suppress conditions older than that time. You can cut and paste the time from
the report output.

After updating to TIME(mm/dd/yyyy hh:mm:ss), if you want to see counts
for the log stream values, you'll either have to switch to the ALL parameter, or
review the information from a SMF report.

We recommend that check output be saved for historical purposes, especially if
you perform parameter updates. See the following information for using
HZSPRINT to record check output to a data set or log stream:
v “Optionally set up the HZSPRINT utility” on page 12
v “Setting up security for the HZSPRINT utility” on page 16
v “Using the HZSPRINT utility” on page 37

Because records used to report on this condition are typically filled in at the
time of the system logger SMF reporting interval, conditions that occur
between the time of the last SMF interval and the time the check is run may be
missed. When ALL is specified, these conditions will appear when the report is
run after the next system logger SMF reporting interval. If you update to a
TIME(mm/dd/yyyy hh:mm:ss), parameter after the most recent SMF reporting
interval, some conditions may never be reported on. You can either accept this
loss, set a TIME(mm/dd/yyyy hh:mm:ss) before the most recent SMF interval,
or use the ALL parameter to view these conditions when they become
available.

z/OS releases the check applies to:
z/OS V1R7 and later.

Parameters accepted:
Yes, the check accepts the following parameters to control the time this check
reports conditions from:

Supervisor checks

Chapter 13. IBM Health Checker for z/OS checks 573

PARM('ALL')
The default parameter, ALL specifies that the check display conditions that
happened since system logger was initialized, up to the most recent 16 log
streams that have conditions. For each condition, the report lists the log
stream name, corresponding structure name, time of last occurrence, and
count of occurrences since logger started for each log stream that has a
condition.

PARM('TIME(mm/dd/yyyy hh:mm:ss:)')
This parameter specifies that the check display staging data set full
occurrences that happened since the requested time. For each condition,
the report lists the log stream name, corresponding structure name, and
time of last occurrence. Counts will not be shown when this parameter is
active. The input time, must be a valid GMT, in the requested format, and
can not be a time in the future.

Message IXGH008E or IXGH005I indicate the time the check is reporting
from. If the system detects parameters in an incorrect format, it issues
message IXGH004I and the check stops.

User override of IBM values:
The following shows keywords you can use to override check values on either
the HZSPRMxx parmlib member or on a MODIFY command. This statement
may be copied and modified to override the check defaults:
UPDATE CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL) PARM(’ALL’)

SEVERITY(LOW) INTERVAL(4:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Use the MODIFY command with the UPDATE parameter to change the
IXGLOGR_STAGINGDSFULL check parameters, as follows:

F HZSPROC,UPDATE,CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)
,PARM(’ALL’)

F HZSPROC,UPDATE,CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)
,PARM(’TIME(10/10/2007 17:42:34)’)

You can also use system symbols in an HZSPRMxx member to modify a check
to the current time. The following example shows how to update the check to
only report on current log streams conditions:
1. Update HZSPRMxx to put system symbols in the parameter for

IXLOGR_STAGINGDSFULL., as the following example shows:
UPDATE CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)

PARM(’TIME(&MON/&DAY/&YR4 &HR:&MIN:&SEC)’)

2. Using the following console command to add the updated HZSPRMxx
parmlib members to the list of members that IBM Health Checker for z/OS
is using:
F HZSPROC,ADD,PARMLIB=xx

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXGH008E

See the IXGH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

System logger checks

574 IBM Health Checker for z/OS User's Guide

Output: The following shows output from IXGLOGR_STAGINGDSFULL:
v Output for the no exceptions case:

CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)
START TIME: 10/10/2007 13:30:20.109067
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: ALL

IXGH005I This system has not encountered any log stream staging data set
full conditions since 10/10/2007 13:25:30 (GMT).

END TIME: 10/10/2007 13:30:20.109198 STATUS: SUCCESSFUL

v Output for the check running with PARM(ALL) and some exceptions found:
CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)
START TIME: 10/10/2007 13:52:38.668631
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: ALL

* Low Severity Exception *

IXGH008E One of more log streams encountered a staging data set
full condition since 10/10/2007 13:25:30 (GMT).
...

Time of Last
Log Stream Structure Count Condition (GMT)
TESTLOG1.HCHECK1.D6 *DASDONLY* 12 10/10/2007 17:37:49
TESTLOG1.HCHECK1.S5 STRUCT5 49 10/10/2007 17:38:56
TESTLOG1.HCHECK1.D3 *DASDONLY* 26 10/10/2007 17:40:12
TESTLOG1.HCHECK1.D5 *DASDONLY* 66 10/10/2007 17:41:28
TESTLOG1.HCHECK1.S7 STRUCT7 47 10/10/2007 17:42:34
TESTLOG1.HCHECK1.D1 *DASDONLY* 16 10/10/2007 17:44:00
TESTLOG1.HCHECK1.D2 *DASDONLY* 29 10/10/2007 17:45:06
TESTLOG1.HCHECK1.D4 *DASDONLY* 89 10/10/2007 17:46:12

END TIME: 10/10/2007 13:52:38.670195 STATUS: EXCEPTION-LOW

v Output for the check after it is updated to PARM(‘TIME(10/10/2007 17:42:34)’
and run again. The check now only shows exceptions occurring after the time
specified:
CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)
START TIME: 10/10/2007 13:59:57.386351
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: TIME(10/10/2007 17:42:34)

* Low Severity Exception *

IXGH008E One of more log streams encountered a staging data set
full condition since 10/10/2007 17:42:34 (GMT).
...

Time of Last
Log Stream Structure Count Condition (GMT)
TESTLOG1.HCHECK1.S7 STRUCT7 47 10/10/2007 17:42:34
TESTLOG1.HCHECK1.D1 *DASDONLY* 16 10/10/2007 17:44:00
TESTLOG1.HCHECK1.D2 *DASDONLY* 29 10/10/2007 17:45:06
TESTLOG1.HCHECK1.D4 *DASDONLY* 89 10/10/2007 17:46:12

END TIME: 10/10/2007 13:59:57.388904 STATUS: EXCEPTION-LOW

IXGLOGR_ENTRYTHRESHOLD
Description:

Reports on log streams that have encountered structure entry threshold
conditions. This means that the structure had 90% of the entries in use at one
time. When the entries reach 100%, write operations to all of the log streams in
the structure fail until the full condition is resolved. Applications using the

System logger checks

Chapter 13. IBM Health Checker for z/OS checks 575

affected log streams might experience a slow down or possibly an outage if the
condition is not resolved in a timely fashion. SMF must be active for system
logger to report on entry threshold reached conditions when log streams
reamin connected.

Because this check may flag valid log stream configurations as exceptions, it
has been set to inactive by default. In order to use this check you must activate
it.

Reason for check:
IBM suggests that tuning actions be taken to avoid future entry full conditions.
For more details see message description for IXGH009E.

After conditions are sufficiently corrected before a certain time, set that as a
TIME(mm/dd/yyyy hh:mm:ss) parameter in an UPDATE statement. This will
suppress conditions older than that time. You can cut and paste the time from
the report output.

After updating to TIME(mm/dd/yyyy hh:mm:ss), if you want to see counts
for the log stream values, you'll either have to switch to the ALL parameter, or
review the information from a SMF report.

We recommend that check output be saved for historical purposes, especially if
you perform parameter updates. See the following information for using
HZSPRINT to record check output to a data set or log stream:
v “Optionally set up the HZSPRINT utility” on page 12
v “Setting up security for the HZSPRINT utility” on page 16
v “Using the HZSPRINT utility” on page 37

Note that because records used to report on this condition are typically filled
in at the time of the system logger SMF reporting interval, conditions that
occur between the time of the last SMF interval and the time the check is run
may be missed. When ALL is specified, these conditions will appear when the
report is run after the next system logger SMF reporting interval. If you update
to a TIME(mm/dd/yyyy hh:mm:ss), parameter after the most recent SMF
reporting interval, some conditions may never be reported on. You can either
accept this loss, set a TIME(mm/dd/yyyy hh:mm:ss) before the most recent
SMF interval, or use the ALL parameter to view these conditions when they
become available.

z/OS releases the check applies to:
z/OS V1R7 and later.

Parameters accepted:
Yes, the check accepts the following parameters to control the time this check
reports conditions from:

PARM('ALL')
The default parameter, ALL, specifies that the check display conditions that
happened since system logger was initialized, up to the most recent 16 log
streams that have conditions. For each condition, the report lists the log
stream name, corresponding structure name, time of last occurrence, and
count of occurrences since logger started for each log stream that has a
condition.

PARM('TIME(mm/dd/yyyy hh:mm:ss)')
This parameter specified that the check display exceptions happened since
the requested time. For each exception condition, the report lists the log
stream name, corresponding structure name, and time of last occurrence.

System logger checks

576 IBM Health Checker for z/OS User's Guide

Counts will not be shown when this parameter is active. The input time,
must be a valid GMT, in the requested format, and can not be a time in the
future.

Message IXGH009E or IXGH006I indicates the time the check is reporting
from. If the inputted parameters are in an incorrect format message IXGH004I
will be shown and the check will be stopped.

User override of IBM values:
The following shows keywords you can use to override check values on either
the HZSPRMxx parmlib member or on a MODIFY command. This statement
may be copied and modified to override the check defaults:

UPDATE CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD) PARM(’ALL’)
SEVERITY(LOW) INTERVAL(4:00) DATE(20071106)
REASON(’Logger entry threshold reached conditions
should be investigated to determine if applications
performance is being impacted’)

Use the MODIFY command with the UPDATE parameter to change the
IXGLOGR_ENTRYTHRESHOLD check parameters, as follows:

F HZSPROC,UPDATE,CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD)
,PARM(’ALL’)

F HZSPROC,UPDATE,CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD)
,PARM(’TIME(10/10/2007 19:45:00)’)

You can also use system symbols in an HZSPRMxx member to modify a check
to the current time. The following example shows how to update the check to
only report on current log streams conditions:
1. Update HZSPRMxx to put system symbols in the parameter for

IXLOGR_ENTRYTHRESHOLD., as the following example shows:
UPDATE CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD)

PARM(’TIME(&MON/&DAY/&YR4 &HR:&MIN:&SEC)’)

2. Using the following console command to add the updated HZSPRMxx
parmlib members to the list of members that IBM Health Checker for z/OS
is using:
F HZSPROC,ADD,PARMLIB=xx

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXGH009E

See the IXGH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

Output: The following shows output from IXGLOGR_ENTRYTHRESHOLD:
v Output for the no exceptions case:

CHECK(IBMIXGLOGR,IXGLOGR_ ENTRYTHRESHOLD)
START TIME: 10/10/2007 13:29:58.588368
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: ALL

IXGH006I This system has not encountered any structure entry threshold

System logger checks

Chapter 13. IBM Health Checker for z/OS checks 577

conditions since 10/10/2007 13:25:30 (GMT).

END TIME: 10/10/2007 13:29:58.648301 STATUS: SUCCESSFUL

v Output for the check running with PARM(ALL) and some exceptions found:
CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD)
START TIME: 10/10/2007 16:08:40.099953
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: ALL

* Low Severity Exception *

IXGH009E One of more log streams encountered a structure entry
threshold condition since 10/10/2007 13:25:30 (GMT).
...

Time of Last
Log Stream Structure Count Condition (GMT)
TESTLOG1.HCHECK1.S1 LIST01 1 10/10/2007 19:42:16
TESTLOG1.HCHECK1.S3 LIST02 1 10/10/2007 19:43:02
TESTLOG1.HCHECK1.S2 LIST01 2 10/10/2007 19:43:49
TESTLOG1.HCHECK1.S5 LIST02 1 10/10/2007 19:44:35
TESTLOG1.HCHECK1.S7 LIST01 1 10/10/2007 19:45:22
TESTLOG1.HCHECK1.S6 LIST03 2 10/10/2007 19:46:08
TESTLOG1.HCHECK1.S4 LIST03 1 10/10/2007 19:46:55
TESTLOG1.HCHECK1.S8 LIST03 1 10/10/2007 19:47:41

END TIME: 10/10/2007 16:08:40.102732 STATUS: EXCEPTION-LOW

v Output for the check after it is updated to PARM(‘TIME(10/10/2007 19:45:00)’)
and run again. The check now only shows exceptions occurring after the time
specified:
CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD)
START TIME: 10/10/2007 16:13:05.884363
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: TIME(10/10/2007 19:45:00)

* Low Severity Exception *

IXGH009E One of more log streams encountered a structure entry
threshold condition since 10/10/2007 19:45:00 (GMT).
...

Time of Last
Log Stream Structure Count Condition (GMT)
TESTLOG1.HCHECK1.S7 LIST01 1 10/10/2007 19:45:22
TESTLOG1.HCHECK1.S6 LIST03 2 10/10/2007 19:46:08
TESTLOG1.HCHECK1.S4 LIST03 1 10/10/2007 19:46:55
TESTLOG1.HCHECK1.S8 LIST03 1 10/10/2007 19:47:41

END TIME: 10/10/2007 16:13:05.885974 STATUS: EXCEPTION-LOW
3.3.12.3 IXGLOGR_STRUCTUREFULL

IXGLOGR_STRUCTUREFULL
Description:

Reports on log streams that have encountered structure element full conditions.
This means that the log stream used all of the elements in its portion of the
structure. Additional log streams writes to the structure fail until the full
condition is relieved. Applications using the affected log streams may
experience a slow down or possibly an outage if the condition is not resolved
in a timely fashion. SMF must be active for system logger to report on
structure element full conditions when log streams remain connected.

Reason for check:
IBM suggests that tuning actions be taken to avoid structure element full
conditions. For more details see message description for IXGH007E.

System logger checks

578 IBM Health Checker for z/OS User's Guide

After conditions are sufficiently corrected before a certain time, set that as a
TIME(mm/dd/yyyy hh:mm:ss) parameter in an UPDATE statement. This will
suppress conditions older than that time. You can cut and paste the time from
the report output.

After updating to TIME(mm/dd/yyyy hh:mm:ss), if you want to see counts
for the log stream values, you'll either have to switch to the ALL parameter, or
review the information from a SMF report.

We recommend that check output be saved for historical purposes, especially if
you perform parameter updates. See the following information for using
HZSPRINT to record check output to a data set or log stream:
v “Optionally set up the HZSPRINT utility” on page 12
v “Setting up security for the HZSPRINT utility” on page 16
v “Using the HZSPRINT utility” on page 37

Note that because records used to report on this condition are typically filled
in at the time of the system logger SMF reporting interval, conditions that
occur between the time of the last SMF interval and the time the check is run
may be missed. When ALL is specified, these conditions will appear when the
report is run after the next system logger SMF reporting interval. If you update
to a TIME(mm/dd/yyyy hh:mm:ss), parameter after the most recent SMF
reporting interval, some conditions may never be reported on. You can either
accept this loss, set a TIME(mm/dd/yyyy hh:mm:ss) before the most recent
SMF interval, or use the ALL parameter to view these conditions when they
become available.

z/OS releases the check applies to:
z/OS V1R7 and later.

Parameters accepted:
Yes, this check accepts the following parameters to control the time this check
reports exceptions from:

PARM('ALL')
The default parameter, ALL, specifies that the check display exceptions
occuring since system logger was initialized, up to the most recent 16 log
streams that have conditions. For each exception condition, the report lists
the log stream name, corresponding structure name, time of last
occurrence, and count of occurrences since logger started for each log
stream that has a condition.

PARM('TIME(mm/dd/yyyy hh:mm:ss)')
This parameter specified that the check display exceptions that happened
since the requested time. For each exception condition, the report lists the
log stream name, corresponding structure name, and time of last
occurrence. Counts will not be shown when this parameter is active. The
input time, must be a valid GMT, in the requested format, and can not be a
time in the future.

In the check output, message IXGH007E or IXGH004I indicates the time the
check is reporting from. If the inputted parameters are in an incorrect format,
the system issues message IXGH004I and stops the check.

User override of IBM values:
The following shows keywords you can use to override check values on either
the HZSPRMxx parmlib member or on a MODIFY command. This statement
may be copied and modified to override the check defaults:

System logger checks

Chapter 13. IBM Health Checker for z/OS checks 579

UPDATE CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL PARM(’ALL’)
SEVERITY(LOW) INTERVAL(4:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Use the MODIFY command with the UPDATE parameter to change the
IXGLOGR_ENTRYTHRESHOLD check parameters, as follows:

F HZSPROC,UPDATE,CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL),PARM(’ALL’)

F HZSPROC,UPDATE,CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL),PARM(’TIME(10/10/2007 19:45:00’)

You can also use system symbols in an HZSPRMxx member to modify a check
to the current time. The following example shows how to update the check to
only report on current log streams conditions:
1. Update HZSPRMxx to put system symbols in the parameter for

IXLOGR_ENTRYTHRESHOLD., as the following example shows:
UPDATE CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL)

PARM(’TIME(&MON;/&DAY;/&YR4; &HR;:&MIN;:&SEC;)’)

2. Using the following console command to add the updated HZSPRMxx
parmlib members to the list of members that IBM Health Checker for z/OS
is using:
F HZSPROC,ADD,PARMLIB=xx

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXGH007E

See the IXGH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

Output: The following shows output from IXGLOGR_STRUCTUREFULL:
v Output for the no exceptions case:

CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL)
START TIME: 10/10/2007 13:29:57.788349
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: ALL

IXGH004I This system has not encountered any log stream structure
element full conditions since 10/10/2007 13:25:30 (GMT).

v Output for the check running with PARM(ALL) and some exceptions found:
CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL)
START TIME: 10/10/2007 16:10:49.286937
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: ALL

* Low Severity Exception *

IXGH007E One or more log streams encountered a structure element full
condition since 10/10/2007 13:25:30 (GMT).
...

Time of Last
Log Stream Structure Count Condition (GMT)
TESTLOG1.HCHECK1.S1 LIST01 1 10/10/2007 19:42:16
TESTLOG1.HCHECK1.S3 LIST02 1 10/10/2007 19:43:02
TESTLOG1.HCHECK1.S2 LIST01 2 10/10/2007 19:43:49
TESTLOG1.HCHECK1.S5 LIST02 1 10/10/2007 19:44:35

System logger checks

580 IBM Health Checker for z/OS User's Guide

TESTLOG1.HCHECK1.S7 LIST01 1 10/10/2007 19:45:22
TESTLOG1.HCHECK1.S6 LIST03 2 10/10/2007 19:46:08
TESTLOG1.HCHECK1.S4 LIST03 1 10/10/2007 19:46:55
TESTLOG1.HCHECK1.S8 LIST03 1 10/10/2007 19:47:41

END TIME: 10/10/2007 16:10:49.288364 STATUS: EXCEPTION-LOW

v Output for the check after it is updated to PARM(‘TIME(10/10/2007 19:45:00)’)
and run again. The check now only shows exceptions occurring after the time
specified:
CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL)
START TIME: 10/10/2007 16:12:49.140899
CHECK DATE: 20060615 CHECK SEVERITY: LOW
CHECK PARM: TIME(10/10/2007 19:45:00)

* Low Severity Exception *

IXGH007E One or more log streams encountered a structure element full
condition since 10/10/2007 19:45:00 (GMT).
... Time of Last
Log Stream Structure Count Condition (GMT)
TESTLOG1.HCHECK1.S7 LIST01 1 10/10/2007 19:45:22
TESTLOG1.HCHECK1.S6 LIST03 2 10/10/2007 19:46:08
TESTLOG1.HCHECK1.S4 LIST03 1 10/10/2007 19:46:55
TESTLOG1.HCHECK1.S8 LIST03 1 10/10/2007 19:47:41

END TIME: 10/10/2007 16:12:49.142517 STATUS: EXCEPTION-LOW

System trace checks (IBMSYSTRACE)

SYSTRACE_BRANCH
Description:

Checks to see whether system trace is using the BR=ON parameter of the
TRACE command and has been active for a longer time than the defined
duration.

Reason for check:
A branch trace runs continuously so an active unneeded BRANCH=ON option
can cause degraded system performance. Use branch tracing only for short
periods of time to solve a specific problem and do not use branch tracing as
the default for system tracing on your system. BR=ON is intended for use in
system software problem determination and diagnosis situations only.

z/OS releases the check applies to:
z/OS V2R1 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(SYSTRACE_BRANCH) OWNER(IBMSYSTRACE)
ACTIVE
DEBUG(OFF)
INTERVAL(4:00),
SEVERITY(LOW),

System logger checks

Chapter 13. IBM Health Checker for z/OS checks 581

PARM('TIME(DAYS,07)’),
DATE('20110601'),
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
Yes

Parameters accepted:
No.

Reference:
See the following information:
v TRACE command in z/OS MVS System Commands.
v Tracing branch instructions in z/OS MVS Diagnosis: Tools and Service Aids.

Messages:
This check issues the following exception messages:
v IEAH801E

See the IEAH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

SYSTRACE_MODE
Description:

Checks to see whether system trace is using the MODE=ON parameter of the
TRACE command and has been active for a longer time than the defined
duration.

Reason for check:
A mode trace runs continuously, so an active unneeded MODE=ON option can
cause degraded system performance. Use mode tracing only for short periods
of time to solve a specific problem and do not use mode tracing as the default
for system tracing on your system. MODE=ON is intended for use in system
software problem determination and diagnosis situations only.

z/OS releases the check applies to:
z/OS V2R1 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(SYSTRACE_MODE) OWNER(IBMSYSTRACE)
ACTIVE
DEBUG(OFF)
INTERVAL(4:00),
SEVERITY(LOW),
PARM('TIME(DAYS,07)’),
DATE('20110601'),
Reason(’Your reason for making the update.’)

System trace checks

582 IBM Health Checker for z/OS User's Guide

Debug support:
No

Verbose support:
Yes

Parameters accepted:
No.

Reference:
See the following information:
v TRACE command in z/OS MVS System Commands.
v MODE and MOBR trace entries in z/OS MVS Diagnosis: Tools and Service

Aids.

Messages:
This check issues the following exception messages:
v IEAH804E

See the IEAH messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Timer supervisor checks (IBMTIMER)

ZOSMIGREC_SUP_TIMER_INUSE
Description:

Verify that Server Time Protocol (STP) is in use, when appropriate.

Reason for check:
Server Time Protocol is recommended because the Sysplex Timer (9037-002)
has been withdrawn from marketing and STP is planned to be its replacement.

z/OS releases the check applies to:
z/OS V1R11 and later.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMTIMER, ZOSMIGREC_SUP_TIMER_INUSE)
INACTIVE
SEVERITY(LOW) INTERVAL(ONETIME) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
For more information on the migration action from the Sysplex Timer to STP,
see z/OS V2R2 Migration. To implement STP, see the STP Web site and the

System trace checks

Chapter 13. IBM Health Checker for z/OS checks 583

publications and other resources that are listed there. The STP Web site is at
http://www.ibm.com/systems/z/pso/stp.html.

Messages:
This check issues the following exception messages:
v IEATH005E
v IEATH006E
v IEATH009E

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for MLS users:
SYSLOW

TSO/E (IBMTSOE)

TSOE_OPERSEWAIT_SETTING
Description:

This check will report whether the current setting of OPERSEWAIT matches
the preferred installation setting.

Reason for check:
The default setting for OPERSEWAIT (in IKJTSOxx parmlib member) prior to
z/OS V2R2 is ON which means the SEND command will wait for a users
VTAM buffer to free up and the message to be sent, instead of failing the
command when a buffer is unavailable. When the SEND command is holding
a resource such as the SYSIKJBC exclusive enqueue on the broadcast data set,
this can hold up any TSO/E LOGONs on the system. Beginning in z/OS V2R2
the default setting of OPERSEWAIT is OFF.

z/OS releases the check applies to:
z/OS V2R2 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,

CHECK(IBMTSOE,TSOE_OPERSEWAIT_SETTING),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM('OFF'),
REASON(’Verify OPERSEWAIT is the preferred setting.’)
DATE('date_of_the_change')

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes

OFF
The preferred installation setting of OPERSEWAIT is OFF. This is the
default.

ON The preferred installation setting of OPERSEWAIT is ON.

Timer supervisor checks

584 IBM Health Checker for z/OS User's Guide

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

||

http://www.ibm.com/systems/z/pso/stp.html

Reference:
For additional information, see z/OS MVS Initialization and Tuning Reference,
z/OS TSO/E Customization and z/OS TSO/E System Programming Command
Reference

Messages:
This check issues the following exception messages:
v IKJH0402E

See z/OS TSO/E Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

TSOE_PARMLIB_ERROR
Description:

This check will report on whether any of the groupings of TSO/E settings
failed to be built at IPL due to an error processing the commands in IKJTSOxx.
The groups of settings that were defaulted due to any errors will be listed by
this check.

Reason for check:
For ease of maintenance and dynamic updates, IBM suggests that TSO/E
system wide settings be managed via a PARMLIB member, IKJTSOxx. If there
is a syntax error or other error in processing the definitions in the PARMLIB
member, TSO/E will default to a set of definitions that may not be desirable
for the system being IPLd.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMTSOE,TSOE_PARMLIB_ERROR)
SEVERITY(LOW) INTERVAL(ONETIME) DATE(20070607)
REASON(’PARMLIB errors may have occurred during IPL’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See z/OS TSO/E Customization

Messages:
This check issues the following exception messages:
v IKJH0302E
v IKJH0303E
v IKJH0304E

TSO/E checks

Chapter 13. IBM Health Checker for z/OS checks 585

|
|
|
|

|
|

|

|

|
|
|

See z/OS TSO/E Messages.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

TSOE_USERLOGS
Description:

This check will report on whether user logs are being used for the receipt of
sent messages.

Reason for check:
You should use user logs be used for processing user's messages. If you do not
use them, the result can be contention on the system brodcast data set and the
possibility of one user tying up the system while the user is accessing user
mail.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMTSOE,TSOE_USERLOGS)
SEVERITY(LOW) INTERVAL(ONETIME) DATE(20070607)
REASON(’User logs should be in use’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See z/OS TSO/E Customization

Messages:
This check issues the following exception messages:
v IKJH0202E

See z/OS TSO/E Messages.

Messages:
See .

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

z/OS UNIX System Services checks (IBMUSS)

USS_AUTOMOUNT_DELAY
Description:

Automount delay configuration values in a sysplex are at least 10 minutes

TSO/E checks

586 IBM Health Checker for z/OS User's Guide

Reason for check:
Each configuration should have a delay time of at least 10 minutes. Anything
lower can cause the system to hang, continually trying to unmount file systems
and failing. The message will show the automount configured directory, the
configuration name and the delay value.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMUSS,USS_AUTOMOUNT_DELAY)
SEVERITY(MED)
INTERVAL(24:00)
PARM(’DELAY=10’)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes. Specify either PARM('DELAY=delay') or PARM('delay'). The default is
PARM('DELAY=10')

Reference:
See:
v z/OS UNIX System Services Planning for information on using the automount

facility.
v z/OS UNIX System Services Command Reference for information on the

automount command.

Messages:
This check issues the following exception messages:
v BPXH030E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

USS_CLIENT_MOUNTS
Description:

This check will generate an exception when a file system is found that is
function shipping but could be mounted locally.

Reason for check:
File systems should not function ship if they can be mounted locally to avoid
performance degradation.

z/OS releases the check applies to:
z/OS V1R10 and later.

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 587

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMUSS,USS_CLIENT_MOUNTS)
SEVERITY(MED) INTERVAL(1:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See:
v z/OS UNIX System Services Planning .
v z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v BPXH065E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output: The following shows output from the check:
CHECK(IBMUSS,USS_CLIENTS_MOUNTS)
CHECK DATE: 20070809 CHECK SEVERITY: MEDIUM

BPXH003I z/OS UNIX System Services was initialized using OMVS=(DD,DN),
where each 2-character item is a BPXPRMxx suffix.

BPXH063I The following file systems are available through a remote owner
system:

File System: MYHFS
Mount Mode: READ
PFS Type: HFS

* Medium Severity Exception *

BPXH065E One or more file systems that should be locally mounted are
available through a remote system.

Explanation: Check USS_CLIENTS_MOUNTS found one or more file systems
that are should be locally mounted. This condition occurs in a
shared file system configuration. The file system was intended to
be mounted locally but either the local or the owning physical file
system has become inactive. The file system is made available
through a remote mount on the owning system.

System Action: The file system is available through the remote system
for processing.

z/OS UNIX checks

588 IBM Health Checker for z/OS User's Guide

Operator Response: N/A

System Programmer Response: The file system should be accessible
through a local mount. Determine why it is not and correct the
situation. The original mount of the file system may have failed
because the file system is not accessible from the local system.
The file system may have been correctly mounted and subsequently
converted to a remote mount if the physical file system is no longer
active.
If the physical file system is TYPE(NFS), make sure that TCPIP is
operational on this system.

Otherwise, it may be necessary to unmount the file system and then
mount it again.

Problem Determination: See BPXH063I in the message buffer.

Source: z/OS UNIX System Services

Reference Documentation:
For information on modifing BPXPRMxx see:
Customizing z/OS UNIX in z/OS UNIX System Services Planning
BPXPRMxx in z/OS MVS Initialization and Tuning Reference

For information on using the DISPLAY OMVS,MF command see:
DISPLAY in MVS System Command Reference in z/OS MVS System Commands

Automation: N/A

Check Reason: File systems should not function ship if they can be
mounted locally. Performance is not optimal in this situation.

END TIME: 11/14/2007 16:37:17.405073 STATUS: EXCEPTION-MED

USS_FILESYS_CONFIG
Description:

Evaluates the file system configuration, which includes:
v AUTOMOVE setup verification
v zFS for a multilevel security configuration.
v Mode (either RDWR/READ) of the root, system specific, and version HFSs.

Reason for check:
The system specific file system should be mode RDWR. The version file system
should be mode READ.

Define your version and sysplex root file systems as AUTOMOVE and define
your system-specific file systems as UNMOUNT. Do not define a file system as
NOAUTOMOVE or UNMOUNT and a file system underneath it as
AUTOMOVE. If you do, the file system defined as AUTOMOVE will not be
available until the failing system is restarted. A sysplex file system that
changes ownership as the result of a system failure, will only be accessible in
the new environment if its mount point is also accessible. The Automove check
verifies that your file systems are set up according to these rules. This check is
only applicable for images that are part of a sysplex.

The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on ROOT and
MOUNT indicate what happens to the file system if the system that owns that
file system goes down. The AUTOMOVE parameter specifies that ownership of
the file system is automatically moved to another system. It is the default. The
NOAUTOMOVE parameter specifies that the file system will not be moved if

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 589

the owning system goes down and the file system is not accessible.
–UNMOUNT specifies that the file system will be unmounted when the
system leaves the sysplex.

z/OS releases the check applies to:
z/OS V1R4 and later. On a z/OS V1R4 system, the check does not evaluate
zFS for an MLS configuration.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMUSS,USS_FILESYS_CONFIG)
SEVERITY(HI)
INTERVAL(24:00)
PARM(’SYSPLEX’)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes:
v PARM('SYSPLEX') - Specifies that the check verify file system configuration.

This is the default when SYSPLEX(YES) is specified in the BPXPRMxx
parmlib member.

v PARM('NOPLEX') - Verifies the MLS configuration. This is the default when
SYSPLEX(NO) is specified in the BPXPRMxx parmlib member.

Note: You may use PARM(’NOPLEX’) when SYSPLEX(YES) is specified in the
BPXPRMxx parmlib member if you only want to verify the MLS configuration.

Reference:
For more information on file systems, see z/OS UNIX System Services Planning,
and APAR II3129.

Messages:
This check issues the following exception messages:
v BPXH002E
v BPXH007E
v BPXH011E
v BPXH012E
v BPXH014E
v BPXH015E
v BPXH017E
v BPXH018E
v BPXH024E
v BPXH025E
v BPXH028E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

z/OS UNIX checks

590 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

USS_HFS_DETECTED
Description:

The check verifies all file systems mounted and issues an exception message if
any HFS file systems are found. The check only looks for HFS file systems that
are owned on the system running the health check.

This check runs any time an HFS file system is successfully mounted, unless
overridden by the RUN_ON_MOUNT=NO parameter. The check will also run
any time MODIFY BPXOINIT,FILESYS=REINIT is issued.

The check does not run after the MODIFY OMVS,NEWROOT=xxx command is issued.

Reason for check:
HFS file systems are no longer the strategic file system. All HFS file systems
should be migrated to zFS.

z/OS releases the check applies to:
z/OS V1R11 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMUSS,USS_HFS_DETECTED)
SEVERITY(LOW)
INTERVAL(24:00)
PARM('RUN_ON_MOUNT=YES')
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes:
v RUN_ON_MOUNT=YES|NO - indicates whether or not the check should

run after the successful mount of an HFS file system.
RUN_ON_MOUNT=YES is the default.

v HFS_LIST=(listoffile systems) - A list of HFS file systems that you wish this
check to ignore. The check will not issue exception messages for a file
system mounted with that name. Each file system name can be from 1 to 44
characters long. File system names are separated by a comma. You can
specify up to either 23 file systems or however many will fit within the 256
character limit for check parameters.
An example of this parameter might be
HFS_LIST=(USS.ROOT.HFS,MYFILE.HFS)

Reference:
For more information on file systems, see Managing the z/OS UNIX file
system in z/OS UNIX System Services Planning.

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 591

Messages:
This check issues the following exception messages:
v BPXH068E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output: The following shows output from the check:
CHECK(IBMUSS,USS_HFS_DETECTED)
START TIME: 05/08/2009 16:06:02.974215
CHECK DATE: 20090427 CHECK SEVERITY: LOW
CHECK PARM: HFS_LIST=(ZOS112.LPP.HFS)

BPXH003I z/OS UNIX System Services was initialized using OMVS=(2W,DN),
where each 2-character item is a BPXPRMxx suffix.

BPXH069I The following HFS file systems were found:

ZOS112.NLS.HFS
ZOS112.MAN.HFS

* Low Severity Exception *

BPXH068E One or more HFS file systems mounted.

Explanation: The USS_HFS_DETECTED check found one or more active HFS
file systems on the current system.

System Action: The system continues processing.

Operator Response: Report this problem to the system programmer.

System Programmer Response: HFS file systems are no longer the
strategic file system. All HFS file systems should be migrated to
zFS.

Problem Determination: See BPXH069I in the message buffer.

Source: z/OS UNIX System Services

Reference Documentation: For information on migrating the HFS file
system to a zFS file system see the chapter on Managing the z/OS
file system in z/OS UNIX System Services Planning

Automation: N/A

Check Reason: HFS file systems are no longer the strategic file file
system. All HFS file systems should be migrated to zFS.

END TIME: 05/08/2009 16:06:02.985862 STATUS: EXCEPTION-LOW

USS_KERNEL_PVTSTG_THRESHOLD
Description:

This check monitors the current usage of private below-the-bar storage of the
UNIX System Services kernel against a suggested threshold.

z/OS UNIX checks

592 IBM Health Checker for z/OS User's Guide

Reason for check:
Exhausting the kernel private below-the-bar storage will cause unpredictable
errors because resources can no longer be obtained, which could potentially
bring down z/OS UNIX.

z/OS releases the check applies to:
z/OS V2R1 and later.

User override of IBM values:
Use the keywords in the following statement to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement can be copied and modified to override the check
defaults:
UPDATE,

CHECK(IBMUSS,USS_KERNEL_PVTSTG_THRESHOLD),
INTERVAL(00:02),
SEVERITY(HIGH),
PARM('PVTSTG_HIGH(90%),PVTSTG_MED(85%),PVTSTG_LOW(80%)’),
DATE(’20131005’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, as follows:
v When not using dynamic severity:

– PVTSTG(pvtstg%) where an integer, 0-100, followed by a %, indicating the
threshold percent for usage of kernel private storage below the bar that
was available after kernel initialization. An exception message is
displayed when system values are equal to or greater than pvtstg%. The
severity of the exception message depends on the system's % usage of
kernel private storage that is below the bar.
- A percentage of 80-84 is low severity.
- A percentage of 85-89 is medium severity.
- A percentage above 89 is high severity.

v When using user-specified dynamic severity, which is only valid with
KERNELSTACKS(ABOVE):
– PVTSTG_HIGH(pvtstg%)
– PVTSTG_MED(pvtstg%)
– PVTSTG_LOW(pvtstg%)
– PVTSTG_NONE(pvtstg%)

pvtsg%
An integer, 0-100 followed by a %, indicating the threshold percent for
usage of kernel private storage below the bar that was available after
kernel initialization.

When using dynamic severity, you can specify one or more thresholds. If
a threshold value for a given severity is not specified, no exception
message is issued for that level. If PVTSTG is specified along with any
PVTSTG_xxx values, the PVTSTG value is ignored and the exception
severity coincides with the specified parameters.

Default: PVTSTG(85%)

You can use synonyms for these parameters as follows:

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 593

|
|
|

|

|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

Parameter Synonyms

PVTSTG_HIGH PVTSTG_H or PVTSTG_HI

PVTSTG_MED PVTSTG_M

PVTSTG_LOW PVTSTG_L

PVTSTG_NONE PVTSTG_NO or PVTSTG_NO

Reference:
None.

Messages:
This check issues the following exception message:
v BPXH072E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information about using security labels.

USS_KERNEL_RESOURCES_THRESHOLD
Description:

This check monitors the current usage of z/OS UNIX System Services kernel
resources.

Reason for check:
Running out of z/OS UNIX System Services kernel resources can cause system
calls to start failing.

z/OS releases the check applies to:
z/OS V2R2 and later.

User override of IBM values:
Use the keywords in the following statement to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement can be copied and modified to override the check
defaults:
UPDATE,
CHECK(IBMUSS,USS_KERNEL_RESOURCES_THRESHOLD),
INTERVAL(00:02),
SEVERITY(HIGH),
PARM('KRES_HIGH(90%),KRES_MED(85%),KRES_LOW(80%)’),
DATE('20150905')

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes, as follows:
v The following parameters use dynamic severity:

– KRES_HIGH(resourcepct%)
– KRES_MED(resourcepct%)
– KRES_LOW(resourcepct%)
– KRES_NONE(resourcepct%)

z/OS UNIX checks

594 IBM Health Checker for z/OS User's Guide

|||

||

||

||

||
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|

|

|

|

|

resourcepct% - An integer, 0-100 followed by a %, indicating the threshold
percent for resources.
If you are using dynamic severity, you can specify one or more thresholds. If
a threshold value for a given severity is not specified, no exception message
is issued for that level.

Default: KRES_HIGH(90%), KRES_MED(85%), KRES_LOW(80%)

You can use synonyms for these parameters as follows:

Parameter Synonyms

KRES_HIGH KRES_H or KRES_HI

KRES_MED KRES _M

KRES_LOW KRES_L

KRES_NONE KRES_NO or KRES_N

Reference:
None.

Messages:
This check issues the following exception message:
v BPXH077E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information about using security labels.

Output:
The following shows output from the check - note that symbolic links in the
path are not resolved in the output:
CHECK(IBMUSS,USS_KERNEL_RESOURCES_THRESHOLD)
SYSPLEX: LOCAL SYSTEM: SY1
START TIME: 10/24/2014 10:26:54.200466
CHECK DATE: 20140908 CHECK SEVERITY: HIGH-DYNAMIC
CHECK PARM: KRES_HIGH(90%),KRES_MED(85%),KRES_LOW(80%)

BPXH078I The following resources are being monitored:

Threads 11/ 500000 (0%)

END TIME: 10/24/2014 10:26:54.261677 STATUS: SUCCESSFUL

USS_KERNEL_STACKS_THRESHOLD
Description:

This check monitors the current usage of z/OS UNIX kernel stacks cell pool
cells against a suggested threshold. The check gets automatically DISABLED if
KERNELSTACKS(ABOVE) is active.

Reason for check:
If the number of kernel stack cell pool cells in use reaches the system
maximum, additional cells cannot be allocated and system calls that use the
kernel address space are disallowed. By monitoring stack cell usage
installations might be able to prevent impacts to critical workloads by
quiescing noncritical workloads before the supply of stack cells is exhausted.

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 595

|
|

|
|
|

|

|

|||

||

||

||

||
|

|
|

|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

z/OS releases the check applies to:
z/OS V2R1 and later.

User override of IBM values:
The following statement shows keywords that you can use to override check
values on either a POLICY statement in the HZSPRMxx parmlib member or on
a MODIFY command. This statement can be copied and modified to override
the check defaults:
UPDATE,
CHECK(IBMUSS,USS_KERNEL_STACKS_THRESHOLD),
INTERVAL(00:02),
SEVERITY(HIGH),
PARM(’STACKS(85%)'),
DATE(’20131005’)

Debug support:
No

Verbose support:
No

Parameters accepted:

v STACKS(n%) where n is an integer, 0-100, indicating the threshold percent
for utilization of kernel stack cell pool cells.

v Default: STACKS(85%)

Reference:
See:
v z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v BPXH071E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information about using security labels.

USS_MAXSOCKETS_MAXFILEPROC
Description:

MAXSOCKETS (AF_INET) and MAXFILEPROC are set high enough

Reason for check:
This check will look at the values for MAXSOCKETS and MAXFILEPROC and
give an exception message if either is too low. If set too low, you can run out
of sockets or file descriptors that can be used. MAXSOCKETS and
MAXFILEPROC values will each be compared to 64000 unless the value is
overridden in HZSPRMxx.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

z/OS UNIX checks

596 IBM Health Checker for z/OS User's Guide

UPDATE CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)
SEVERITY(LOW)
INTERVAL(24:00)
PARM(’MAXSOCKETS=64000,MAXFILEPROC=64000’)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes. PARM('MAXSOCKETS=maxsockets,MAXFILEPROC=maxfileproc')
MAXSOCKETS and MAXFILEPROC are required integer values to be
compared with internal values.
v The valid range for MAXSOCKETS is 0 through 16777215.
v The valid range for MAXFILEPROC is 3 through 524287.

The default is PARM(' MAXFILESOCKETS=64000,MAXFILEPROC=64000').

You can also specify these parameters without keywords, as
PARM('maxsockets,maxfileproc').

Reference:
See:
v z/OS MVS System Commands for information on the SETOMVS command.
v z/OS UNIX System Services Planning for information on how to change the

MAXSOCKETS and MAXFILEPROC values using the SETOMVS command.

Messages:
This check issues the following exception messages:
v BPXH032E
v BPXH033E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

USS_PARMLIB
Description:

This check will compare z/OS UNIX System Services current system settings
with those specified in the BPXPRMxx parmlib members used during
initialization and issue an exception message if a difference is found. For
PARM values on the MOUNT statement, the check is case sensitive, detecting
and raising an exception for otherwise identical values that are expressed in
different cases.

Note that if a dynamic symbolic is contained in the value specification for any
BPXPRMxx statement, that statement may be flagged as changed because the
current dynamic value is different from the value that was used when the
BPXPRMXX statement was originally processed.

If the system finds syntax errors in one or more of the BPXPRMxx parmlib
members the check issues message BPXH046E. If syntax errors are found, the
check does not make a comparison between the system and the parmlib
settings. You must correct all syntax errors before the check will compare the

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 597

system and the parmlib settings. See the explanation for message BPXH046E in
z/OS MVS System Messages, Vol 3 (ASB-BPX) for more information.

The z/OS UNIX dynamic settings that will be checked are:

z/OS UNIX dynamic settings checked

AUTHPGMLIST
AUTOCVT
FILESYSTYPE
FORKCOPY
IPCSEMNIDS
IPCSEMNOPS
IPCSEMNSEMS
IPCMSGNIDS
IPCMSGQBYTES
IPCMSGQMNUM
IPCSHMMPAGES
IPCSHMNIDS
IPCSHMNSEGS
IPCSHMSPAGES
LIMMSG
LOSTMSG
MAXASSIZE
MAXCORESIZE
MAXCPUTIME
MAXFILEPROC
MAXFILESIZE
MAXMMAPAREA
MAXPIPEUSER

MAXPROCSYS
MAXPROCUSER
MAXPTYS
MAXQUEUEDSIGS
MAXSHAREPAGES
MAXUIDS
MAXUSERMOUNTSYS
MAXUSERMOUNTUSER
MOUNT FILESYSTEM
NETWORK
NONEMPTYMOUNTPT
PRIORITYGOAL
PRIORITYPG
ROOT FILESYSTEM
SHRLIBMAXPAGES
SHRLIBRGNSIZE
STEPLIBLIST
SUPERUSER
SYSCALL_COUNTS
TTYGROUP
USERIDALIASTABLE
VERSION

v For the FILESYSTYPE statement, the types specified in the BPXPRMxx
parmlib members will be compared to what Physical File Systems are
currently running.

v For the ROOT/MOUNT FILESYSTEM statements, the following will be
checked:
– Mount point
– Mode, RDWR for example.
– Automove setting. Note that AUTOMOVE and system list are both

treated as AUTOMOVE.
– PARM subparameter

v For the NETWORK statement, only the MAXSOCKETS value will be
checked for AF_INET and AF_INET6.

Reason for check:
When dynamic changes are made to z/OS UNIX, the BPXPRMxx parmlib
members should be updated with the changes so that they will be available the
next time z/OS UNIX is initialized.

z/OS releases the check applies to:
z/OS V1R9 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

z/OS UNIX checks

598 IBM Health Checker for z/OS User's Guide

UPDATE
CHECK(IBMUSS,USS_PARMLIB)
SEVERITY(LOW) INTERVAL(01:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See:
v z/OS UNIX System Services Planning

v z/OS MVS Initialization and Tuning Reference

Messages:
This check issues the following exception messages:
v BPXH040E
v BPXH046E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output:
CHECK(IBMUSS,USS_PARMLIB)
START TIME: 03/29/2006 16:09:05.512021
CHECK DATE: 20060112 CHECK SEVERITY: LOW

BPXH003I z/OS UNIX System Services was initialized using OMVS=(DD,DN),
where each 2-character item is a BPXPRMxx suffix.

BPXH041I The following differences were found between the system
settings and the BPXPRMxx parmlib concatenation:

Option BPXPRMxx Value System Value

MAXFILEPROC 256 111
MAXPTYS 256 255
MAXCPUTIME 1000 999

Physical File Systems not in parmlib

AUTOMNT

Changed File Systems

File System: ZOS18.ETC.HFS
BPXPRMxx Value:
Path: etc
Automove: AUTOMOVE
Access: RDWR
Parm: NONE

System Value:
Path: etc
Automove: AUTOMOVE

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 599

Access: READ
Parm: NONE

File System: MYHFS
BPXPRMxx Value:
Path: /jkad
Automove: AUTOMOVE
Access: RDWR
Parm: NONE

System Value:
This file system is currently not mounted.

* Low Severity Exception *

BPXH040E One or more differences were found between the system settings
and the settings in the current BPXPRMxx parmlib concatenation.

Explanation: Check USS_PARMLIB detected changes made to either the
system settings or to the BPXPRMxx parmlib members.

System Action: The system continues processing.

Operator Response: Report this problem to the system programmer.

System Programmer Response: View the message buffer for information
on what values have changed. Use the DISPLAY OMVS,OPTIONS command
to view what the current system settings are. The system values can
be changed dynamically by using the SETOMVS command. If the current
system values are desired, then a permanent definition should be
created so the values will be available the next time z/OS UNIX
System Services is initialized. A permanent definition can be
created by editing the BPXPRMxx parmlib members to include the
desired values.

Problem Determination: See BPXH041I in the message buffer.

Source: z/OS UNIX System Services

Reference Documentation: See MVS System Command Reference in z/OS
MVS System Commands for information on using the DISPLAY
OMVS,OPTIONS command. See MVS System Command Reference in z/OS MVS
System Commands and Managing operations, section: Dynamically
changing the BPXPRMxx parameter values in z/OS UNIX System Services
Planning for information on using the SETOMVS command. See
Customizing z/OS UNIX in z/OS UNIX System Services Planning and
BPXPRMxx in z/OS MVS Initialization and Tuning Reference for
information on editing the BPXPRMxx parmlib members.

Automation: N/A

Check Reason: Reconfiguration settings should be kept in a permanent
location so they are available the next time z/OS UNIX is
initialized.

USS_PARMLIB_MOUNTS
Description:

This check will generate an exception when a file system in ROOT or MOUNT
statement specified in the BPXPRMxx parmlib members used during
initialization fails to mount. Mount failures due to duplicate MOUNT
statements with different attributes, such as mount point or mode, will not be
flagged by this check.

z/OS UNIX checks

600 IBM Health Checker for z/OS User's Guide

Note that symbolic links in the path will not be resolved in the output for
check exception in system message BPXH059I.

The check is rerun automatically after the failing file system is successfully
mounted and after issuing the F BPXOINIT,FILESYS=REINIT system command.
However, USS_PARMLIB_MOUNTS only checks the values that were specified
in BPXPRMxx at initialization time. If BPXPRMxx has been updated since then
with different values, those values will not be included in any subsequent
checks.

Reason for check:
BPXPRMxx parmlib mount failures should be corrected in a timely manner to
avoid outages.

z/OS releases the check applies to:
z/OS V1R10 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMUSS,USS_PARMLIB_MOUNTS)
SEVERITY(HIGH) INTERVAL(ONCE) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No

Reference:
See:
v z/OS UNIX System Services Planning .
v z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v BPXH061E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Output: The following shows output from the check - note that symbolic links in
the path are not resolved in the output:
CHECK(IBMUSS,USS_PARMLIB_MOUNTS)
START TIME: 11/30/2007 13:23:50.671024
CHECK DATE: 20070809 CHECK SEVERITY: HIGH

BPXH003I z/OS UNIX System Services was initialized using OMVS=(D3,DN),
where each 2-character item is a BPXPRMxx suffix.

BPXH059I The following file systems are not active:

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 601

File System: DAN.HFS
Parmlib Member: BPXPRMDN
Path: /asd
Return Code: 00000081
Reason Code: 1288005C

* High Severity Exception *

BPXH061E One or more file systems specified in the BPXPRMxx parmlib
members are not mounted.

Explanation: During the USS_PARMLIB_MOUNTS check, one or more
file systems that were specified in the BPXPRMxx parmlib members
used for initialization were found not to be active.

System Action: The system continues processing.

Operator Response: Report this problem to the system programmer.

System Programmer Response: Review the return code and reason code in
the summary message and determine why the file systems are not
active. Correct the problem using documented procedures. After the
problem has been corrected, mount each file system using one of the
following procedures:

Ask a superuser to enter the corrected information using the TSO/E
MOUNT command or the mount shell command. If the statement in
error was the ROOT statement, specify ’/’ as the mount point.

Alternatively, the SET OMVS=(xx) system command can be issued,
where "xx" is the last two characters of a BPXPRMxx parmlib member
that contains the MOUNT statement(s) to re-process.

Problem Determination: See BPXH059I in the message buffer.

Source: z/OS UNIX System Services

Reference Documentation:
For information on modifing BPXPRMxx see:
Customizing z/OS UNIX in z/OS UNIX System Services Planning
BPXPRMxx in z/OS MVS Initialization and Tuning Reference

For information on using the DISPLAY OMVS,MF command see:
DISPLAY in MVS System Command Reference in z/OS MVS System Commands

Automation: N/A

Check Reason: BPXPRMxx parmlib mount failures can cause outages if
not handled in a timely manner.

END TIME: 11/30/2007 13:23:50.709436 STATUS: EXCEPTION-HIGH

ZOSMIGREC_ROOT_FS_SIZE
Description:

Because of release enhancements and service, the size of the z/OS root file
system (or “version root file system”) continues to grow from release to
release. As of z/OS V1R10, the size of the z/OS root file system, whether HFS
or zFS, was approximately 3100 cylinders on a 3390 Direct Access Storage
Device. This is close to the limit of 3339 cylinders on a 3390-3 device, and if
not accommodated can halt the installation.

This check examines the volume that the version root file system resides on,
and if that volume has an acceptable amount of available cylinders. This check
passes if the volume that the version root file system resides on has an amount
of available cylinders greater than the minimum required (Defaulted at 500

z/OS UNIX checks

602 IBM Health Checker for z/OS User's Guide

cylinders). This check fails if the volume that the version root file system
resides on has an amount of available cylinders less than the minimum
required (Defaulted at 500 cylinders). This check will also fail if the Health
Check userid does not have READ access on the OPERCMDS
MVS.DISPLAY.OMVS resource.If the version root file system data set is
SMS-managed, this check is not applicable.

Reason for check:
Verify size accommodation for the z/OS root file system to prevent halt on
installation.

z/OS releases the check applies to:
z/OS V1R9 and later.

Parameters accepted:

MIN_CYLINDERS
The amount of cylinders available. You can specify a value in the range
200-1000000. The default is 500.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMUSS, ZOSMIGREC_ROOT_FS_SIZE)
VERBOSE(NO)
SEVERITY(LOW)
INTERVAL(ONETIME)
INACTIVE
DATE(’date_of_the_change’)
PARM('MIN_CYLINDERS=500')
REASON(’Your reason for making the update.’)

Debug support:
Yes

Verbose support:
No

Reference:
For more information on the migration action for keeping your z/OS root file
system accommodated, see Accommodate changes to support read-only z/OS
root for the cron, mail, and uucp utilities in z/OS V2R2 Migration.

Messages:
This check issues the following exception messages:
v BPXH903E
v BPXH904E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX)

SECLABEL recommended for MLS users:
SYSLOW

ZOSMIGV1R13_RO_SYMLINKS
Description:

Before z/OS V1R13, certain post-installation activities had to be done for each
new release for the cron, mail, and uucp utilities in order for the root file
system to be mounted read-only. Starting in z/OS V1R13, the /usr/lib/cron,

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 603

/usr/mail, and /usr/spool directories are provided as symbolic links. On
z/OS V1R11 and z/OS V1R12 this check will indicate whether you will be
affected by this migration action in z/OS V1R13.

Reason for check:
Verify whether the z/OS V1R13 changes for cron, mail, and uucp to support a
read-only root will affect a system.

z/OS releases the check applies to:
z/OS V1R11 and V1R12.

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMUSS, ZOSMIGV1R13_RO_SYMLINK)
VERBOSE(NO)
DEBUG(NO)
SEVERITY(LOW)
INTERVAL(ONETIME)
INACTIVE
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
Yes

Verbose support:
No

Reference:
For more information on the migration action for keeping your z/OS root file
system accommodated, see Accommodate changes to support read-only z/OS
root for the cron, mail, and uucp utilities in z/OS V2R2 Migration.

Messages:
This check issues the following exception messages:
v BPXH915E

See the BPXH messages in z/OS MVS System Messages, Vol 3 (ASB-BPX)

SECLABEL recommended for MLS users:
SYSLOW

VLF checks (IBMVLF)

VLF_MAXVIRT
Description:

Checks to see whether the virtual lookaside facility (VLF) is trimming recently
added objects to make room for new objects. If so, the MAXVIRT setting for at
least one VLF class may be too small for VLF to provide a good performance
benefit. This check runs once an hour.

Reason for check:
Optimize VLF data space usage.

z/OS UNIX checks

604 IBM Health Checker for z/OS User's Guide

z/OS releases the check applies to:
z/OS V2R1 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVLF,VLF_MAXVIRT),
INTERVAL(1:00),
SEVERITY(LOW),
PARM(’ALERTAGE(*,60)’),
DATE(’20110802’)
Reason(’Your reason for making the update.’)

Debug support:
No

Verbose support:
Yes

Parameters accepted:
ALERTAGE(class_name1,alert_age1,class_name2,alert_age2,...class_namex,alert_agex)

The ALERTAGE check parameter lets you override the AlertAge values
specified in the COFVLFxx parmlib member for their respective VLF classes.
The alert age is a value, in seconds, that the check uses to determine whether
objects are being trimmed too rapidly to meet the installation's VLF usage
goals. If the check determines that objects in the specified classes are being
trimmed sooner than the specified alert age value, the check issues exception
message COFVLH02E.

The variable for the parameters is as follows:

class_namex
Class names may be one to seven alphanumeric characters including @, #,
and $, and may use the standard MVS wildcard characters (* and ?). If
multiple class_namex specifications match for the same class, the last
matching one in the list will be honored for that class.

If you specify a class name in this parameter that does not match any class
name defined in the current COFVLFxx parmlib member, the check ignores
this parameter.

alert_agex
alert_agex is a decimal value in the range 0 to 99999999 that indicates an
alert age in seconds. If an object younger than this alert age value is
trimmed, the VLF_MAXVIRT check issues exception message COFVLH02E.

Default: None - you must specify an alert age to use this check parameter.

A value of 0 indicates that no trimming alert should be issued for this
class. Note that higher values make it more likely that an alert will be
issued.

The class alert ages specified in the check parameters override the ones
specified in the class definitions in the current COFVLFxx parmlib member,

VLF checks

Chapter 13. IBM Health Checker for z/OS checks 605

and will persist through a VLF stop and restart. If no alert age is specified in
either the COFVLFxx parmlib member or check parameters, the check uses the
default alert age of 60.

Reference:
For more information see the ALERTAGE parameter in the COFVLFxx parmlib
member in z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v COFVLH02E

See the COFVLH messages in z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSAM checks (IBMVSAM)

VSAM_INDEX_TRAP
Description:

Checks to see if the VSAM index trap is enabled or not. The index trap
validates each index record before the system writes it, looking for any
corruption in the records.

Reason for check:
IBM recommends running with the index trap enabled because it validates
index records before they are written to DASD. If the system detects an error, it
bypasses the write, preventing permanent damage to the data set structure. In
addition, the index trap captures diagnostic data.

z/OS releases the check applies to:
z/OS V1R4 and later.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE
CHECK(IBMVSAM,VSAM_INDEX_TRAP)
INACTIVE
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No.

Reference:
For more information on the VSAM index trap, see:

VLF checks

606 IBM Health Checker for z/OS User's Guide

v z/OS DFSMSdfp Diagnosis

v z/OS DFSMS Using Data Sets

Messages:
This check issues the following exception messages:
v IDAHC102E

See the IDAHC messages in z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSAM RLS checks (IBMVSAMRLS)

VSAMRLS_CFCACHE_MINIMUM_SIZE
Description:

This check makes sure that all CF caches are above the IBM recommended
minimum size. This check identifies CF caches that are below the IBM
recommended minimum value for the sysplex.

Reason for check:
The minimum CF cache size should be at least 10% of CF cache optimal size. A
CF cache structure must be at least large enough to hold all of the MVS
information required to describe a structure of maximum size. CF cache
structures must be defined to MVS and also in the SMS base configuration. CF
cache structures provide a level of storage hierarchy between local memory
and DASD cache. They are also used as a system buffer pool for VSAM RLS
data when that data is modified on other systems. Each CF cache structure is
contained in a single CF. You might have multiple CFs and multiple CF cache
structures. Performance should improve when the CF cache is larger than the
sum of the local VSAM LRS buffer pool sizes. When the CF cache is smaller,
performance depends upon the dynamics of the data references among the
systems involved.

z/OS releases the check applies to:
z/OS V1R9 and up.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMVSAMRLS,VSAMRLS_CFCACHE_MINIMUM_SIZE)
SEVERITY(MED) INTERVAL(24:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

VSAM checks

Chapter 13. IBM Health Checker for z/OS checks 607

Reference:
For more information, see the section on "Defining CF Cache Structures" in
z/OS DFSMSdfp Storage Administration.

Messages:
This check issues the following exception messages:
v None

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

VSAMRLS_CFLS_FALSE_CONTENTION
Description:

The check looks for false contention on your system caused by a lock structure
that is not big enough.

Reason for check:
If the lock structure size is too small, the system could experience excessive
false contention, resulting in performance degradation. The acceptable false
contention threshold is 5%. If the system experiences performance degradation,
the lock structure size should be increased.

z/OS releases the check applies to:
z/OS V1R9 and up.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMVSAMRLS,VSAMRLS_CFLS_FALSE_CONTENTION)
SEVERITY(MED) INTERVAL(01:00) DATE(’date_of_the_change’)
PARMS(’THRESHOLD(5000)’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes:

PARMS('THRESHOLD(threshold)')

Specify an integer for the acceptable false contention threshold you want
the check to use. This THRESHOLD value is specified in thousandths of a
percent. The default value is PARM('THRESHOLD(5000)') which sets the
false contention rate at which the health check issues an error to 5%.

.

Reference:
For more information, see the section on "Defining the CF Lock Structure" in
z/OS DFSMSdfp Storage Administration.

VSAM RLS checks

608 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v IGWRH0131E

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

VSAMRLS_DIAG_CONTENTION
Description:

Checks for VSAM RLS contention by looking at registered resources. Check
displays a contention table if detected.

Reason for check:
IBM recommends monitoring VSAM RLS contention.

z/OS releases the check applies to:
z/OS V1R8 and up.

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMVSAMRLS,VSAMRLS_DIAG_CONTENTION)

SEVERITY(HI)
INTERVAL(00:05)
DATE(’date_of_the_change’)
PARMS(’ROWS(20),FILTER(0)’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
Yes:

PARM(ROWS)

Specify an integer, minimum 1, indicating the maximum number of rows
to be displayed in the contention table.

PARM(FILTER)
Specify an integer from 0 to 3600 to filter out rows in the contention table
with an elapsed time of 0-3600 seconds, leaving only the rows which have
a TIME value (in seconds) greater than or equal to the FILTER value
specified.

Note that the system looks at the ROWS parameter before the FILTER
parameter, so the FILTER value will only be in effect on the number of
rows specified in the ROWS parameter. So, if there were 500 rows and the
ROWS value is 200, it will show at most 200 rows in the contention table.A
value of 0 disables the filter, and a value of 1 filters out all rows with an
elapsed time of 0 seconds.

VSAM RLS checks

Chapter 13. IBM Health Checker for z/OS checks 609

Reference:
For additional information see VSAM RLS Latch Contention in z/OS DFSMSdfp
Diagnosis.

Messages:
This check issues the following exception messages:
v IGWRH0102E

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSAMRLS_QUIESCE_STATUS
Description:

The check looks for unresponsive CICS® regions for QUIESCE and
UNQUIESCE, which could indicate a problem.

Reason for check:
IBM recommends monitoring QUIESCE and UNQUIESCE events for
unresponsive CICS regions.

z/OS releases the check applies to:
z/OS V1R9 and up.

Parameters accepted:
Yes.

PARM(THRESHOLD)
Specify an integer from 0 to 2147483647 to filter out rows in the quiesce
status table with an elapsed time less than that specified for the value of
THRESHOLD (in seconds).

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMVSAMRLS,VSAMRLS_QUIESCE_STATUS)
SEVERITY(MED)
INTERVAL(00:05)
DATE(’date_of_the_change’)
PARMS(’THRESHOLD(300)’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
For additional information, see the following commands in z/OS MVS System
Commands:
v VARY SMS,SMSVSAM,SPHERE(sphere)
v DISPLAY SMS,SMSVSAM,QUIESCE

Messages:
This check issues the following exception messages:
v IGWRH0402E

VSAM RLS checks

610 IBM Health Checker for z/OS User's Guide

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

VSAMRLS_SHCDS_CONSISTENCY
Description:

The check is looking to see if all SHCDSs are allocated with consistent
allocation amounts.

Reason for check:

Allocate SHCDSs with consistent allocation amounts and use consistent values
for primary allocation and secondary allocation for each SHCDS. Consistent
allocation optimizes space utilization, while inconsistent allocation amounts
waste space.

When the SHCDS with the smallest allocation starts to runs out of space, all
SHCDSs are extended with their secondary quantity. SHCDS with large
secondary quantities may extend unnecessarily. VSAM RLS expects identical
allocation amount for all SHCDSs.

z/OS releases the check applies to:
z/OS V1R9 and up.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMVSAMRLS,VSAMRLS_SHCDS_CONSISTENCY)
SEVERITY(MED) INTERVAL(01:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
For more information, see the section on "Defining Sharing Control Data Sets"
in z/OS DFSMSdfp Storage Administration.

Messages:
This check issues the following exception messages:
v IGWRH0141E

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

VSAMRLS_SHCDS_MINIMUM_SIZE
Description:

The check detects SHCDS that are not big enough on your system.

VSAM RLS checks

Chapter 13. IBM Health Checker for z/OS checks 611

Reason for check:
If the SHCDS is too small, the system may potentially experience problems,
such as performance degradation. The initial size of the SHCDS needs to be at
least 13 MB. A larger size should be used if there are more than 6 systems in
the sysplex.

z/OS releases the check applies to:
z/OS V1R9 and up.

Parameters accepted:
Yes

PARM(NUMOFRDS)
Specify an integer from 1 to 3000 inclusive to indicate the average number
of recoverable data sets open across the sysplex.

PARM(NUMOFRSS)
Specify an integer from 1 to 100 inclusive to indicate the average number
of recoverable subsystems running across the sysplex.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMVSAMRLS,VSAMRLS_SHCDS_MINIMUM_SIZE)
SEVERITY(LOW) INTERVAL(24:00) DATE(’date_of_the_change’)
PARMS(’NUMOFRDS(100),NUMOFRSS(10)’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Reference:
For more information, see the section on "Defining Sharing Control Data Sets"
in z/OS DFSMSdfp Storage Administration.

Messages:
This check issues the following exception messages:
v IGWRH0151E

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

VSAMRLS_SINGLE_POINT_FAILURE
Description:

Verifies that the SHCDSs are on unique volumes.

Reason for check:
To avoid single points of failure, IBM suggests that you allocate SHCDS for a
system on unique volumes.

z/OS releases the check applies to:
z/OS V1R8 and up.

VSAM RLS checks

612 IBM Health Checker for z/OS User's Guide

Type of check (local or remote):
Local

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMVSAMRLS,VSAMRLS_SINGLE_POINT_FAILURE)
SEVERITY(HI)
INTERVAL(24:00)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

Parameters accepted:
No.

Reference:
For additional information see Defining Sharing Control Data Sets in z/OS
DFSMSdfp Storage Administration

Messages:
This check issues the following exception messages:
v IGWRH202E

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSAMRLS_TVS_ENABLED
Description:

Verify that DFSMStvs is enabled.

Reason for check:
Enable DFSMStvs if it is installed but not enabled.

z/OS releases the check applies to:
z/OS V1R9 and up.

Parameters accepted:
No

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE
CHECK(IBMVSAMRLS, VSAMRLS_TVS_ENABLED)
SEVERITY(LOW) INTERVAL(04:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

VSAM RLS checks

Chapter 13. IBM Health Checker for z/OS checks 613

Verbose support:
No

Reference:
For more information, see the section on "Implementing DFSMStvs" in z/OS
DFSMStvs Planning and Operating Guide.

Messages:
This check issues the following exception messages:
v IGWRH301E
v IGWRH302E

See the IGWRH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:
SYSLOW

VSM checks (IBMVSM)
The storage configuration is established during system initialization, based on
system parameters, the size of the modules in LPA, and the nucleus. Your storage
configuration can change when the system is IPLed even if system parameters
have not changed.

IBM Health Checker for z/OS provides several checks and diagnostic reports to
detect when the storage configuration has changed or may need to be changed.
Information regarding the storage configuration is saved for comparison with prior
IPLs.

The VSM checks include different storage reports, including reports showing IPL
parameters, size and location of CSA, SQA, LPA and the nucleus, current common
storage allocation, and the five highest users of common storage (available when
storage tracking is active). These reports are generated along with the check
output, as appropriate.

VSM_ALLOWUSERKEYCSA
Description:

This check examines the setting of the ALLOWUSERKEYCSA(YES|NO)
DIAGxx option and compares it to the IBM recommended setting of
ALLOWUSERKEYCSA(NO). A warning is issued if the setting is YES.

Reason for check:
Allowing programs to obtain user key CSA creates a security risk because CSA
storage can then be modified by any unauthorized program. IBM recommends
that ALLOWERUSERKEYCSA(NO) be coded in the active DIAGxx parmlib
member.

Note: Coding ALLOWUSERKEYCSA(NO) for this option will cause user key
programs attempting to obtain CSA storage to ABEND with abend code B78,
reason code xxxxxx5C. (The first three bytes of the reason code provide
internal failure details.) The default setting for this option is
ALLOWUSERKEYCSA(NO).

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
No.

VSAM RLS checks

614 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE,
CHECK(IBMVSM,VSM_ALLOWUSERKEYCSA),
ACTIVE,
INTERVAL(ONETIME),
SEVERITY(LOW),
DATE(’20060201’),

Reference:
No

Messages:
This check issues the following exception messages:
v IGVH110E

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM_CSA_LARGEST_FREE
Description:

Monitor the current size of the largest contiguous free block of CSA/ECSA
against the installation-specified or default minimum value.

Reason for check:
If the system is unable to satisfy storage-obtain requests for large blocks of
common storage due to issues like storage fragmentation, a system outage may
occur. This check provides an advanced warning about such common storage
problem so the system programmers can take appropriate action.

z/OS releases the check applies to:
z/OS V2R1

Parameters accepted:
Yes, the following parameters are accepted:
v When not using dynamic severity: CSA(csabytes | csan%),ECSA(ecsabytes |

ecsan%)
v When using dynamic severity:

– CSA_HIGH(csabytes | csan%), CSA_MED(csabytes | csan%),
CSA_LOW(csabytes | csan%), CSA_NONE(csabytes | csan%)

– ECSA_HIGH(ecsabytes | ecsan%), ECSA_MED(ecsabytes | ecsan%),
ECSA_LOW(ecsabytes | ecsan%), ECSA_NONE(ecsabytes | ecsan%)

Note: When using dynamic severity, you may specify thresholds for 1 or
more of the parameters to identify different thresholds by severity level.
Note that you do not need to specify thresholds for all of the parameters.

csan%
An integer, 0-100, followed by a percent sign ‘%’, indicating the minimum
size of the largest contiguous free block of CSA required on the system.

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 615

csabytes
A size in bytes, with an optional suffix (K,M), indicating the minimum size
of the largest contiguous free block of CSA required on the system.

ecsan%
An integer, 0-100, followed by a percent sign ‘%’, indicating the minimum
size of the largest contiguous free block of ECSA required on the system.

ecsabytes
A size in bytes, with an optional suffix (K,M), indicating the minimum size
of the largest contiguous free block of ECSA required on the system.

Default:. CSA(5%),ECSA(5%)

You can use synonyms for these parameters, as follows:

Table 62. Synonyms of Parameters

Parameter Synonyms

CSA_HIGH CSA_HI
CSA_H

CSA_MED CSA_M

CSA_LOW CSA_L

CSA_NONE CSA_NO
CSA_N

ECSA_HIGH ECSA_HI
ECSA_H

ECSA_MED ECSA_M

ECSA_LOW ECSA_L

ECSA_NONE ECSA_NO
ECSA_N

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE
CHECK(IBMVSM,VSM_CSA_LARGEST_FREE)
INTERVAL(00&colon.15)
SEVERITY(HIGH)
PARM(’CSA(5%),ECSA(5%)’)
DATE(’20120101’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH111I
v IGVH112E
v IGVH504I

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

VSM checks

616 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM_CSA_LIMIT
Description:

The current size of CSA against a minimum suggested value.

Reason for check:
The size of CSA should be adequate to meet the needs of the applications that
run on your system. It can be established explicitly by the operator during
system initialization. It can also be specified in the system parameter list
(IEASYSxx), specified by the operator response SYSP=xx, or the default
IEASYS00. The size of CSA can be greater than or less than the requested size
because it is affected by other system areas that change when a new IPL
occurs. For example, an increase in the size of SQA or LPA modules that must
be loaded in storage below 16 megabytes can reduce the size of CSA or cause
CSA to be allocated at a lower address. When the allocation of CSA crosses a
1-megabyte segment, the size of private storage is also changed. The size of
LPA can cause less storage to be available in private and CSA. This should be
considered when moving modules to LPA. System performance improves
when the search order for important applications is appropriate and adequate
storage is available. Whenever possible and when you would not compromise
available virtual storage, you should use dynamic LPA to place frequently used
modules in LPA. Make sure you do not inadvertently duplicate modules,
module names, or aliases that already exist in LPA. Fixed LPA and fixed
storage should be reserved for modules that should always be paged in
because this reduces the available central storage on the system.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

Parameters accepted:
Yes:
v Number of bytes with optional suffix (K,M) indicating the minimum amount

of below the line CSA required on the system (keyword: CSA)
v Number of bytes with optional suffix (K,M) indicating the minimum amount

of above the line CSA required on the system (keyword: ECSA)
v Default: CSA(512K),ECSA(512K)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVSM,VSM_CSA_LIMIT),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’CSA(512K),ECSA(512K)’),
DATE(’date_of_the_change’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH101E

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 617

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM_SQA_LIMIT
Description:

The current size of SQA against a minimum suggested value.

Reason for check:
The total amount of virtual storage and number of private virtual storage
address spaces affect the system's use of SQA. Like CSA, SQA size is
determined by the operator or the system parameter list. When SQA falls
below a threshold, a critical storage message is issued, new jobs cannot be
created, and address spaces cannot be swapped in until the shortage is
alleviated. If the size allocated for extended SQA is too small or is used up
very quickly, the system attempts to use extended CSA. When both extended
SQA and extended CSA are used up, the system allocates space from SQA and
CSA below 16 megabytes. The allocation of this storage could eventually lead
to a system failure.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

Parameters accepted:

v Number of bytes with optional suffix (K,M) indicating the minimum amount
of below the line SQA required on the system (keyword: SQA)

v Number of bytes with optional suffix (K,M) indicating the minimum amount
of above the line SQA required on the system (keyword: ESQA)

v Default: SQA(512K),ESQA(8M)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVSM,VSM_SQA_LIMIT),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’SQA(512K),ESQA(8M)’),
DATE(’date_of_the_change’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH101E

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM checks

618 IBM Health Checker for z/OS User's Guide

VSM_PVT_LIMIT
Description:

Whether the size of private storage is adequate to meet the needs of
applications that run on your system.

Reason for check:
The total amount of private virtual storage available to applications on the
system is a direct result of the size of CSA and SQA, as well as LPA, MLPA,
and FLPA. Changes to the size of any of these areas may impact the amount of
virtual storage remaining to satisfy private storage requests.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

Parameters accepted:

v Number of bytes with optional suffix (K,M) indicating the minimum amount
of below the line PVT required on the system (keyword: PVT)

v Number of bytes with optional suffix (K,M) indicating the minimum amount
of above the line PVT required on the system (keyword: EPVT)

v Default:PVT(1M),EPVT(512M)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVSM,VSM_PVT_LIMIT),
INTERVAL(ONETIME),
SEVERITY(LOW),
PARM(’PVT(1M),EPVT(512M)’),
DATE(’date_of_the_change’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH101E

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM_CSA_THRESHOLD
Description:

The current allocation of CSA storage.

Reason for check:
When the current allocation has reached the user-specified or IBM-specified
threshold value, an exception message and storage reports are created. The
threshold report includes a comparison to high-water marks on the last IPL as
well as the amount of the current allocation. The high-water mark is the
highest amount of storage allocated since the system was IPLed.

If the threshold is specified as a percentage value (the default), an exception
will be issued when the allocation of storage exceeds that threshold. If the

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 619

threshold is given as a size in bytes, an exception will be issued when the
amount of storage remaining is less than the specified size.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

Verbose support:
Yes. At z/OS V1R11 and up, system owned storage is evaluated for possible
inclusion in the "Five High Users Report" when the check is run in verbose
mode. You can put a check into verbose mode using any of the following
methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

SDSF CK command display.

Parameters accepted:
Yes, as follows:
v When not using dynamic severity: CSA(csabytes | csa%), ECSA(ecsabytes |

ecsan%)
v When using dynamic severity:

– CSA_HIGH(csabytes | csan%), CSA_MED(csabytes | csan%),
CSA_LOW(csabytes | csan%), CSA_NONE(csabytes | csann%)

– ECSA_HIGH(ecsabytes | ecsan%), ECSA_MED(ecsabytes | ecsan%),
ECSA_LOW(ecsabytes | ecsan%), ECSA_NONE(ecsabytes | ecsan%)

Note that when specifying percentages for parameter values, the values
should increase as the severity increases, since the percentage specifies a
percent full amount (a larger value indicates a more severe condition), as
shown in the following example:
PARM(’CSA_HIGH(95%),CSA_MED(80%),CSA_LOW(60%), ECSA_HIGH(90%),ECSA_MED(70%)’)

However, if you specify bytes for the parameter values, the values should
decrease as the severity increases, since the values specify a bytes-remaining
amount (a smaller value indicates a more severe condition), as shown in the
following example:
PARM(’CSA_HIGH(64K),CSA_MED(256K),ECSA_HIGH(128K), ECSA_LOW(1M)’)

csan%
An integer, 0-10000 followed by %, indicating the threshold percent for
utilization of CSA below the line.

csabytes
A size in bytes, with an optional suffix (K,M) indicating the minimum
amount of unallocated CSA.

ecsan%
An integer, 0-10000 followed by %, indicating the threshold percent for
utilization of ECSA above the line.

ecsabytes
A size in bytes, with an optional suffix (K,M) indicating the minimum
amount of unallocated ECSA.

Default: CSA(80%),ECSA(80%)

You can use synonyms for these parameters, as follows:

VSM checks

620 IBM Health Checker for z/OS User's Guide

Parameter Synonyms

CSA_HIGH v CSA_HI

v CSA_H

CSA_MED v CSA_M

CSA_LOW v CSA_L

CSA_NONE v CSA_NO

v CSA_N

ECSA_HIGH v ECSA_HI

v ECSA_H

ECSA_MED v ECSA_M

ECSA_LOW v ECSA_L

ECSA_NONE v ECSA_NO

v ECSA_N

Note that when specifying percentages for parameter values, your number for
the HIGH cases is higher than the MED cases, as shown in the following
example:
PARM(’CSA_HIGH(95%),CSA_MED(80%),CSA_LOW(60%),ECSA_HIGH(90%),ECSA_MED(70%)’)

On the other hand, if you specify bytes for the parameter values the values for
HIGH cases are lower than those for MED cases, as shown below:
PARM(’CSA_HIGH(64K),CSA_MED(256K),ECSA_HIGH(128K),ECSA_LOW(1M)’)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVSM,VSM_CSA_THRESHOLD),
INTERVAL(00:05),
SEVERITY(HIGH),
PARM(’CSA(80%),ECSA(80%)’),
DATE(’date_of_the_change’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH100E

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

Examples of message output for the VSM_CSA_THRESHOLD check when
(E)SQA has overflowed into (E)CSA:
IGVH100E ECSA has exceeded the threshold percentage of 80%
Current allocation is 88% of 41252K.
Unallocated amount is 4684K bytes.

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 621

Explanation: The current allocation of ECSA storage is 88% of
41252K.
This allocation exceeds the installation threshold.
4684K bytes or 11% is still available.

5001 CSA/ECSA pages were converted to SQA/ESQA.

The highest allocation during this IPL is unknown.
...
...
IGVH100I The current allocation of ECSA storage is 16565K of the
total size of 41252K. (The additional allocation of 5001 pages
of ECSA storage to (E)SQA, puts current allocation at 88%) .
Ensuring an appropriate amount of storage is available is
critical to the long term operation of the system. An exception
will be issued when the allocated size of ECSA is greater than
the installation specified threshold of 90%.

VSM_SQA_THRESHOLD
Description:

The current allocation of SQA storage.

Reason for check:
When the current allocation has reached the user-specified or IBM-specified
threshold value, an exception message and storage reports are created. The
threshold report includes a comparison to high-water marks on the last IPL as
well as the amount of the current allocation. The high-water mark is the
highest amount of storage allocated since the system was IPLed.

If the threshold is specified as a percentage value (the default), an exception
will be issued when the allocation of storage exceeds that threshold. If the
threshold is given as a size in bytes, an exception will be issued when the
amount of storage remaining is less than the specified size.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

Parameters accepted:
Yes, as follows:
v When not using dynamic severity: SQA(sqabytes | sqa%), ESQA(esqabytes |

esqa%)
v When using dynamic severity:

– SQA_HIGH(sqabytes | sqan%), SQA_MED(sqabytes | sqan%),
SQA_LOW(sqabytes | sqan%), SQA_NONE(sqabytes | sqann%)

– ESQA_HIGH(esqabytes | esqa%), ESQA_MED(esqabytes | esqa%),
ESQA_LOW(esqabytes | esqa%), ESQA_NONE(esqabytes | esqa%)

Note that when specifying percentages for parameter values, the values
should increase as the severity increases since the percentage specifies a
percent full amount (a larger value indicates a more severe condition), as
shown in the following example:
PARM(’SQA_HIGH(95%),SQA_MED(80%),SQA_LOW(60%), ESQA_HIGH(90%),ESQA_MED(70%)’)

However, if you specify bytes for the parameter values, the values should
decrease as the severity increases, since the values specify a bytes-remaining
amount (a smaller value indicates a more severe condition), as shown in the
following example:
PARM(’SQA_HIGH(64K),SQA_MED(256K),ESQA_HIGH(128K), ESQA_LOW(1M)’)

VSM checks

622 IBM Health Checker for z/OS User's Guide

sqan%
An integer, 0-10000 followed by %, indicating the threshold percent for
utilization of SQA below the line.

sqabytes
A size in bytes, with an optional suffix (K,M) indicating the minimum
amount of unallocated SQA.

esqan%
An integer, 0-10000 followed by %, indicating the threshold percent for
utilization of ESQA above the line.

esqabytes
A size in bytes, with optional suffix (K,M) indicating the minimum amount
of unallocated ESQA.

Default: SQA(80%),ESQA(80%)

You can use synonyms for these parameters, as follows:

Parameter Synonyms

SQA_HIGH v SQA_HI

v SQA_H

SQA_MED v SQA_M

SQA_LOW v SQA_L

SQA_NONE v SQA_NO

v SQA_N

ESQA_HIGH v ESQA_HI

v ESQA_H

ESQA_MED v ESQA_M

ESQA_LOW v ESQA_L

ESQA_NONE v ESQA_NO

v ESQA_N

Note that when specifying percentages for parameter values, your number for
the HIGH cases is higher than the MED cases, as shown in the following
example:
PARM(’SQA_HIGH(95%),SQA_MED(80%),SQA_LOW(60%),ECSA_HIGH(90%),ECSA_MED(70%)’)

On the other hand, if you specify bytes for the parameter values the values for
HIGH cases are lower than those for MED cases, as shown below:
PARM(’SQA_HIGH(64K),SQA_MED(256K),ECSA_HIGH(128K),ECSA_LOW(1M)’)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVSM,VSM_SQA_THRESHOLD),
INTERVAL(00:15),
SEVERITY(MED),
PARM(’SQA(80%),ESQA(80%)’),
DATE(’date_of_the_change’)

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 623

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH100E

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM_CSA_CHANGE
Description:

Changes in the size of CSA or private (including the extended areas) since the
last IPL.

Reason for check:
The values provided by IBM are 1 megabyte and 10 megabytes for storage
below the line and storage above the line, respectively. These value are helpful
in determining when the module growth in LPA or the nucleus could reduce
the size of the private area.

z/OS releases the check applies to:
z/OS V1R4 and later, in both ESA and z/Architecture modes.

Parameters accepted:

v Number of bytes with optional suffix (K,M) indicating the threshold at
which changes in CSA or private below the line will result in an exception
being issued. (keyword: BELOW)

v Number of bytes with optional suffix (K,M) indicating the threshold at
which changes in CSA or private above the line will result in an exception
being issued. (keyword: ABOVE)

v Default: BELOW(1M),ABOVE(10M)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE,
CHECK(IBMVSM,VSM_CSA_CHANGE),
INTERVAL(ONETIME),
SEVERITY(HIGH),
PARM(’BELOW(1M),ABOVE(10M)’),
DATE(’date_of_the_change’)

Reference:
For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:
This check issues the following exception messages:
v IGVH102E

See the IGVH messages in z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

VSM checks

624 IBM Health Checker for z/OS User's Guide

XCF checks (IBMXCF)

XCF_CDS_MAXSYSTEM
Description:

Provide a warning when a function CDS (any CDS other than the sysplex
CDS) is formatted with a MAXSYSTEM value that is less than the
MAXSYSTEM value associated with the primary sysplex CDS.

This is a sysplex-wide check (GLOBAL) , which means that it runs on one
system but reports on sysplex-wide values and practices. A global check shows
up as disabled for all systems in the sysplex, except for the one where it is
actually running.

Reason for check:
It is recommended that each couple data set defined to the sysplex be
formatted with a MAXSYSTEM value that is at least equal to the value defined
in the primary sysplex CDS.

If a function CDS has a smaller MAXSYSTEM value, then a system joining the
sysplex with a higher slot number will not be able to use the function
provided by that function CDS.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CDS_MAXSYSTEM)

SEVERITY(MED) INTERVAL(ONETIME) DATE (20090707)
REASON('CDS MAXSYSTEM value across all CDS types should be at

least equal to the value in the primary sysplex CDS')

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0401E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CDS_SEPARATION
Description:

Checks that Sysplex couple data set and function couple data sets are properly
isolated.

Reason for check:
This check verifies that the following best-practice recommendations are
implemented:

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 625

v The Sysplex and CFRM primary couple data sets reside on different
volumes.

v The LOGR primary CDS resides on a volume separate from the Sysplex and
CFRM primaries, if in the view of the installation the rate of I/O activity to
the LOGR CDS warrants it.

v Each primary couple data set resides on a different volume than its
corresponding alternate couple data set.

z/OS releases the check applies to:
z/OS V1R4 and later.

Verbose support:
Yes. At z/OS V1R10 and up, a CDS configuration report is included when the
check is run in verbose mode. You can put a check into verbose mode using
any of the following methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

CK panel in SDSF.

Parameters accepted:
At z/OS V1R10 and up, or V1R8 and up with OA22931 installed:

LOGR(NO | YES)
Indicates whether the system logger (LOGR) couple data set (CDS) is to be
checked for separation from other performance-sensitive CDS types.

NO The check will not test whether the primary LOGR CDS is separated
from other performance-sensitive CDS types.

YES
The check should verify that the primary LOGR CDS resides on a
volume separate from other performance-sensitive CDS types.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CDS_SEPARATION)

SEVERITY(HI) INTERVAL(001:00) DATE(20080104)
PARM(’LOGR(NO)’)
REASON(’Ensure that CDS separation has been maintained.’)
VERBOSE(NO)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0240E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CDS_SPOF
Description:

Check that couple data sets are configured without single points of failure.

XCF checks

626 IBM Health Checker for z/OS User's Guide

Reason for check:
It is recommended that each primary couple data set reside on a different
volume from its corresponding alternate couple data set. The I/O configuration
should not create any hidden single points of failure, for example, placing the
volumes containing both primary and alternate of a given type in a single
physical device or behind the same switch.

z/OS releases the check applies to:
z/OS V1R10 and later.

Verbose support:
Yes. A CDS configuration report is included when the check is run in verbose
mode. You can put a check into verbose mode using any of the following
methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

CK panel in SDSF.

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CDS_SPOF)

SEVERITY(HIGH) INTERVAL(001:00) DATE(20070730)
REASON(’Ensure that couple data sets are configured’

’without single points of failure.’)
VERBOSE(NO)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0242E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_ALLOCATION_PERMITTED
Description:

Check that, for each coupling facility in the CFRM active policy, structure
allocation is permitted.

Reason for check:
If coupling facilities are not eligible for structure allocation, they should not
remain in maintenance mode or any other state for any extended period of
time. If the check shows a warning during maintenance or upgrade windows,
the warning serves as a reminder to turn off maintenance mode when the
service action is completed.

Parameters accepted:
None.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 627

z/OS releases the check applies to:
z/OS V1R10 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_ALLOCATION_PERMITTED)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0212E
v IXCH0215E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_CONNECTIVITY
Description:

Checks that the system has connectivity to each coupling facility, that multiple
links (a/k/a CHPIDs or CFLINKs) to each coupling facility are both ONLINE
and OPERATING, and identify single points of failure.

Reason for check:
To avoid single points of failure it is recommended that a system have
connectivity to each coupling facility and that there are multiple links that are
both ONLINE and OPERATIONAL.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_CONNECTIVITY)

SEVERITY(MED) INTERVAL(001:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0446E
v IXCH0448E
v IXCH0450E

XCF checks

628 IBM Health Checker for z/OS User's Guide

v IXCH0453E
v IXCH0459E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_MEMORY_UTILIZATION
Description:

The check raises an exception when a coupling facility reaches the memory
utilization percentage threshold defined for the check. Efficient and planned
coupling facility memory utilization prevents a CF from becoming over-full
and thereby allows the CF to allocate new structures, expand structures,
sustain a viable failover environment and participate in structure rebuild and
reallocation processing when needed. The memory utilization threshold
percentage will be accepted as a parameter to the check. Note that XCF,
independent from this check, will automatically contract structures to relieve
coupling facility resource constraints when a coupling facility as a whole is at
or above 90% memory utilization and coupling facility resources are not being
used productively by the structures.

This is a local check.

Reason for check:
The percentage of memory use in a coupling facility should not approach an
amount high enough to keep it from allocating of new structures or expanding
existing structures.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
MAXUTILIZATION is a required parameter indicating the threshold
percentage that the Coupling Facility memory utilization should not exceed.
The number must be an integer in the range of 1 to 99. Specifying a percent
(%) sign is optional (e.g. MAXUTILIZATION(60%)).

It is possible that system-initiated alter processing for a structure may start and
increase the memory utilization percentage for a coupling facility before the
check executes or raises an exception. This check may issue an exception
during reconfiguration actions or during maintenance windows when the
percentage of memory use exceeds the specified check parameter.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_MEMORY_UTILIZATION)

SEVERITY(MED) INTERVAL(001:00) DATE (20090707)
PARM('MAXUTILIZATION(60)')
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0456E

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 629

|

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_PROCESSORS
Description:

This check provides a warning when a coupling facility processor
configuration is not consistent with IBM recommendations and may result in
degraded response time and throughput possible for coupling facility requests
as compared to coupling facilities configured for the best performance and
throughput based on the coupling facility architected function level
(CFLEVEL).

This check provides a parameter to enable the installation to specify names of
CFs whose processor configurations should be excluded from the
determination of the overall status of the check. The installation may wish to
exclude non-production CFs or CFs that are running in ‘test’ mode with shared
processors.

This check does not raise an EXCEPTION for a coupling facility that is enabled
to use coupling thin interrupts. Coupling facilites at CFLEVEL 19 or above are
capable of exploiting coupling thin interrupts.

Because CF processors can not be configured as dedicated processors in a VM
environment, this check is not applicable when a z/OS image is running as a
guest under VM and is disabled from running.

This is a local check.

Reason for check:
CF performance (as measured in service time) is degraded with shared CF
central processors.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
EXCLUDE is a required parameter where you can specify a list of CFNames
that the check should not consider in its verification processing. A CF named
in the EXCLUDE list indicates that the check should not include the processor
configuration for that CF in determining the overall check status. Processor
configurations for excluded CFs will be reported on in message IXCH0912I and
the report will indicate that the check results for the excluded CFNAME were
not factored into the overall check status.

Specifiying EXCLUDE() will exclude no coupling facilities from the check
verification process.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_PROCESSORS)

SEVERITY(MED) INTERVAL(004:00) DATE (20090707)
PARM(’EXCLUDE(CFname,CFname)’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

XCF checks

630 IBM Health Checker for z/OS User's Guide

Messages:
This check issues the following exception messages:
v IXCH0444E
v IXCH0912I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_SCM_UTILIZATION
Description:

Provide a dynamic severity check exception when a CF exceeds one of the
specified storage-class memory (SCM) utilization thresholds. The check informs
an installation when CF SCM has reached certain usage thresholds and is
thereby reaching a point when it might be unable to provide additional
coupling facility capacity when needed during peak processing periods as well
as provide relief when CF real storage capacity becomes constrained.

Reason for check:
The percentage of SCM utilization in a coupling facility should not approach
an amount so high as to prevent the capability to provide relief for temporary
CF real storage capacity constraints or additional structure capacity when
needed during peak processing.

z/OS releases the check applies to:
z/OS V2R1 and later, or z/OS V1R13 with PTF for APAR OA40747 applied.

Parameters accepted:

PARM(’[SCM_NONE(scm_none)]
[,SCM_LOW(scm_low)]
[,SCM_MED(scm_med)]
[,SCM_HIGH(scm_high)]’)

At least one threshold parameter is required to indicate a threshold percentage
that the coupling facility storage-class memory utilization should not exceed.
The number must be between 0 and 100 inclusive. This check supports
dynamic severity setting and threshold keywords to correspond with the
severity levels. The severity of the exception is based on the provided
corresponding thresholds.

Note:

1. When using dynamic severity, you may specify thresholds for one or more
of the parameters to identify different thresholds by severity level.

2. You do not need to specify thresholds for all of the parameters.

scm_none
The percentage of SCM in use by all structures in the CF relative to the
CF's total configured SCM that will trigger severity-none processing. The
SCM_NONE keyword can be abbreviated SCM_N.

scm_low
The percentage of SCM in use by all structures in the CF relative to the
CF's total configured SCM that will trigger a low-severity exception. The
SCM_LOW keyword can be abbreviated SCM_L.

scm_med
The percentage of SCM in use by all structures in the CF relative to the

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 631

CF's total configured SCM that will trigger a medium-severity exception.
The SCM_MED keyword can be abbreviated SCM_M.

scm_high
The percentage of SCM in use by all structures in the CF relative to the
CF's total configured SCM that will trigger a high-severity exception. The
SCM_HIGH keyword can be abbreviated SCM_H.

Default: SCM_MED(80%)

Note: When specifying percentages for parameter values, your number for the
higher severity case is larger than the lower case, as shown in the following
example:
PARM(’SCM_HIGH(90%),SCM_MED(50%),SCM_LOW(20%)’)

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_SCM_UTILIZATION)
SEVERITY(MED) INTERVAL(001:00) DATE(20120322)
PARM(’SCM_MED(80)’)
REASON(’Coupling facility storage-class memory should be’

’available to provide relief for coupling facility’
’real storage constraints.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0457I
v IXCH0458E
v IXCH0924I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_AVAILABILITY
Description:

Check that, for each structure defined in the CFRM active policy, the
preference list has at least two coupling facilities located in different CECs and
usable for structure allocation. To be usable for structure allocation, the
coupling facility must have at least one system connected and have allocation
permitted. When the structure has a policy change pending, the preference list
from the pending policy is used for making this check.

Reason for check:
The preference list for each structure defined in the CFRM active policy should
have at least two coupling facilities located in different CECs that support
structure allocation. To support structure allocation, the coupling facility
should have at least one system in the sysplex connected and be in a state
permitting structure allocation.

Parameters accepted:
None.

XCF checks

632 IBM Health Checker for z/OS User's Guide

z/OS releases the check applies to:
z/OS V1R10 and later.

Verbose support:
Yes. All structures defined in the CFRM active policy are included in the
availability report when the check is run in verbose mode. Structures with
availability problems are listed ahead of structures without availability
problems. You can put a check into verbose mode using any of the following
methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

CK panel in SDSF.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_AVAILABILITY)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

VERBOSE(NO)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0212E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_DUPLEX
Description:

Check that, for each structure in the CFRM active policy that is currently
allocated, the structure is actually duplexed when DUPLEX(ALLOWED) or
DUPLEX(ENABLED) is specified.

Reason for check:
Structures should be duplexed whenever the CFRM active policy says they can
be. If a particular structure is not duplexed, it might be an oversight that
leaves the structure with less redundancy or recoverability than what was
intended.

Parameters accepted:
None.

z/OS releases the check applies to:
z/OS V1R10 and later.

Verbose support:
Yes. All allocated structures with DUPLEX(ALLOWED) or
DUPLEX(ENABLED) specified are included in the duplex report when the
check is run in verbose mode. Structures that are not duplexed are listed ahead
of duplexed structures. You can put a check into verbose mode using any of
the following methods:

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 633

v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY
command or in a POLICY statement in an HZSPRMxx parmlib member.

v Overwrite the NO value with the YES value in the VERBOSE column of the
SDSF CK command display.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_DUPLEX)

SEVERITY(MED) INTERVAL(001:00) DATE(20070707)
REASON(’Allocated structures with DUPLEX(ALLOWED) or’

’DUPLEX(ENABLED) specified in the CFRM active’
’policy should be duplexed.’)

VERBOSE(NO)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0210E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_EXCLLIST
Description:

Check that each structure is excluded from all structures coded in its exclusion
list.

Reason for check:
It is recommended that structure placement is in accordance with its exclusion
list.

Parameters accepted:
None.

z/OS releases the check applies to:
z/OS V1R4 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_EXCLLIST)

SEVERITY(MED) INTERVAL(008:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0207E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

XCF checks

634 IBM Health Checker for z/OS User's Guide

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_MAXSCM
Description:

Indicate a low severity check exception when the sum of the assigned
storage-class memory (SCM) for structures allocated in a coupling facility (CF)
exceeds the total SCM configured to the CF. This could be an indicator of a
possible over- commitment of SCM by the coupling facility.

Reason for check:
It is recommended that the sum of the storage-class memory eligible to be
assigned to coupling facility structures should not exceed the total SCM
configuration for the coupling facility.

z/OS releases the check applies to:
z/OS V2R1 and later, or z/OS V1R13 with PTF for APAR OA40747 applied.

Parameters accepted:
None.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_MAXSCM)
SEVERITY(LOW) INTERVAL(008:00) DATE(20120322)
REASON(’Storage-Class Memory resources eligible for’

’use by structures should not exceed the’
’availability of the resources to the CF.’)

VERBOSE(YES)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0259E
v IXCH0260I
v IXCH0927I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_MAXSPACE
Description:

Indicate a low severity check exception when the sum of the maximum
structure sizes and estimated augmented space values plus the total dump
space exceeds the total space (TS) for the coupling facility (CF). This is an
indicator of an "over commitment" of real storage by the CF.

Reason for check:
It is recommended that the sum of the storage resources allocated from CF real
storage frames and eligible to be assigned to structures should not exceed the
actual availability of the resources to the coupling facility at any time.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 635

z/OS releases the check applies to:
z/OS V2R1 and later, or z/OS V1R13 with PTF for APAR OA40747 applied.

Parameters accepted:
None.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_MAXSPACE)

SEVERITY(LOW) INTERVAL(008:00) DATE(20120322)
Constant(’CF real storage eligible for use by

structures should not exceed the
total space available to the CF’)

VERBOSE(YES)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0261E
v IXCH0262I
v IXCH0928I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_NONVOLATILE
Description:

Check active allocated structures in the CFRM active policy to determine
whether a connector request for non-volatility and failure isolation from
connectors is satisfied.

Reason for check:
IBM suggests that coupling facility structure non-volatility and failure isolation
from connectors be provided when requested. Non-volatility and failure
isolation from connectors may be provided by a coupling facility that is both
non-volatile and failure isolated from connectors, or structure duplexing may
be used to provide the same result.

Parameters accepted:
None.

z/OS releases the check applies to:
z/OS V1R10 and later.

Verbose support:
Yes. All connected structures are included in the nonvolatility report when the
check is run in verbose mode. You can put a check into verbose mode using
any of the following methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

SDSF CK command display.

XCF checks

636 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_NONVOLATILE)

SEVERITY(MED) INTERVAL(008:00) DATE(20070707)
REASON(’Coupling facility structure non-volatility and’

’failure isolation from connectors should be’
’provided when requested.’)

VERBOSE(NO)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0222E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_POLICYSIZE
Description:

Check that structures in the CFRM active policy do not have too large a
difference between the value specified for INITSIZE and the value specified for
SIZE. All specifications of INITSIZE in the active or pending CFRM policy
should indicate an initial structure size of at least half the maximum structure
size (as determined by the SIZE specification). The policy should not specify an
initial structure size less than the maximum structure size when altering of the
structure size is not supported (as determined by this check).

This is a sysplex-wide check (GLOBAL) , which means that it runs on one
system but reports on sysplex-wide values and practices. A global check shows
up as disabled for all systems in the sysplex, except for the one where it is
actually running.

Reason for check:
Specifying different INITSIZE and SIZE values provides flexibility to
dynamically expand the size of a structure for workload changes, but too large
a difference between INITSIZE and SIZE may waste coupling facility space or
prevent structure allocation.

When allocating the structure initially, whether INITSIZE is specified or not,
the system attempts to build all control structures that will be required to
support the maximum size of the structure. These control structures are built in
the control storage allocation of the structure. For structures whose users do
not allow structure alter, the control storage allocated to accommodate larger
sizes is wasted. An INITSIZE value substantially smaller than the SIZE value
might cause the following:
v It might be impossible to allocate a structure at a size of INITSIZE, because

the amount of control storage required to support the SIZE value might
actually be larger than INITSIZE.

v If the allocation succeeds, it might result in a structure with a proportionally
large amount of its storage allotted to structure controls, leaving too few
structure objects to be exploited usefully by the associated application.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 637

IBM suggests that the INITSIZE and SIZE specification for structures be
determined by the CfSizer (Coupling Facility Structure Sizer) tool:
http://www.ibm.com/systems/support/z/cfsizer/

Any INITSIZE specification for a structure should be at least half of the SIZE
specification. If structure alter is not allowed by users of a structure, INITSIZE
should not be specified for that structure.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_POLICYSIZE)

SEVERITY(MED) INTERVAL(004:00) DATE (20090707)
REASON(’Too large a difference between INITSIZE and SIZE may

waste coupling facility space or prevent structure
allocation.’)

VERBOSE(NO)

Verbose support:
Yes. All structures in the CFRM active policy are included in an IXCH0923I
report when the check is run in verbose mode. A check can be put into verbose
mode using the following methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

SDSF CK command display.

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0255E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_PREFLIST
Description:

Check that each structure is allocated according to the preference list in the
CFRM active policy. For z/OS V2R2 and higher releases, also check that each
duplexed structure is allocated according to the CF site preference.

Reason for check:
It is recommended that structure placement is in accordance with the
preference list, and for z/OS V2R2 and higher releases that duplexed structure
placement is in accordance with the CF site preference.

z/OS releases the check applies to:
z/OS V1R7 and later.

XCF checks

638 IBM Health Checker for z/OS User's Guide

|
|

|
|

http://www.ibm.com/systems/support/z/cfsizer/

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_PREFLIST)

SEVERITY(MED) INTERVAL(008:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0201I
v IXCH0202I
v IXCH0203I
v IXCH0204I
v IXCH0206E
v IXCH0209I
v IXCH0226I
v IXCH0227I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_SCM_AUGMENTED
Description:

Check for CF structures that have residual in-use augmented space after all
structure objects are removed from storage-class memory (SCM).

Reason for check:
Residual augmented space prevents alter processing from dynamically
adjusting CF structure storage usage.

z/OS releases the check applies to:
z/OS V2R1 and later, or z/OS V1R13 with PTF for APAR OA40747 applied.

Parameters accepted:
None.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_SCM_AUGMENTED)

SEVERITY(LOW) INTERVAL(004:00) DATE(20130211)
PARM(’’)
VERBOSE(NO)
REASON(’Residual augmented space prevents alter processing from ’
’dynamically adjusting CF structure storage usage.’)

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 639

|

|

|

|

|

|

|

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0263E
v IXCH0264I
v IXCH0929I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_SCMMAXSIZE
Description:

Indicate a medium severity check exception when a CFRM policy structure
definition specifies SCMMAXSIZE (requests that the structure be eligible to use
storage-class memory), but the actual amount of storage-class memory (SCM)
assigned to the structure by the CF is less than the specified SCMMAXSIZE.

Reason for check:
It is expected that the actual amount of SCM available to an allocated structure
be equal to the CFRM policy SCMMAXSIZE value. Environmental conditions
such as the total SCM configured to a CF may limit the amount of SCM that a
structure has available to use.

z/OS releases the check applies to:
z/OS V2R1 and later, or z/OS V1R13 with PTF for APAR OA40747 applied.

Parameters accepted:
None.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_SCMMAXSIZE)
SEVERITY(MED) INTERVAL(008:00) DATE(20120322)
REASON(’Storage-Class Memory (SCM) available to’

’an allocated structure should be equal to’
’the structure defined SCMMAXSIZE.’)

VERBOSE(YES)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0258I
v IXCH0257E
v IXCH0926I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF checks

640 IBM Health Checker for z/OS User's Guide

XCF_CF_STR_SCM_MINCOUNTS
Description:

Check that the number of structure objects allocated to a structure meets the
required minimum for structures that can be duplexed according to the CFRM
active policy.

A minimum number of structure objects is required to allocate a structure with
a non-zero SCMMAXSIZE. But once allocated, the coupling facility may initiate
reapportionment in order to perform migration from SCM (storage-class
memory). Such reapportionment may cause a structure object count to go
below the minimum.

Reason for check:
When allocating a new structure instance to establish duplexing for a structure
that does not currently meet the minimum for a non-zero SCMMAXSIZE, the
new structure instance will be allocated with a zero SCMMAXSIZE - a value
that is inconsistent with the CFRM policy SCMMAXSIZE value.

z/OS releases the check applies to:
z/OS V1R13 and later with APAR OA40747.

Parameters accepted:
None.

User override of IBM values:
The following shows keywords you can use to override check values on either
a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_SCM_MINCOUNTS)

SEVERITY(LOW) INTERVAL(004:00) DATE(20131007)
PARM(’’)
VERBOSE(NO)
REASON(
’Less objects than the minimum required causes secondary ’
’structure allocation for duplexing to be inconsistent ’
’with the CFRM active policy SCMMAXSIZE.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0265E
v IXCH0266I
v IXCH0930I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_STR_SCM_UTILIZATION
Description:

Provide a dynamic severity check exception when a structure exceeds one of
the specified storage-class memory (SCM) utilization thresholds. The check
informs an installation when structure assigned SCM has reached certain usage
thresholds. The assigned SCM may become exhausted thereby becoming
unable to provide continuous availability, additional structure capacity when
needed during peak processing periods and provide relief when CF real

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 641

storage allocated to the structure becomes constrained. The threshold
percentages will be accepted as a check PARM.

Reason for check:
The percentage of SCM utilization for a structure should not approach an
amount so high as to prevent the capability to provide relief for temporary CF
real storage capacity or additional structure capacity when needed during peak
processing.

z/OS releases the check applies to:
z/OS V2R1 and later, or z/OS V1R13 with PTF for APAR OA40747 applied.

Parameters accepted:

PARM(’[SCM_NONE(scm_none)]
[,SCM_LOW(scm_low)]
[,SCM_MED(scm_med)]
[,SCM_HIGH(scm_high)]’)

At least one threshold parameter is required to indicate a threshold percentage
that the structure storage-class memory utilization should not exceed. The
number must be between 0 and 100 inclusive. This check supports dynamic
severity setting and threshold keywords to correspond with the severity levels.
The severity of the exception is based on the provided corresponding
thresholds.

Note:

1. When using dynamic severity, you may specify thresholds for one or more
of the parameters to identify different thresholds by severity level.

2. You do not need to specify thresholds for all of the parameters.

scm_none
The percentage of in-use SCM, relative to the amount of SCM eligible for
use by the structure, that will trigger severity-none processing. The
SCM_NONE keyword can be abbreviated SCM_N.

scm_low
The percentage of in-use SCM, relative to the amount of SCM eligible for
use by the structure, that will trigger a low severity exceptions. The
SCM_LOW keyword can be abbreviated SCM_L.

scm_med
The percentage of in-use SCM, relative to the amount of SCM eligible for
use by the structure, that will trigger a medium-severity exception. The
SCM_MED keyword can be abbreviated SCM_M.

scm_high
The percentage of in-use SCM, relative to the amount of SCM eligible for
use by the structure, that will trigger a high-severity exception. The
SCM_HIGH keyword can be abbreviated SCM_H.

Default: SCM_LOW(1%),SCM_MED(80%)

Note: When specifying percentages for parameter values, your number for the
higher severity case is larger than the lower case, as shown in the following
example:
PARM(’SCM_HIGH(90%),SCM_MED(50%),SCM_LOW(20%)’)

User override of IBM values:
The following shows keywords you can use to override check values on either

XCF checks

642 IBM Health Checker for z/OS User's Guide

a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY
command. This statement may be copied and modified to override the check
defaults:
UPDATE CHECK(IBMXCF,XCF_CF_STR_SCM_UTILIZATION)
SEVERITY(MED) INTERVAL(000:15) DATE(20120322)
PARM(’SCM_LOW(1),SCM_MED(80)’)
REASON(’Structure assigned storage-class memory should be’

’available for additional structure capacity’
’when needed during peak processing.’)

VERBOSE(YES)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0224I
v IXCH0225E
v IXCH0925I

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CF_SYSPLEX_CONNECTIVITY
Description:

Check that the required number of coupling facilities are defined in the CFRM
policy and connected to all active systems in the sysplex.

Reason for check:
When running in a Parallel Sysplex environment, IBM recommends that
hardware redundancy be provided for coupling facilities (that is, at least two
usable coupling facilities in the configuration) and that those coupling facilities
be connected to all active systems in the sysplex.

z/OS releases the check applies to:
z/OS V1R10 and later.

Verbose support:
Yes. All coupling facilities defined in the CFRM active policy are included in
the sysplex connectivity report when the check is run in verbose mode. You
can remove a check from verbose mode using any of the following methods:
v Specify the UPDATE,filters,VERBOSE=NO parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the YES value with the NO value in the VERBOSE column of the

SDSF CK command display.

Parameters accepted:
MINCFS(mincfs) is a required parameter indicating the number (in decimal) of
coupling facilities that must be connected to all active systems in the sysplex.
The number must be between 1 and 16 (inclusive).

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 643

UPDATE CHECK(IBMXCF,XCF_CF_SYSPLEX_CONNECTIVITY)
SEVERITY(MED) INTERVAL(001:00) DATE(’date_of_the_change’)
PARM(’MINCFS(2)’)
REASON(’Your reason for making the update.’)
VERBOSE(YES)

Reference:
For more information, see:
v z/OS MVS Setting Up a Sysplex

v Achieving the Highest Levels of Parallel Sysplex Availability
(http://www.redbooks.ibm.com/redbooks/SG246061)

Messages:
This check issues the following exception messages:
v IXCH0220E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CFRM_MSGBASED
Description:

Checks to see if CFRM is enabled to use the specified event processing
protocol when a structure is defined in the CFRM active policy in a
multisystem-capable sysplex.

This is a sysplex-wide check (GLOBAL), which means that it runs on one
system but reports on sysplex-wide values and practices. A global check shows
up as disabled for all systems in the sysplex, except for the one where it is
actually running.

Reason for check:
CFRM message-based event management improves recovery time for users of
CF structures. The CFRM message-based event management protocol was
introduced in z/OS V1R8 and can be used for CFRM event management of
structures other than XCF-signaling.

IBM suggests that, once all systems are at z/OS V1R8 and there is no intention
of falling back to a lower level of z/OS, message-based event processing
should be enabled because of the large performance, availability, and scalability
benefits that it can provide in some Parallel Sysplex environments.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
{MSGBASED|POLBASED}
v MSGBASED - specifies that the check should issue an exception if the

sysplex is not using message-based CFRM processing.
v POLBASED - specifies that the check should issue an exception if the

sysplex is not using policy-based CFRM processing.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

XCF checks

644 IBM Health Checker for z/OS User's Guide

UPDATE CHECK(IBMXCF,XCF_CFRM_MSGBASED)
SEVERITY(MED) INTERVAL(004:00) DATE (20090707)
PARM(’MSGBASED’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0253E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_CLEANUP_VALUE
Description:

Check that the XCF cleanup interval is set to a reasonable value to hasten the
removal of a failed system from the sysplex. Cleanup interval is the maximum
number of seconds allowed for members of a group to clean up their
processing before the system is put into a wait state.

Reason for check:
It is recommended that the XCF cleanup time be set to 15 seconds.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
The recommended XCF cleanup time in seconds. (must be an integer in the
range of 0 to 86400)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_CLEANUP_VALUE)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’15’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_DEFAULT_MAXMSG
Description:

For each path check that there is a MAXMSG of at least the indicated
minimum value specified by or inherited from the COUPLExx, transport class
definition, or path definition.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 645

Reason for check:
It is recommended for availability that there is a minimum MAXMSG value of
2000 for each transport class.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
The minimum MAXMSG value for transport classes. (must be an integer in the
range of 1 to 999999

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_DEFAULT_MAXMSG)

SEVERITY(LOW) INTERVAL(024:00) DATE(’date_of_the_change’)
PARM(’2000’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0427E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_FDI
Description:

The Failure Detection Interval (FDI) is the amount of time that a system can
appear to be unresponsive before XCF will take action to remove the system
from the sysplex. Internally we refer to this as the effective FDI, externally it is
often designated by the word INTERVAL (referring to the INTERVAL
parameter in COUPLExx and on the SETXCF COUPLE command). Check that
the effective FDI meets the following requirement:
SpinFDI <= EffectiveFDI <= MULT*SpinFDI + INC

Reason for check:
It is recommended that the user let the system default the effective FDI to the
SpinFDI by not specifying the INTERVAL keyword. The INTERVAL keword
allows customers to specify an effective FDI that is larger than the Spin FDI.
When specified, the INTERVAL value should be at least as large as the
SpinFDI to give the system enough time to resolve a spin loop timeout before
it gets removed from the sysplex but no so large that the rest of the sysplex
suffers sympathy sickness. See message IXCH0510E for a detailed discussion of
best practice for FDI.

z/OS releases the check applies to:
z/OS V1R4 and later. Note, however, that the check has been updated for
z/OS V1R11.

Parameters accepted:

1. MULT (must be an integer in the range of 1 to 9)

XCF checks

646 IBM Health Checker for z/OS User's Guide

2. INC (must be an integer in the range of 0 to 86400)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_FDI)
SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’MULT(2),INC(5)’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0510E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_MAXMSG_NUMBUF_RATIO
Description:

Check each inbound signal path and ensure that each can support at least the
indicated minimum number of messages from the sending system.

Reason for check:
It is recommended that each inbound signal path have enough buffer space to
allow at least 30 messages to be received simultaneously.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
The minimum number of XCF messages that an inbound XCF signal path
should support to avoid message backup. (must be an integer in the range 1 to
999999)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_MAXMSG_NUMBUF_RATIO)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’30’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0443E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 647

SECLABEL recommended for MLS users:
SYSLOW

XCF_SFM_ACTIVE
Description:

The check validates the recommended settings in the Sysplex Failure
Management (SFM) policy and reports an exception when the actual SFM
status is not consistent with the recommended status.

Reason for check:
It is recommended that:
v Sysplex Failure Management (SFM) be active to handle failure conditions in

a sysplex with little or no operator involvement.
v The policy specifies one of the automatic responses (isolation, deactivation,

or reset) rather than prompt for all systems.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
Recommended SFM status (must be either ACTIVE or INACTIVE).

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

UPDATE CHECK(IBMXCF,XCF_SFM_ACTIVE)
SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’ACTIVE’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0514E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SFM_CFSTRHANGTIME
Description:

This check monitors the current setting of the CFSTRHANGTIME value in the
sysplex failure management (SFM) policy to make sure it has not changed from
the setting most desirable for your installation. It does this by comparing the
SFM CFSTRHANGTIME value with the check parameter CFSTRHANGTIME
value that you specify, issuing an exception message if the two are not
consistent. The CFSTRHANGTIME SFM parameter specifies the amount of
time you are willing to wait before the system takes automatic action to relieve
hangs caused when a connector fails to respond to structure-related events in a
timely manner.

Reason for check:
Installation should specify SFM policy parameter CFSTRHANGTIME so that

XCF checks

648 IBM Health Checker for z/OS User's Guide

the system automatically takes action to relieve hangs in CF structure-related
processes caused by a connector's failure to respond to structure-related events
in a timely manner. Note that the CFSTRHANGTIME SFM policy attribute
applies to any system using SFM, whether or not SFM is in use throughout the
sysplex.

The IBM default value for CFSTRHANGTIME is 900 seconds (15 minutes).
However, installations must ensure that the check parameters reflect an
appropriate value. Consider CFSTRHANGTIME carefully to arrive at a value
that reflects the needs, goals, and prior experiences for a given configuration.
In general, it is desirable to select a fairly aggressive value to limit sympathy
sickness when connectors fail to respond to events in a timely manner, but this
must be balanced against the possibility of terminating connectors prematurely.

z/OS releases the check applies to:
z/OS V1R12 and later.

Parameters accepted:
Yes. PARM('CFSTRHANGTIME(NO | seconds)'):

NO Indicates that the system should not take automatic action to relieve a
hang in a structure-related process.

seconds
Specifies the time interval, in seconds, that a coupling facility structure
connector can remain unresponsive before the system takes action to
relieve a hang in a structure-related process.

900 is the default value for this check parameter.

This check generates an exception if the check parameter you specify is not
consistent with the existing SFM policy CFSTRANGTIME parameter. For
instance, the check generates an exception if:
v The SFM policy specifies or defaults to CFSTRHANGTIME(NO), but the

check parameter specifies a value other than NO.
v The SFM policy specifies a CFSTRHANGTIME decimal number of seconds,

but the check parameter is either NO or a value less than the value specified
in the SFM policy.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SFM_CFSTRHANGTIME)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’CFSTRHANGTIME(900)’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0531E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 649

XCF_SFM_CONNFAIL
Description:

Check that the sysplex failure management (SFM) policy specifies the
recommended action to be taken on loss of signaling connectivity.

Reason for check:
It is recommended that the CONNFAIL attribute of sysplex failure
management (SFM) be specified to allow SFM to reconfigure the sysplex when
one or more systems loses signalling connectivity.

Parameters accepted:
The CONNFAIL(YES|NO) keyword (must be YES in non-GDPS environment;
must be NO in a GDPS environment).

z/OS releases the check applies to:
z/OS V1R10 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SFM_CONNFAIL)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’CONNFAIL(YES)’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0519E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SFM_SSUMLIMIT
Description:

Check that the sysplex failure management (SFM) policy specifies the
recommended action to be taken when a system becomes status update
missing but continues to send signals.

Reason for check:
It is recommended that the SFM SSUMLIMIT attribute be specified to allow
time to investigate the reason for the status update missing and to take action
to correct the condition. The IBM default value is 900 seconds (15 minutes).
However, it is the installation's responsibility to ensure that the check
parameters reflect an appropriate value. Consider SSUMLIMIT carefully to
arrive at a value that reflects the needs, goals, and prior experiences for a
given configuration. If the goal is to remove systems quickly when status
update missing occurs, 60 seconds is a good value.

Parameters accepted:
SSUMLIMIT setting must be 'NONE' or a decimal value between 0 and 86400
inclusive.

XCF checks

650 IBM Health Checker for z/OS User's Guide

z/OS releases the check applies to:
z/OS V1R10 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SFM_SSUMLIMIT)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’SSUMLIMIT(900)’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0522E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SFM_SUM_ACTION
Description:

Check that the sysplex failure management (SFM) policy specifies the
recommended indeterminate status actions for the local system.

Reason for check:
It is recommended that ISOLATETIME(0) be specified to allow SFM to fence
and partition a system without operator intervention and without undue delay.

Parameters accepted:

SUMACTION
SFM Indeterminate status action. Must be one of ISOLATE, RESET,
DEACTIVATE, or PROMPT.

SUMINTERVAL
SFM indeterminate status interval. Decimal value between 0 and 86400
seconds inclusive. Not required if ACTION(PROMPT) is specified.

z/OS releases the check applies to:
z/OS V1R10 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SFM_SUM_ACTION)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’SUMACTION(ISOLATE),SUMINTERVAL(0)’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 651

v IXCH0516E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SIG_CONNECTIVITY
Description:

Check that multiple pathin/pathout pairs are in the working state for each
system in the sysplex connected to the current system.

Reason for check:
For availability It is recommended for availability that at least 2
pathin/pathout pairs are in the working state for each system in the sysplex
connected to the current system.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
The minimum number of pathin/pathout pair counts. (must be an integer in
the range of 1 to 99999)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SIG_CONNECTIVITY)

SEVERITY(MED) INTERVAL(000:30) DATE(’date_of_the_change’)
PARM(’2’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0414E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SIG_PATH_SEPARATION
Description:

Check for single points of failure for paths to all connected systems.

Reason for check:
It is recommended that there be no single points of failure for the XCF
signaling paths between any pair of systems in the sysplex.

z/OS releases the check applies to:
z/OS V1R7 and later.

User override of IBM values:
The following shows the default keywords for the check, which you can

XCF checks

652 IBM Health Checker for z/OS User's Guide

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SIG_PATH_SEPARATION)

SEVERITY(MED) INTERVAL(000:30) DATE(20070707)
REASON(’XCF signaling connections should have no’

’single point of failure.’)

Parameters:
None.

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0443E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SIG_STR_SIZE
Description:

Check that there are enough lists and list entries in every signaling structure to
support full signaling connectivity among all systems in the sysplex.

Reason for check:
The Coupling Facility Structure Sizer Tool (CFSizer) should be used to size
XCF signaling structures. CFSizer is available on the web at:
http://www.ibm.com/systems/support/z/cfsizer/

To calculate the size of the signaling list structure, CFSizer uses the specified
system count (which should match the MAXSYSTEM value formatted in the
primary sysplex couple data set) and the CLASSLEN for the transport class (to
which the signaling structure is to be assigned).

z/OS releases the check applies to:
z/OS V1R4 and up.

Verbose support:
Yes. All connected structures are included in the structure size report when the
check is run in verbose mode. You can put a check into verbose mode using
any of the following methods:
v Specify the UPDATE,filters,VERBOSE=YES parameter either on the MODIFY

command or in a POLICY statement in an HZSPRMxx parmlib member.
v Overwrite the NO value with the YES value in the VERBOSE column of the

SDSF CK command display.

Parameters accepted:
The parameters are only supported on z/OS V1R10 and up:

SYSTEMS(ACTIVE | MAXSYSTEM)
Specifies the target sysplex system count required for signaling support,
which will be used to calculate the number of signaling paths each
structure must support.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 653

http://www.ibm.com/systems/support/z/cfsizer/

ACTIVE
Checks that all signaling structures in use by XCF are large enough to
support the number of active systems in the sysplex. This is the default
value.

MAXSYSTEM
check that all signaling structures in use by XCF are large enough to
support the maximum number of systems that can be in the sysplex.
MAXSYSTEM resolves to the value specified when the primary sysplex
couple data set was formatted by the IXCL1DSU utility.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SIG_STR_SIZE)

SEVERITY(MED) INTERVAL(002:00) DATE(20071101)
PARM(’SYSTEMS(ACTIVE)’)
REASON(’XCF signaling structures should be of’

’sufficient size to support all systems in the’
’target sysplex.’)

VERBOSE(NO)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex and z/OS MVS
System Commands.

Messages:
This check issues the following exception messages:
v IXCH0247E
v IXCH0248E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SYSPLEX_CDS_CAPACITY
Description:

Check that the maximum number of systems, groups, and members have not
at some time reached a threshold determined by the best practice amount of
space required for growth of systems, groups, and members.

Reason for check:
It is recommended that the sysplex couple dataset is formatted large enough to
allow for the growth of 1 system, 2 groups and 5 members.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:

1. Recommended growth space for systems. (must be an integer in the range
of 0 to 32)

2. Recommended growth space for groups. (must be an integer in the range of
0 to 2045)

3. Recommended growth space for members. (must be an integer in the range
of 0 to 2047)

XCF checks

654 IBM Health Checker for z/OS User's Guide

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SYSPLEX_CDS_CAPACITY)

SEVERITY(MED) INTERVAL(000:30) DATE(’date_of_the_change’)
PARM(’1,2,5’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0602E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_SYSSTATDET_PARTITIONING
Description:

Checks that the system status detection (SSD) partitioning protocol is enabled
by the user. If not enabled, reports the environmental factors that prevent this
system using the SSD protocol. Factors checked include:
v Availability of sysplex couple data sets formatted to support the protocol
v The setting of installation controls governing the use of the protocol

The setting of installation controls governing the use of the protocol

Reason for check:
It is recommended that the SSD partitioning protocol be enabled to ensure that
failed systems are removed from the sysplex expeditiously and with a
minimum of operator involvement.

Parameters accepted:
ENABLED(YES | NO)

ENABLED(YES), the default, will cause the check to return an exception when
the SSD protocol is disabled.

z/OS releases the check applies to:
z/OS V1R11 and up

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_SYSSTATDET_PARTITIONING)
SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM('ENABLED(YES)')
REASON(’Your reason for making the update.’)

Debug support:
No

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 655

Verbose support:
No

Reference:
For a discussion of the partitioning process and the SSD partitioning protocol,
seez/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0526E
v IXCH529E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_TCLASS_CLASSLEN
Description:

Check that there are at least a certain number of different transport classes
with unique class lengths defined. This check is appropriate for both monoplex
and sysplex mode configurations, although it will return more useful results in
sysplex mode.

Reason for check:
It is recommended that there are at least 2 different transport classes with
unique class lengths defined.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
Minimum number of different transport classes with unique class lengths.
(must be an integer in the range of 1 to 17). Use a parameter setting of 1 for
monoplex mode.

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_TCLASS_CLASSLEN)

SEVERITY(MED) INTERVAL(024:00) DATE(’date_of_the_change’)
PARM(’2’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0424E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF checks

656 IBM Health Checker for z/OS User's Guide

XCF_TCLASS_CONNECTIVITY
Description:

Check that all defined transport classes are assigned at least to the indicated
number of pathouts (outbound paths). This check is appropriate for both
monoplex and sysplex mode configurations.

Reason for check:
It is recommended that all defined transport classes have at least 1 pathout
assigned to the class per target system.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
Minimum number of operational signalling paths for a transport class. (must
be an integer in the range of 1 to 99999)

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_TCLASS_CONNECTIVITY)

SEVERITY(MED) INTERVAL(004:00) DATE(’date_of_the_change’)
PARM(’1’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0420E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

XCF_TCLASS_HAS_UNDESIG
Description:

Check that all transport classes are set up to service the pseudo-group name
'UNDESIG'. This ensures that any XCF message can use each transport class.
This check is appropriate for both monoplex and sysplex mode configurations.

Reason for check:
It is recommended that all transport classes are set up to service the
pseudo-group name 'UNDESIG'.

z/OS releases the check applies to:
z/OS V1R4 and later.

Parameters accepted:
None.

User override of IBM values:
The following shows the default keywords for the check, which you can

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 657

override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE CHECK(IBMXCF,XCF_TCLASS_HAS_UNDESIG)

SEVERITY(LOW) INTERVAL(024:00) DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Reference:
For more information, see z/OS MVS Setting Up a Sysplex.

Messages:
This check issues the following exception messages:
v IXCH0417E
v IXCH0206E

See the IXCH messages in z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:
SYSLOW

z/OS File System checks (IBMZFS)

ZFS_CACHE_REMOVALS
Description:

Check if the system is running with user specified IOEFSPRM configuration
options METABACK_CACHE_SIZE ,CLIENT_CACHE_SIZE and
TRAN_CACHE_SIZE.

Reason for check:
Client cache and transaction cache are no longer supported for z/OS V2R2 and
later. Also, since meta data backing cache is combined into meta data cache for
z/OS V2R2 and later, IBM recommends to remove METABACK_CACHE_SIZE
configuration option from IOEFSPRM after adding its size into
META_CACHE_SIZE option.

The check issues an exception message if any of the
METABACK_CACHE_SIZE, CLIENT_CACHE_SIZE, or TRAN_CACHE_SIZE
zFS IOEFSPRM configuration options are specified.

z/OS releases the check applies to:
z/OS V2R2 and later.

User override of IBM values:
The following example shows the default keywords for the check, which you
can override on either a POLICY statement in the HZSPRMxx parmlib member
or on a MODIFY command. This statement can be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMZFS,ZFS_CACHE_REMOVALS)
SEVERITY(LOW)
INTERVAL(ONETIME)
PARM('METABACK(ABSENCE), CLIENT(ABSENCE),TRANS(ABSENCE)')
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Debug support:
No

Verbose support:
No

XCF checks

658 IBM Health Checker for z/OS User's Guide

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

Parameters accepted:
Yes. Specifying one or more keywords of METABACK, CLIENT and TRANS is
acceptable. Each keyword accepts one of the two values: ABSENCE or
EXISTENCE.
v ABSENCE: checks that configuration option

METABACK_CACHE_SIZE,CLIENT_CACHE_SIZE or TRAN_CACHE_SIZE
is specified. If all 3 options are found unspecified, check succeeds.
Otherwise, check fails.

v EXISTENCE: check that configuration option
METABACK_CACHE_SIZE,CLIENT_CACHE_SIZE or TRAN_CACHE_SIZE
is specified. If all 3 options are found specified, check succeeds. Otherwise,
check fails.

For example:
PARM('METABACK(EXISTENCE), CLIENT(ABSENCE), TRANS(ABSENCE)')
PARM('METABACK=EXISTENCE,CLIENT=ABSENCE,TRANS=ABSENCE')

Default:
The defaults are:
PARM('METABACK(ABSENCE),CLIENT(ABSENCE),TRANS(ABSENCE)')
PARM('METABACK=ABSENCE,CLIENT=ABSENCE,TRANS=ABSENCE')

Reference:
None.

Messages:
This check issues the following exception messages:
v IOEZH0065E
v IOEZH0066E
v IOEZH0067E
v IOEZH0071E
v IOEZH0072E
v IOEZH0073E

See z/OS Distributed File Service Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information about using security labels.

ZOSMIGV1R11_ZFS_INTERFACELEVEL
Description:

Verifies that the system is running sysplex_admin_level=2 for zFS V1R11
toleration support.

Reason for check:
zFS should be running at sysplex_admin_level=2 for all members of the
sysplex. Once this is done, zFS V1R11 may be brought into the sysplex.

z/OS releases the check applies to:
z/OS V1R9 and V1R10

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:

zFS checks

Chapter 13. IBM Health Checker for z/OS checks 659

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

UPDATE
CHECK(IBMZFS,ZOSMIGV1R11_ZFS_INTERFACELEVEL)
SEVERITY(LOW)
INTERVAL(ONETIME)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For additional information about zFS toleration support, see z/OS V2R2
Migration.

Debug support:
No

Verbose support:
No

Messages:
This check issues the following exception messages:
v IOEZH0011E

See z/OS Distributed File Service Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV1R11_ZFS_RM_MULTIFS
Description:

Verifies that a system running in a sysplex environment has no multi-file
system aggregates attached.

Reason for check:
Multi-file system aggregates should not be used. Compatibility mode
aggregates should be used.

z/OS releases the check applies to:
z/OS V1R9 through z/OS V1R11

User override of IBM values:
The following shows the default keywords for the check, which you can
override on either a POLICY statement in the HZSPRMxx parmlib member or
on a MODIFY command. This statement may be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMZFS,ZOSMIGV1R11_ZFS_RM_MULTIFS)
SEVERITY(LOW)
INTERVAL(ONETIME)
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Parameters accepted:
No

Reference:
For additional information about the removal of zFS multi-file system
aggregates, see z/OS Distributed File Service zFS Administration.

Debug support:
No

zFS checks

660 IBM Health Checker for z/OS User's Guide

Verbose support:
No

Messages:
This check issues the following exception messages:
v IOEZH0021E

See z/OS Distributed File Service Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information on using SECLABELs.

ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE
Description:

Determines if the system is running with the default settings for IOEFSPRM
configuration options meta_cache_size, metaback_cache_size and
user_cache_size.

For user cache size, check if the current size is less than the z/OS V2R1 default
user cache size. For metadata cache size and metadata backing cache size,
check if the sum of the two caches is less than the sum of the z/OS V2R1
defaults.

Reason for check:
Running with a very small cache size could affect zFS performance. This check
issues an exception message if either or both of the conditions are true:
v The sum of the current metadata cache size and metadata backing cache size

is less than the sum of the V2R1 default metadata cache size and metadata
backing cache size.

v The current user cache size is less than the z/OS V2R1 default user cache
size.

z/OS releases the check applies to:
z/OS V1R12 and z/OS V1R13.

User override of IBM values:
The following example shows the default keywords for the check, which you
can override on either a POLICY statement in the HZSPRMxx parmlib member
or on a MODIFY command. This statement can be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMZFS,ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE)
SEVERITY(LOW)
INTERVAL(ONETIME)
PARM(’META_CACHE=v2r1_size1,METABACK_CACHE=v2r1_size2,USER_CACHE=v2r1_size3')
DATE(’date_of_the_change’)
REASON(’Your reason for making the update.’)

Note: The cache sizes (v2r1_size1, v2r1_size2 and v2r1_size3) are the internally
calculated defaults as of z/OS V2R1 and later, based on the current
configuration option settings and the amount of real storage during zFS
initialization.

Debug support:
No

Verbose support:
No

zFS checks

Chapter 13. IBM Health Checker for z/OS checks 661

Parameters accepted:
Specifying one or more keywords of meta_cache, metaback_cache and
user_cache are acceptable. Each keyword defines a decimal number to be
compared with the current cache size. The decimal number is limited to a
length of 10 characters and a maximum value of 2147483647 (2G-1). A K, M or G
can be appended to the number to mean kilobytes, megabytes or gigabytes,
respectively.
v The valid range for meta_cache is 1 M through 1024 M.
v The valid range for metaback_cache is 1 M through 2097144 K
v The valid range for user_cache is 10 M to 64 G.

For example:
PARM(’USER_CACHE=1G’) /* To override user_cache_size default */
PARM(’META_CACHE=200000000,USER_CACHE=100000K’)
PARM(’META_CACHE=50M, METABACK_CACHE=32M,USER_CACHE=100M’)

The default sizes are the internally-calculated cache sizes beginning in z/OS
V2R1 based on the current configuration option settings and the real storage
usage during zFS initialization.

Reference:
See the performance and tuning section in z/OS Distributed File Service zFS
Administration to determine if the current setting would affect zFS performance.

See IOEFSPRM or zfsadm config in z/OS Distributed File Service zFS
Administration to set or dynamically change the cache setting.

Messages:
This check issues the following exception message:
v IOEZH0032E
v IOEZH0033E

See z/OS Distributed File Service Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information about using security labels.

ZFS_VERIFY_CACHESIZE
Description:

Checks whether the system is running with the default settings for IOEFSPRM
configuration options meta_cache, metaback_cache and user_cache.

For user-defined user cache size, check if the current size is less than the
default user cache size. For either or both user-defined metadata cache size and
metadata backing cache size, check if the sum of the two metadata caches is
less than the default metadata cache size.

Reason for check:
Running with a very small cache size could affect zFS performance. This check
issues an exception message if either or both of the conditions are true:
v For user-defined user cache size, check if the current size is less than the

default user cache size. For either or both user-defined metadata cache size
and metadata backing cache size, check if the sum of the two metadata
caches is less than the default metadata cache size.

z/OS releases the check applies to:
z/OS V2R1 and later.

zFS checks

662 IBM Health Checker for z/OS User's Guide

|

|

|

User override of IBM values:
The following example shows the default keywords for the check, which you
can override on either a POLICY statement in the HZSPRMxx parmlib member
or on a MODIFY command. This statement can be copied and modified to
override the check defaults:
UPDATE

CHECK(IBMZFS,ZFS_VERIFY_CACHESIZE)
SEVERITY(LOW)
INTERVAL(ONETIME)
PARM(’META_CACHE=size1, USER_CACHE=size2')
DATE(’20150205’)
REASON(’Your reason for making the update.’)

Note: The cache sizes (size1 and size2) are the internally-calculated defaults
based on the current configuration option settings and the amount of real
storage during zFS initialization.

For z/OS V2R2 and up, the previous parameter METABACK_CACHE is no
longer supported.

Debug support:
No

Verbose support:
No

Parameters accepted:
Specifying one or more keywords of meta_cache and user_cache is acceptable.
Each keyword defines a decimal number to be compared with the current
cache size. The decimal number is limited to a length of 10 characters and a
maximum value of 2147483647 (2G-1). A K, M or G can be appended to the
number to mean kilobytes, megabytes or gigabytes, respectively.
v The valid range for meta_cacheis 1 M through 64G
v The valid range for user_cache is 10 M to 64 G.

For example:
PARM(’USER_CACHE=1G’) /* To override the user_cache_size default */
PARM(’META_CACHE=200000000,USER_CACHE=100000K’)
PARM(’META_CACHE=50M, USER_CACHE=100M’)

Default:
The default is the internally-calculated cache size beginning in z/OS V2R1
based on the current configuration option settings and the amount of real
storage during zFS initialization.

Reference:
None.

Messages:
This check issues the following exception messages:
v IOEZH0044E
v IOEZH0045E

See z/OS Distributed File Service Messages and Codes.

SECLABEL recommended for multilevel security users:
SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria for
information about using security labels.

zFS checks

Chapter 13. IBM Health Checker for z/OS checks 663

|
|
|
|
|
|
|

|
|

|

zFS checks

664 IBM Health Checker for z/OS User's Guide

Part 4. Appendixes

© Copyright IBM Corp. 2006, 2015 665

666 IBM Health Checker for z/OS User's Guide

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the Contact z/OS or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number

© Copyright IBM Corp. 2006, 2015 667

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE

668 IBM Health Checker for z/OS User's Guide

keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 669

670 IBM Health Checker for z/OS User's Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2015 671

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

672 IBM Health Checker for z/OS User's Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Notices 673

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/

674 IBM Health Checker for z/OS User's Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at (no navtitle).

© Copyright IBM Corp. 2006, 2015 675

http://www.ibm.com/legal/copytrade.shtml

676 IBM Health Checker for z/OS User's Guide

Index

A
accessibility 667

contact IBM 667
features 667

ACTIVATE parameter
HZSPRMxx 71, 88
MODIFY command 71, 88

ADD PARMLIB parameter
HZSPRMxx 87
MODIFY command 87

ADD POLICY parameter
HZSPRMxx 88
MODIFY command 88

ADDNEW parameter
HZSPRMxx 71
MODIFY command 71

ADDREPLACE POLICY parameter
HZSPRMxx 88
MODIFY command 88

ALLOC_ALLC_OFFLN_POLICY 389
ALLOC_SPEC_WAIT_POLICY 391
ALLOC_TIOT_SIZE 392
allocate the HZSPDATA data set 11
ASM_LOCAL_SLOT_USAGE 398
ASM_NUMBER_LOCAL_DATASETS 394
ASM_PAGE_ADD 395
ASM_PLPA_COMMON_SIZE 396
ASM_PLPA_COMMON_USAGE 397
assistive technologies 667
automating

check output
exception messages 32

C
Catalog

check description 400
CATALOG_ATTRIBUTE_CHECK 400
CATALOG_IMBED_REPLICATE 401
CATALOG_RNLS 402
categories

HZSPRMxx
syntax 51

MODIFY command
syntax 51

CFLEVEL 19
Flash Express xxiii

changes
z/OS V2R1 xxiii

check description
Catalog 400
Communications Server 403
component trace 425
consoles 427
Contents supervision 437
DAE 443
DFSMS OPEN/CLOSE/EOV 447
Global Resource Serialization 448
HSM 454
ICSF 458

check description (continued)
Infoprint Server 468
JES2 checks 483
JES3 checks 484
PDSE 493
PFA 493
Predictive failure analysis 493
RACF 494
RCF 532
reconfiguration 532
RRS 541
RSM 550
RSMM 534
SDSF 556
SDUMP 558
SLIP 559
SMB 560
SMS 562
system logger 573
System trace 581
Timer supervisor 583
TSO/E 584
VLF 604
VSAM 606
VSAM RLS 607
VSM 614
XCF 625
z/OS UNIX 586

check messages 25
message table 204

CSECT 230, 232
example 205

planning 201
tags 214
variables 200

check output 25
evaluating 30
exception messages

automating 32
resolving exceptions 30
state

reading 34
check routine

environment 109, 138
function codes 113

remote check 145
gotchas 109
HZSFMSG macro 117, 150
HZSPQE fields, using 111, 144
input registers 110
issuing messages in 117, 150
output registers 110
programming considerations 109, 138
recovery 110, 127, 138, 161
reporting exceptions 118, 151, 183
requirements 109, 138
restrictions 109, 138
sample 106, 136
writing 106, 137

check terminology 96

© Copyright IBM Corp. 2006, 2015 677

checks
ALLOC_ALLC_OFFLN_POLICY 389
ALLOC_SPEC_WAIT_POLICY 391
ALLOC_TIOT_SIZE 392
ASM_LOCAL_SLOT_USAGE 398
ASM_NUMBER_LOCAL_DATASETS 394
ASM_PAGE_ADD 395
ASM_PLPA_COMMON_SIZE 396
ASM_PLPA_COMMON_USAGE 397
CATALOG_ATTRIBUTE_CHECK 400
CATALOG_IMBED_REPLICATE 401
CATALOG_RNLS 402
CCSTCP_SYSTCPIP_CTRACE_tcpipstackname 409
CNZ_AMRF_Eventual_Action_Msgs 427
CNZ_Console_MasterAuth_Cmdsys 427
CNZ_Console_Mscope_And_Routcode 428
CNZ_Console_Operating_Mode 429
CNZ_Console_Routcode_11 429
CNZ_EMCS_Hardcopy_Mscope 430
CNZ_EMCS_Inactive_Consoles 431
CNZ_OBSOLETE_MSGFLD_AUTOMATION 431
CNZ_Syscons_Allowcmd 433
CNZ_Syscons_Mscope 434
CNZ_Syscons_PD_Mode 434
CNZ_Syscons_Routcode 435
CNZ_Task_Table 436
CSRES_AUTOQ_GLOBALTCPIPDATA 403
CSRES_AUTOQ_RESOLVEVIA 404
CSRES_AUTOQ_TIMEOUT 405
CSTCP_CINET_PORTRNG_RSV_tcpipstackname 406
CSTCP_IPMAXRT4_tcpipstackname 407
CSTCP_IPMAXRT6_tcpipstackname 408
CSTCP_SYSPLEXMON_RECOV_tcpipstackname 410
CSTCP_TCPMAXRCVBUFRSIZE_tcpipstackname 411
CSV_APF_EXISTS 437
CSV_LNKLST_NEWEXTENTS 439
CSV_LNKLST_SPACE 440
CSV_LPA_CHANGES 441
CSVTAM_CSM_STG_LIMIT 412
CSVTAM_T1BUF_T2BUF_EE 413
CSVTAM_T1BUF_T2BUF_NOEE 414
CSVTAM_VIT_DSPSIZE 415
CSVTAM_VIT_OPT_ALL 415
CSVTAM_VIT_OPT_PSSSMS 416
CSVTAM_VIT_SIZE 417
CTRACE_DEFAULT_OR_MIN 425
DAE_SHAREDSN 443
DAE_SUPPRESSING 444
deleting 49
description 389
DMO_REFUCB 446
DMO_TAPE_LIBRARY_INIT_ERRORS 445
GRS_AUTHQLVL_SETTING 448
GRS_CONVERT_RESERVES 449
GRS_EXIT_PERFORMANCE 450, 451
GRS_GRSQ_SETTING 451
GRS_Mode 452
GRS_RNL_IGNORED_CONV 453
GRS_SYNCHRES 454
HSM_CDSB_BACKUP_COPIES 454
HSM_CDSB_DASD_BACKUPS 455
HSM_CDSB_VALID_BACKUPS 456
ICSF_COPROCESSOR_STATE_NEGCHANGE 458
ICSF_KEY_EXPIRATION 459
ICSF_MASTER_KEY_CONSISTENCY 460
ICSFMIG_DEPRECATED_SERV_WARNINGS 461
ICSFMIG7731_ICSF_PKDS_TO_4096BIT 464

checks (continued)
ICSFMIG7731_ICSF_RETAINED_RSAKEY 462
ICSFMIG77A1_COPROCESSOR_ACTIVE 465
ICSFMIG77A1_TKDS_OBJECT 466
ICSFMIG77A1_UNSUPPORTED_HW 467
IEA_ASIDS 563
IEA_LXS 565
INFOPRINT_PRINTWAY_MODE 468
INFOPRINT_V2DB_CHECK 469
IOS_CAPTUCB_PROTECT 473
IOS_CMRTIME_MONITOR 474
IOS_DYNAMIC_ROUTING 476
IOS_FABRIC_MONITOR 477
IOS_IORATE_MONITOR 479
IOS_MIDAWIOS_MIDAW 481
IOS_STORAGE_IOSBLKS 482
IXGLOGR_ENTRYTHRESHOLD 575
IXGLOGR_STAGINGDSFULL 573
IXGLOGR_STRUCTUREFULL 578
JES2_UPGRADE_CKPT_LEVEL_JES2 483
JES3_DATASET_INTEGRITY 484
JES3_DOT_POOL_USAGE 485
JES3_JET_POOL_USAGE 487
JES3_OST_POOL_USAGE 488
JES3_SEE_POOL_USAGE 489
managing 43

using MODIFY 47
using SDSF 45

obtaining additional 23
OCE_XTIOT_CHECK 447
PDSE_SMSPDSE1 493
RACF installation defined 494
RACF_AIM_STAGE 498
RACF_CERTIFICATE_EXPIRATION 500
RACF_classname_ACTIVE 502
RACF_ENCRYPTION_ALGORITHM 504
RACF_GRS_RNL 505
RACF_IBMUSER_REVOKED 510
RACF_ICHAUTAB_NONLPA 512
RACF_PASSWORD_CONTROLS 513
RACF_RRSF_RESOURCES 516
RACF_SENSITIVE_RESOURCES 518
RACF_UNIX_ID 524
RRS_ArchiveCFStructure 541
RRS_DUROffloadSize 541
RRS_MUROffloadSize 542
RRS_RMDataLogDuplexMode 543
RRS_RMDOffloadSize 543
RRS_RSTOffloadSize 544
RRS_Storage_NumLargeLOGBlks 545
RRS_Storage_NumLargeMSGBlks 546
RRS_Storage_NumServerReqs 547
RRS_Storage_NumTransBlks 548
RSM_AFQ 552
RSM_HVSHARE 550
RSM_MAXCADS 551
RSM_MEMLIMIT 551
RSM_REAL 553
RSU_RSU 554
RTM_IEAVTRML 555
SDSF_CLASS_SDSF_ACTIVE 556
SDSF_ISFPARMS_IN_USE 557
SDUMP_AUTO_ALLOCATION 559
SDUMP_AVAILABLE 558
SLIP_PER 559
SMB_NO_ZFS_SYSPLEX_AWARE 560
SMS_CDS_REUSE_OPTION 562

678 IBM Health Checker for z/OS User's Guide

checks (continued)
SMS_CDS_SEPARATE_VOLUMES 563
SUP_HIPERDISPATCH 566
SUP_HiperDispatchCPUConfig 568
SUP_LCCA_ABOVE_16M 569
SUP_SYSTEM_SYMBOL_TABLE_SIZE 570
SVA_AUTOIPL_DEFINED 490
SVA_AUTOIPL_DEV_VALIDATION 492
SYSTRACE_BRANCH 581
SYSTRACE_MODE 582
TSOE_OPERSEWAIT_SETTING 584
TSOE_PARMLIB_ERROR 585
TSOE_USERLOGS 586
USS_AUTOMOUNT_DELAY 586
USS_CLIENT_MOUNTS 587
USS_FILESYS_CONFIG 589
USS_HFS_DETECTED 591
USS_KERNEL_PVTSTG_THRESHOLD 592
USS_KERNEL_RESOURCES_THRESHOLD 594
USS_KERNEL_STACKS_THRESHOLDS 595
USS_MAXSOCKETS_MAXFILEPROC 596
USS_PARMLIB 597
USS_PARMLIB_MOUNTS 600
VLF_MAXVIRT 604
VSAM_INDEX_TRAP 606
VSAMRLS_CFCACHE_MINIMUM_SIZE 607
VSAMRLS_CFLS_FALSE_CONTENTION 608
VSAMRLS_DIAG_CONTENTION 609
VSAMRLS_QUIESCE_STATUS 610
VSAMRLS_SHCDS_CONSISTENCY 611
VSAMRLS_SHCDS_MINIMUM_SIZE 611
VSAMRLS_SINGLE_POINT_FAILURE 612
VSAMRLS_TVS_ENABLED 613
VSM_ALLOWUSERKEYCSA 614
VSM_CSA_CHANGE 624
VSM_CSA_LARGEST_FREE 615
VSM_CSA_LIMIT 617
VSM_CSA_THRESHOLD 619
VSM_PVT_LIMIT 619
VSM_SQA_LIMIT 618
VSM_SQA_THRESHOLD 622
XCF_CDS_MAXSYSTEM 625
XCF_CDS_SEPARATION 625
XCF_CDS_SPOF 626
XCF_CF_ALLOCATION_PERMITTED 627
XCF_CF_CONNECTIVITY 628
XCF_CF_MEMORY_UTILIZATION 629
XCF_CF_PROCESSORS 630
XCF_CF_SCM_UTILIZATION 631
XCF_CF_STR_AVAILABILITY 632
XCF_CF_STR_DUPLEX 633
XCF_CF_STR_EXCLLIST 634
XCF_CF_STR_MAXSCM 635
XCF_CF_STR_MAXSPACE 635
XCF_CF_STR_NONVOLATILE 636
XCF_CF_STR_POLICYSIZE 637
XCF_CF_STR_PREFLIST 638
XCF_CF_STR_SCM_AUGMENTED 639
XCF_CF_STR_SCM_MINCOUNTS 641
XCF_CF_STR_SCM_UTILIZATION 641
XCF_CF_STR_SCMMAXSIZE 640
XCF_CF_SYSPLEX_CONNECTIVITY 643
XCF_CFRM_MSGBASED 644
XCF_CLEANUP_VALUE 645
XCF_DEFAULT_MAXMSG 645
XCF_FDI 646
XCF_MAXMSG_NUMBUF_RATIO 647

checks (continued)
XCF_SFM_ACTIVE 648
XCF_SFM_CFSTRHANGTIME 648
XCF_SFM_CONNFAIL 650
XCF_SFM_SSUMLIMIT 650
XCF_SFM_SUM_ACTION 651
XCF_SIG_CONNECTIVITY 652
XCF_SIG_PATH_SEPARATION 652
XCF_SIG_STR_SIZE 653
XCF_SYSPLEX_CDS_CAPACITY 654
XCF_SYSSTATDET_PARTITIONING 655
XCF_TCLASS_CLASSLEN 656
XCF_TCLASS_CONNECTIVITY 657
XCF_TCLASS_HAS_UNDESIG 657
ZFS_CACHE_REMOVALS 658
ZFS_VERIFY_CACHESIZE 662
ZOSMIGREC_ROOT_FS_SIZE 602
ZOSMIGREC_SMB_RPC 561
ZOSMIGREC_SUP_TIMER_INUSE 583
ZOSMIGV1R10_RMM_REJECTS_DEFINED 534
ZOSMIGV1R10_RMM_VOL_REPLACE_LIM 535
ZOSMIGV1R10_RMM_VRS_DELETED 536
ZOSMIGV1R11_RMM_DUPLICATE_GDG 537
ZOSMIGV1R11_RMM_REXX_STEM 538
ZOSMIGV1R11_RMM_VRSEL_OLD 539
ZOSMIGV1R11_ZFS_INTERFACELEVEL 659
ZOSMIGV1R11_ZFS_RM_MULTIFS 660
ZOSMIGV1R12_INFOPRINT_INVSIZE 471
ZOSMIGV1R12_SUP_LCCA_ABOVE_16M 572
ZOSMIGV1R13_CNZ_Cons_Oper_Mode 436
ZOSMIGV1R13_DEFAULT_UNIX_ID 528
ZOSMIGV1R13_RO_SYMLINKS 603
ZOSMIGV2R1_CS_GATEWAY 418
ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE 661
ZOSMIGV2R2_Next_CS_SENDMAILCLIEN 419
ZOSMIGV2R2_Next_CS_SENDMAILDAEMN 420
ZOSMIGV2R2_Next_CS_SENDMAILMSA 421
ZOSMIGV2R2_Next_CS_SENDMAILMTA 422
ZOSMIGV2R2_Next_CS_SMTPDDAEMON 423
ZOSMIGV2R2_Next_CS_SMTPDMTA 424

CNZ_AMRF_Eventual_Action_Msgs 427
CNZ_Console_MasterAuth_Cmdsys 427
CNZ_Console_Mscope_And_Routcode 428
CNZ_Console_Operating_Mode 429
CNZ_Console_Routcode_11 429
CNZ_EMCS_Hardcopy_Mscope 430
CNZ_EMCS_Inactive_Consoles 431
CNZ_OBSOLETE_MSGFLD_AUTOMATION 431
CNZ_Syscons_Allowcmd 433
CNZ_Syscons_Mscope 434
CNZ_Syscons_PD_Mode 434
CNZ_Syscons_Routcode 435
CNZ_Task_Table 436
Communications Server

check description 403
completion codes

HZSPRINT utility 39
component trace

check description 425
consoles

check description 427
contact

z/OS 667
Contents supervision

check description 437
creating HZSPRMxx parmlib members 21
creating security definitions 14

Index 679

creating security definitions (continued)
assigning a user ID with superuser authority 15
for a IBM Health Checker for z/OS log stream 13
for HZSPRINT utility 16
in an MLS environment 20

CSRES_AUTOQ_GLOBALTCPIPDATA 403
CSRES_AUTOQ_RESOLVEVIA 404
CSRES_AUTOQ_TIMEOUT 405
CSTCP_CINET_PORTRNG_RSV_tcpipstackname 406
CSTCP_IPMAXRT4_tcpipstackname 407
CSTCP_IPMAXRT6_tcpipstackname 408
CSTCP_SYSPLEXMON_RECOV_tcpipstackname 410
CSTCP_SYSTCPIP_CTRACE_tcpipstackname 409
CSTCP_TCPMAXRCVBUFRSIZE_tcpipstackname 411
CSV_APF_EXISTS 437
CSV_LNKLST_NEWEXTENTS 439
CSV_LNKLST_SPACE 440
CSV_LPA_CHANGES 441
CSVTAM_CSM_STG_LIMIT 412
CSVTAM_T1BUF_T2BUF_EE 413
CSVTAM_T1BUF_T2BUF_NOEE 414
CSVTAM_VIT_DSPSIZE 415
CSVTAM_VIT_OPT_ALL 415
CSVTAM_VIT_OPT_PSSSMS 416
CSVTAM_VIT_SIZE 417
CTRACE_DEFAULT_OR_MIN 425

D
DAE

check description 443
DAE_SHAREDSN 443
DAE_SUPPRESSING 444
DEACTIVATE parameter

HZSPRMxx 71
MODIFY command 71

defining a log stream 12
DELETE parameter

HZSPRMxx 72
MODIFY command 72

deleting checks 49
description

checks 389
developing checks 105, 135, 169

check routine 106, 137
REXX check 170
sample 106, 136, 169

DFSMS OPEN/CLOSE/EOV
check description 447

DISPLAY parameter
HZSPRMxx 72

output 90
MODIFY command 72

output 90
DMO_REFUCB 446
DMO_TAPE_LIBRARY_INIT_ERRORS 445

E
example

message input 205
policy 63

exception messages
automating 32
evaluating 30
resolving 25, 30

F
F command

parameters 66
syntax 66

filters
HZSPRMxx 70
MODIFY command 70

Flash Express
statement of direction xxiii

function codes 113
remote check 145

G
Global Resource Serialization

check description 448
GRS_AUTHQLVL_SETTING 448
GRS_CONVERT_RESERVES 449
GRS_EXIT_PERFORMANCE 450, 451
GRS_GRSQ_SETTING 451
GRS_Mode 452
GRS_RNL_IGNORED_CONV 453
GRS_SYNCHRES 454

H
HSM

check description 454
HSM_CDSB_BACKUP_COPIES 454
HSM_CDSB_DASD_BACKUPS 455
HSM_CDSB_VALID_BACKUPS 456
HZSADDCHECK exit routine

adding checks to the system 196
environment 194
input registers 194
multiple checks in 195
output registers 195
sample 136
writing 191

HZSCHECK macro 299
HZSCPARS macro 300
HZSFMSG macro 345

in check routine 117, 150
HZSLFMSG function

in REXX check 181
HZSLPDRD function

in REXX check 250
HZSLPDWR function

in REXX check 254
HZSPDATA data set

allocating 11
sizing 11

HZSPDATA parameter
HZSPRMxx 74
MODIFY command 74

HZSPQE 111, 144
HZSPREAD macro 346, 355
HZSPRINT utility

completion codes 39
output example 39
security definitions for 16
setting up 12
using 37

HZSPRMxx
ACTIVATE parameter 71, 88
ADD PARMLIB parameter 87

680 IBM Health Checker for z/OS User's Guide

HZSPRMxx (continued)
ADD POLICY parameter 88
ADDNEW parameter 71
ADDREPLACE POLICY parameter 88
DEACTIVATE parameter 71
DELETE parameter 72
DISPLAY parameter 72

output 90
filters 70
HZSPDATA parameter 74
LOGGER parameter 75
parameters 66
POLICY parameter 88, 89
REFRESH parameter 75
REMOVE POLICY parameter 88, 89
REPLACE,PARMLIB parameter 87
RUN parameter 75
specifying members 64
STOP parameter 76
syntax 66

using categories 51
using wildcards 66

UPDATE parameter 76
HZSPRMxx parmlib member

creating 21
HZSPROC parameter 74

MODIFY command 74
HZSQUERY macro 386

I
IBM Health Checker for z/OS

planning checks 95
setting up 7
software requirements 10

ICSF
check description 458

ICSF_COPROCESSOR_STATE_NEGCHANGE 458
ICSF_KEY_EXPIRATION 459
ICSF_MASTER_KEY_CONSISTENCY 460
ICSFMIG_DEPRECATED_SERV_WARNINGS 461
ICSFMIG7731_ICSF_PKDS_TO_4096BIT 464
ICSFMIG7731_ICSF_RETAINED_RSAKEY 462
ICSFMIG77A1_COPROCESSOR_ACTIVE 465
ICSFMIG77A1_TKDS_OBJECT 466
ICSFMIG77A1_UNSUPPORTED_HW 467
IEA_ASIDS 563
IEA_LXS 565
Infoprint Server

check description 468
INFOPRINT_PRINTWAY_MODE 468
INFOPRINT_V2DB_CHECK 469
IOS_CAPTUCB_PROTECT 473
IOS_CMRTIME_MONITOR 474, 476
IOS_FABRIC_MONITOR 477
IOS_IORATE_MONITOR 479
IOS_MIDAW 481
IOS_STORAGE_IOSBLKS 482
IXGLOGR_ENTRYTHRESHOLD 575
IXGLOGR_STRUCTUREFULL 578, 581

J
JES2 checks

check description 483
JES2_UPGRADE_CKPT_LEVEL_JES2 483

JES3 checks
check description 484

JES3_DATASET_INTEGRITY 484
JES3_DOT_POOL_USAGE 485
JES3_JET_POOL_USAGE 487
JES3_OST_POOL_USAGE 488
JES3_SEE_POOL_USAGE 489

K
keyboard

navigation 667
PF keys 667
shortcut keys 667

L
log stream

defining 12
LOGGER parameter

HZSPRMxx 75
MODIFY command 75

M
macros

HZS 265
HZSADDCK 265
HZSFMSG 265
HZSQUERY 265

managing checks 43, 45
policy 52, 53

example 63
message input

creating 199
message table 204

CSECT 230, 232
example 205

planning 201
tags 214
variables 200

message table
sample 106, 136, 169

messages
in check routine 117, 150

Metal C
checks 99

MODIFY command
ACTIVATE parameter 71, 88
ADD PARMLIB parameter 87
ADD POLICY parameter 88
ADDNEW parameter 71
ADDREPLACE POLICY parameter 88
DEACTIVATE parameter 71
DELETE parameter 72
DISPLAY parameter 72

output 90
filters 70
HZSPDATA parameter 74
LOGGER parameter 75
managing checks with 47
parameters 66
POLICY parameter 88, 89
reading check state 34
REFRESH parameter 75
REMOVE POLICY parameter 88, 89

Index 681

MODIFY command (continued)
REPLACE,PARMLIB parameter 87
RUN parameter 75
STOP parameter 76
syntax 66

using categories 51
using wildcards 66

UPDATE parameter 76

N
navigation

keyboard 667
Notices 671

O
OCE_XTIOT_CHECK 447
output registers

check routine 110
output, check 25

automating 32

P
parameters

HZSPRMxx 66
MODIFY command 66

PDSE
check description 493

PDSE_SMSPDSE1 493
PFA

check description 493
planning checks 95

identify potential checks 96
policy

example 63
managing checks with 52, 53
using dates on 58

POLICY parameter
HZSPRMxx 88, 89
MODIFY command 88, 89

Predictive failure analysis
check description 493

R
RACF

check description 494
RACF installation defined check 494
RACF_AIM_STAGE 498
RACF_CERTIFICATE_EXPIRATION 500
RACF_classname_ACTIVE 502
RACF_ENCRYPTION_ALGORITHM 504
RACF_GRS_RNL 505
RACF_IBMUSER_REVOKED 510
RACF_ICHAUTAB_NONLPA 512
RACF_PASSWORD_CONTROLS 513
RACF_RRSF_RESOURCES 516
RACF_SENSITIVE_RESOURCES 518
RACF_UNIX_ID 524
RCF

check description 532

reading
check output

state 34
reconfiguration

check description 532
recovery

check routine 110, 138
REFRESH parameter

HZSPRMxx 75
MODIFY command 75

REMOVE POLICY parameter
HZSPRMxx 88, 89
MODIFY command 88, 89

REPLACE PARMLIB parameter
HZSPRMxx 87

REPLACE,PARMLIB parameter
MODIFY command 87

REXX check
issuing messages in 181, 250, 254
recovery 188
writing 170

RMM
check description 534

RRS
check description 541

RRS_ArchiveCFStructure 541
RRS_DUROffloadSize 541
RRS_MUROffloadSize 542
RRS_RMDataLogDuplexMode 543
RRS_RMDOffloadSize 543
RRS_RSTOffloadSize 544
RRS_Storage_NumLargeLOGBlks 545
RRS_Storage_NumLargeMSGBlks 546
RRS_Storage_NumServerReqs 547
RRS_Storage_NumTransBlks 548
RSM

check description 550
RSM_AFQ 552
RSM_HVSHARE 550
RSM_MAXCADS 551
RSM_MEMLIMIT 551
RSM_REAL 553
RSM_RSU 554
RTM_IEAVTRML 555
RUN parameter

HZSPRMxx 75
MODIFY command 75

S
sample

check routine 106, 136
HZSADDCHECK exit routine 136
message table 106, 136

SDSF
check description 556
managing checks with 45
reading check state 34

SDSF_CLASS_SDSF_ACTIVE 556, 557
SDUMP

check description 558
SDUMP_AUTO_ALLOCATION 559
SDUMP_AVAILABLE 558
security definitions

creating 14
assigning a user ID with superuser authority 15
for a IBM Health Checker for z/OS log stream 13

682 IBM Health Checker for z/OS User's Guide

security definitions (continued)
creating (continued)

for HZSPRINT utility 16
in an MLS environment 20

sending comments to IBM xv
setting up

IBM Health Checker for z/OS 7
setting up the HZSPRINT utility 12
shortcut keys 667
sizing the HZSPDATA data set 11
SLIP

check description 559
SLIP_PER 559
SMB

check description 560
SMB_NO_ZFS_SYSPLEX_AWARE 560
SMS

check description 562
SMS_CDS_REUSE_OPTION 562
SMS_CDS_SEPARATE_VOLUMES 563
state

check 34
statement of direction

coupling facility list structures xxiii
STOP parameter

HZSPRMxx 76
MODIFY command 76

summary of changes xvii, xix, xxi, xxiii
SUP_HIPERDISPATCH 566
SUP_HiperDispatchCPUConfig 568
SUP_LCCA_ABOVE_16M 569
SUP_SYSTEM_SYMBOL_TABLE_SIZE 570
SVA_AUTOIPL_DEFINED 490
SVA_AUTOIPL_DEV_VALIDATION 492
syntax

HZSPRMxx 66
MODIFY command 66

System logger
check description 573

System trace
check description 581

SYSTRACE_MODE 582

T
Timer supervisor

check description 583
trademarks 675
TSO/E

check description 584
TSOE_OPERSEWAIT_SETTING 584
TSOE_PARMLIB_ERROR 585
TSOE_USERLOGS 586

U
UPDATE parameter

HZSPRMxx 76
MODIFY command 76

user interface
ISPF 667
TSO/E 667

USS_AUTOMOUNT_DELAY 586
USS_CLIENT_MOUNTS 587
USS_FILESYS_CONFIG 589
USS_HFS_DETECTED 591

USS_KERNEL_PVTSTG_THRESHOLD 592
USS_KERNEL_RESOURCES_THRESHOLD 594
USS_KERNEL_STACKS_THRESHOLD 595
USS_MAXSOCKETS_MAXFILEPROC 596
USS_PARMLIB 597
USS_PARMLIB_MOUNTS 600

V
V2R1 changes xxiii
viewing

check output 25
VLF

check description 604
VLF_MAXVIRT 604
VSAM

check description 606
VSAM RLS

check description 607
VSAM_INDEX_TRAP 606
VSAMRLS_CFCACHE_MINIMUM_SIZE 607
VSAMRLS_CFLS_FALSE_CONTENTION 608
VSAMRLS_DIAG_CONTENTION 609
VSAMRLS_QUIESCE_STATUS 610
VSAMRLS_SHCDS_CONSISTENCY 611
VSAMRLS_SHCDS_MINIMUM_SIZE 611
VSAMRLS_SINGLE_POINT_FAILURE 612
VSAMRLS_TVS_ENABLED 613
VSM

check description 614
VSM_ALLOWUSERKEYCSA 614
VSM_CSA_CHANGE 624
VSM_CSA_LARGEST_FREE 615
VSM_CSA_LIMIT 617
VSM_CSA_THRESHOLD 619
VSM_SQA_LIMIT 618, 619
VSM_SQA_THRESHOLD 622

W
writing checks 105, 135, 169

sample 106, 136, 169

X
XCF

check description 625
XCF_CDS_MAXSYSTEM 625
XCF_CDS_SEPARATION 625
XCF_CDS_SPOF 626
XCF_CF_ALLOCATION_PERMITTED 627
XCF_CF_CONNECTIVITY 628
XCF_CF_MEMORY_UTILIZATION 629
XCF_CF_PROCESSORS 630
XCF_CF_SCM_UTILIZATION 631
XCF_CF_STR_AVAILABILITY 632
XCF_CF_STR_DUPLEX 633
XCF_CF_STR_EXCLLIST 634
XCF_CF_STR_MAXSCM 635
XCF_CF_STR_MAXSPACE 635
XCF_CF_STR_NONVOLATILE 636
XCF_CF_STR_POLICYSIZE 637
XCF_CF_STR_PREFLIST 638
XCF_CF_STR_SCM_AUGMENTED 639
XCF_CF_STR_SCM_MINCOUNTS 641
XCF_CF_STR_SCM_UTILIZATION 641

Index 683

XCF_CF_STR_SCMMAXSIZE 640
XCF_CF_SYSPLEX_CONNECTIVITY 643
XCF_CFRM_MSGBASED 644
XCF_CLEANUP_VALUE 645
XCF_DEFAULT_MAXMSG 645
XCF_FDI 646
XCF_MAXMSG_NUMBUF_RATIO 647
XCF_SFM_ACTIVE 648
XCF_SFM_CFSTRHANGTIME 648
XCF_SFM_CONNFAIL 650
XCF_SFM_SSUMLIMIT 650
XCF_SFM_SUM_ACTION 651
XCF_SIG_CONNECTIVITY 652
XCF_SIG_PATH_SEPARATION 652
XCF_SIG_STR_SIZE 653
XCF_SYSPLEX_CDS_CAPACITY 654
XCF_SYSSTATDET_PARTITIONING 655
XCF_TCLASS_CLASSLEN 656
XCF_TCLASS_CONNECTIVITY 657
XCF_TCLASS_HAS_UNDESIG 657

Z
z/OS UNIX

check description 586
ZFS_CACHE_REMOVALS 658
ZFS_VERIFY_CACHESIZE 662
ZOSMIGREC_ROOT_FS_SIZE 602
ZOSMIGREC_SMB_RPC 561
ZOSMIGREC_SUP_TIMER_INUSE 583
ZOSMIGV1R10_RMM_REJECTS_DEFINED 534
ZOSMIGV1R10_RMM_VOL_REPLACE_LIM 535
ZOSMIGV1R10_RMM_VRS_DELETED 536
ZOSMIGV1R11_RMM_DUPLICATE_GDG 537
ZOSMIGV1R11_RMM_REXX_STEM 538
ZOSMIGV1R11_RMM_VRSEL_OLD 539
ZOSMIGV1R11_ZFS_INTERFACELEVEL 659
ZOSMIGV1R11_ZFS_RM_MULTIFS 660
ZOSMIGV1R12_INFOPRINT_INVSIZE 471
ZOSMIGV1R12_SUP_LCCA_ABOVE_16M 572, 573
ZOSMIGV1R13_CNZ_Cons_Oper_Mode 436
ZOSMIGV1R13_DEFAULT_UNIX_ID 528
ZOSMIGV1R13_RO_SYMLINKS 603
ZOSMIGV2R1_CS_GATEWAY 418
ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE 661
ZOSMIGV2R2_Next_CS_SENDMAILCLIEN 419
ZOSMIGV2R2_Next_CS_SENDMAILDAEMN 420
ZOSMIGV2R2_Next_CS_SENDMAILMSA 421
ZOSMIGV2R2_Next_CS_SENDMAILMTA 422
ZOSMIGV2R2_Next_CS_SMTPDDAEMON 423
ZOSMIGV2R2_Next_CS_SMTPDMTA 424

684 IBM Health Checker for z/OS User's Guide

����

Product Number: 5650-ZOS

Printed in USA

SC23-6843-03

	Contents
	Figures
	Tables
	About This Information
	Who should use this document

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated September 2014
	Summary of changes for z/OS Version 2 Release 1 as updated March 2014
	z/OS Version 2 Release 1 summary of changes
	Exploitation of the Flash Express feature

	Part 1. Using IBM Health Checker for z/OS
	Chapter 1. Introduction
	What is a check?
	For more information, see our fabulous Redpaper!
	Background for IBM's checks

	Chapter 2. Setting up IBM Health Checker for z/OS
	Stopping and Starting IBM Health Checker for z/OS Manually
	Sharing critical IBM Health Checker for z/OS information between systems at different levels
	Sharing IEASYSxx
	Sharing the HZSPROC procedure
	Sharing HZSPRMxx

	Steps for optimizing IBM Health Checker for z/OS
	In a rush? Use these basic steps

	Software requirements
	Software requirement for running REXX checks

	Customizing the IBM Health Checker for z/OS procedure
	Allocate the HZSPDATA data set to save check data between restarts
	Monitoring and sizing the HZSPDATA data set

	Optionally set up the HZSPRINT utility
	Optionally define log streams to keep a record of the check output
	Create security definitions
	Setting up security for the IBM Health Checker for z/OS started task
	Setting up security for the HZSPRINT utility
	Security for printing check output from the message buffer
	Security for printing check output from a log stream

	Setting up security for IBM Health Checker for SDSF support

	Create multilevel security definitions
	Create HZSPRMxx parmlib members
	Tell the system which HZSPRMxx members you want to use
	How do the HZSPRMxx settings specified in HZSPROC and IEASYSxx interact?

	Assign IBM Health Checker for z/OS to a WLM service class
	Obtain checks for IBM Health Checker for z/OS

	Chapter 3. Working with check output
	Hey! My system has been configured like this for years, and now I'm receiving exceptions!
	Understanding system data issued with the check messages
	Understanding exception messages
	Evaluating check output and resolving exceptions
	Customizing check exceptions with dynamically varying severity
	Approaches to automation with IBM Health Checker for z/OS
	More automation ideas
	Using HZS exception messages for automation

	Understanding check state and status
	User controlled states
	IBM Health Checker for z/OS controlled states
	ACTIVE(DISABLED) and INACTIVE(ENABLED) - understanding check state combinations
	Check status

	Using the HZSPRINT utility
	Example of HZSPRINT output
	HZSPRINT utility completion codes

	Finding check message documentation with LookAt

	Chapter 4. Managing checks
	Making dynamic, temporary changes to checks
	Using SDSF to manage checks
	Managing checks with the MODIFY hzsproc command
	Cheat sheet: examples of MODIFY hzsproc commands
	Why you should not add checks using the MODIFY hzsproc command
	Why does my check reappear after I delete it? Understanding delete processing
	But my check doesn't reappear after ADDNEW - what happened to it?
	Why can't I re-add my HZSPRMxx parmlib defined check after I delete it? More understanding of the delete processing...
	How can I delete checks while IBM Health Checker for z/OS is terminating?
	Using the category filter to manage checks

	Making persistent changes to checks
	Creating and maintaining IBM Health Checker for z/OS policies
	How IBM Health Checker for z/OS builds policies from policy statements
	Define one policy in multiple HZSPRMxx parmlib members
	Define multiple policies in one HZSPRMxx parmlib member
	Some finer points of how policy values are applied
	How IBM Health Checker for z/OS uses the dates on policy statements

	Can I put non-policy statements in my HZSPRMxx member?
	Using SYNCVAL in a policy to specify the time of day that a check runs
	Examples: Making SYNCVAL work for you
	Fine points of how SYNCVAL works
	SYNCVAL restrictions

	Policy statement examples
	Can I create policy statements using the MODIFY command?
	Specifying the HZSPRMxx members you want the system to use

	Using HZSPRMxx and MODIFY hzsproc command
	Guidelines for HZSPRMxx parmlib members
	HZSPRMxx summary
	Parameter in IEASYSxx (or supplied by the operator)
	IBM supplied defaults for HZSPRMxx
	Syntax rules for HZSPRMxx

	Syntax and parameters for HZSPRMxx and MODIFY hzsproc
	Examples of DISPLAY output

	Part 2. Developing Checks for IBM Health Checker for z/OS
	Chapter 5. Planning checks
	Identifying potential checks
	The life-cycle of a check - check terminology
	What kind of check do you want to write?
	Local checks
	Remote checks
	Writing local and remote checks in Metal C
	REXX checks
	Summary of checks - differences and similarities

	Issuing messages for your check - message table checks versus DIRECTMSG checks
	Where to next? A road map for developing your check

	Chapter 6. Writing local check routines
	Metal C or assembler?
	Sample local checks
	Local check routine basics
	Defining a local check to IBM Health Checker for z/OS
	Programming considerations
	Environment
	Requirements
	Restrictions
	Gotchas
	Input Registers
	Output Registers
	Establishing a recovery routine for a check
	Assembler reentrant entry and exit linkage

	Using the check parameter parsing service (HZSCPARS)
	Using the HZSPQE data area in your local check routine
	Function codes for local check routines
	Creating and using data saved between restarts
	Using ENF event code 67 to listen for check status changes
	Issuing messages in your local check routine with the HZSFMSG macro
	Reporting check exceptions

	Defining the variables for your messages
	Using default HZSMGB data area format (MGBFORMAT=0)
	Using HZSMGB data area format MGBFORMAT=1

	Writing a check with dynamic severity levels
	Controlling check exception message WTOs and their automation consequences
	The well-behaved local check routine - recommendations and recovery considerations
	Building Metal C checks
	Debugging checks

	Chapter 7. Writing remote check routines
	Metal C or assembler?
	Sample checks
	Remote check routine basics
	Programming considerations
	Environment
	Requirements
	Restrictions
	Establishing a recovery routine for a check

	Preparing for check definition - making sure IBM Health Checker for z/OS is up and running
	Using ENF event code 67 to listen for IBM Health Checker for z/OS availability

	Allocate a pause element token using IEAVAPE
	Issue the HZSADDCK macro to define a remote check to IBM Health Checker for z/OS
	Example of an HZSADDCK macro call for a remote check

	Pause the remote check routine with IEAVPSE
	Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE to communicate check start and stop to IBM Health Checker for z/OS
	Using the check parameter parsing service (HZSCPARS)
	Using the HZSPQE data area in your remote check routine
	Release codes for remote check routines
	Ending a check that is coupled with an application
	Creating and using data saved between restarts
	Issuing messages in your remote check routine with the HZSFMSG macro
	Reporting check exceptions

	Defining the variables for your messages
	Using default HZSMGB data area format (MGBFORMAT=0)
	Using HZSMGB data area format MGBFORMAT=1

	Writing a check with dynamic severity levels
	Controlling check exception message WTOs and their automation consequences
	Recommendations and recovery considerations for remote checks
	Building Metal C checks
	Debugging checks

	Chapter 8. Writing REXX checks
	Sample REXX checks
	REXX check basics
	Using input data sets in a TSO-environment REXX check
	Using REXXIN data sets
	REXXIN data set naming conventions

	Using REXXOUT data sets
	REXXOUT data set naming conventions
	Examples: Capturing error data in REXXOUT

	Defining a REXX check to IBM Health Checker for z/OS
	Creating and using data saved between restarts in a REXX check
	Using ENF event code 67 to listen for check status changes
	Issuing messages from your REXX check with the HZSLFMSG function
	Reporting check exceptions

	Writing a check with dynamic severity levels
	Controlling check exception message WTOs and their automation consequences
	The well-behaved REXX check - recommendations and recovery considerations
	Debugging REXX checks

	Chapter 9. Writing an HZSADDCHECK exit routine
	Programming considerations for the HZSADDCHECK exit routine
	Environment
	Input Registers
	Output Registers

	Defining multiple local or REXX checks in a single HZSADDCHECK exit routine
	Dynamically adding local or REXX exec checks to IBM Health Checker for z/OS
	Using operator commands to add checks to the system dynamically
	Using a routine to add checks to the system dynamically

	Debugging HZSADDCHECK exit routine abends
	Creating product code that automatically registers checks at initialization
	Creating product code that deletes checks as it goes down

	Chapter 10. Creating the message input for your check
	How messages and message variables are issued at check runtime
	Planning your check messages
	Planning your exception messages
	Planning your information messages
	Planning your report messages
	Planning your debug messages
	Decide what release your check will run on
	Decide whether to translate your check exception messages into other national languages
	Rely on IBM Health Checker for z/OS to issue basic check information for you

	Creating the message table
	Examples of message input
	Exception message example
	Information message example
	Report message example
	Debug message example
	Message list tagging example

	Syntax of message input
	Message input tags
	Copyright information
	Message list tag - <msglist>
	Message instance tag - <msg>
	Message number tag - <msgnum>
	Message text (<msgtext>) and message variable (<mv>) tags
	Message item tag - <msgitem>
	Message Table

	Special formatting tags for the message table
	How messages are formatted in the message buffer
	Extra fields issued to the message buffer for exception messages

	Using symbols in the message table
	Using pre-defined system symbols
	Defining your own symbols for check messages

	Generating the compilable assembler CSECT for the message table
	Support for translating messages to other languages
	Guidelines for coding translatable exception message text lines

	Chapter 11. IBM Health Checker for z/OS System REXX Functions
	HZSLFMSG function
	Input variables
	Input variables for HZSLFMSG_REQUEST='CHECKMSG'
	Input variables for HZSLFMSG_REQUEST='DIRECTMSG'
	Input variables for HZSLFMSG_REQUEST='HZSMSG'
	Input variables for HZSLFMSG_REQUEST='STOP'

	HZSLFMSG Output variables
	HZSLFMSG return codes

	HZSLPDRD function
	Input variables
	Required HZSLPDRD variables
	Optional HZSLPDRD variables

	HZSLPDRD Output variables
	HZSLPDRD return codes

	HZSLPDWR function
	Input variables
	Required HZSLPDWR variables

	HZSLPDWR output variables
	HZSLPDWR return codes

	HZSLSTOP function
	Input variables
	Output variables
	HZSLSTOP return codes

	HZSLSTRT function
	Input variables
	Output variables
	HZSLSTRT return codes

	Chapter 12. IBM Health Checker for z/OS HZS macros
	HZSADDCK macro — HZS add a check
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	HZSCHECK macro — HZS Check command request
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	HZSCPARS macro — HZS Check Parameter Parsing
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	HZSFMSG macro — Issue a formatted check message
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	HZSPREAD macro — Read Check Persistent Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	HZSPWRIT macro — Write Check Persistent Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	HZSQUERY macro — HZS Query
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Part 3. Check Descriptions
	Chapter 13. IBM Health Checker for z/OS checks
	Where are the migration checks?
	Allocation checks (IBMALLOC)
	ALLOC_ALLC_OFFLN_POLICY
	ALLOC_SPEC_WAIT_POLICY
	ALLOC_TIOT_SIZE

	ASM checks (IBMASM)
	ASM_NUMBER_LOCAL_DATASETS
	ASM_PAGE_ADD
	ASM_PLPA_COMMON_SIZE
	ASM_PLPA_COMMON_USAGE
	ASM_LOCAL_SLOT_USAGE

	Catalog checks (IBMCATALOG)
	CATALOG_ATTRIBUTE_CHECK
	CATALOG_IMBED_REPLICATE
	CATALOG_RNLS

	Communications Server checks (IBMCS)
	CSRES_AUTOQ_GLOBALTCPIPDATA
	CSRES_AUTOQ_RESOLVEVIA
	CSRES_AUTOQ_TIMEOUT
	CSTCP_CINET_PORTRNG_RSV_tcpipstackname
	CSTCP_IPMAXRT4_tcpipstackname
	CSTCP_IPMAXRT6_tcpipstackname
	CSTCP_SYSTCPIP_CTRACE_tcpipstackname
	CSTCP_SYSPLEXMON_RECOV_tcpipstackname
	CSTCP_TCPMAXRCVBUFRSIZE_tcpipstackname
	CSVTAM_CSM_STG_LIMIT
	CSVTAM_T1BUF_T2BUF_EE
	CSVTAM_T1BUF_T2BUF_NOEE
	CSVTAM_VIT_DSPSIZE
	CSVTAM_VIT_OPT_ALL
	CSVTAM_VIT_OPT_PSSSMS
	CSVTAM_VIT_SIZE
	ZOSMIGV2R1_CS_GATEWAY
	ZOSMIGV2R2_Next_CS_SENDMAILCLIEN
	ZOSMIGV2R2_Next_CS_SENDMAILDAEMN
	ZOSMIGV2R2_Next_CS_SENDMAILMSA
	ZOSMIGV2R2_Next_CS_SENDMAILMTA
	ZOSMIGV2R2_Next_CS_SMTPDDAEMON
	ZOSMIGV2R2_Next_CS_SMTPDMTA

	Component trace checks (IBMCTRACE)
	CTRACE_DEFAULT_OR_MIN

	Consoles checks (IBMCNZ)
	CNZ_AMRF_Eventual_Action_Msgs
	CNZ_Console_MasterAuth_Cmdsys
	CNZ_Console_Mscope_And_Routcode
	CNZ_Console_Operating_Mode
	CNZ_Console_Routcode_11
	CNZ_EMCS_Hardcopy_Mscope
	CNZ_EMCS_Inactive_Consoles
	CNZ_OBSOLETE_MSGFLD_AUTOMATION
	CNZ_Syscons_Allowcmd
	CNZ_Syscons_Mscope
	CNZ_Syscons_PD_Mode
	CNZ_Syscons_Routcode
	CNZ_Task_Table
	ZOSMIGV1R13_CNZ_Cons_Oper_Mode

	Contents supervision checks (IBMCSV)
	CSV_APF_EXISTS
	CSV_LNKLST_NEWEXTENTS
	CSV_LNKLST_SPACE
	CSV_LPA_CHANGES

	DAE checks (IBMDAE)
	DAE_SHAREDSN
	DAE_SUPPRESSING

	Device Manager checks (IBMDMO)
	DMO_TAPE_LIBRARY_INIT_ERRORS
	DMO_REFUCB

	DFSMS OPEN/CLOSE/EOV checks (IBMOCE)
	OCE_XTIOT_CHECK

	Global Resource Serialization checks (IBMGRS)
	GRS_AUTHQLVL_SETTING
	GRS_CONVERT_RESERVES
	GRS_EXIT_PERFORMANCE
	GRS_EXIT_PERFORMANCE
	GRS_GRSQ_SETTING
	GRS_Mode
	GRS_RNL_IGNORED_CONV
	GRS_SYNCHRES

	HSM checks (IBMHSM)
	HSM_CDSB_BACKUP_COPIES
	HSM_CDSB_DASD_BACKUPS
	HSM_CDSB_VALID_BACKUPS

	ICSF checks (IBMICSF)
	ICSF_COPROCESSOR_STATE_NEGCHANGE
	ICSF_KEY_EXPIRATION
	ICSF_MASTER_KEY_CONSISTENCY
	ICSFMIG_DEPRECATED_SERV_WARNINGS
	ICSFMIG7731_ICSF_RETAINED_RSAKEY
	ICSFMIG7731_ICSF_PKDS_TO_4096BIT
	ICSFMIG77A1_COPROCESSOR_ACTIVE
	ICSFMIG77A1_TKDS_OBJECT
	ICSFMIG77A1_UNSUPPORTED_HW

	Infoprint Server checks (IBMINFOPRINT)
	INFOPRINT_PRINTWAY_MODE
	INFOPRINT_V2DB_CHECK
	ZOSMIGV1R12_INFOPRINT_INVSIZE

	IOS checks (IBMIOS)
	IOS_CAPTUCB_PROTECT
	IOS_CMRTIME_MONITOR
	IOS_DYNAMIC_ROUTING
	IOS_FABRIC_MONITOR
	IOS_IORATE_MONITOR
	IOS_MIDAW
	IOS_STORAGE_IOSBLKS

	JES2 checks (IBMJES2)
	JES2_UPGRADE_CKPT_LEVEL_JES2

	JES3 checks (IBMJES3)
	JES3_DATASET_INTEGRITY
	JES3_DOT_POOL_USAGE
	JES3_JET_POOL_USAGE
	JES3_OST_POOL_USAGE
	JES3_SEE_POOL_USAGE

	Loadwait/Restart checks (IBMSVA)
	SVA_AUTOIPL_DEFINED
	SVA_AUTOIPL_DEV_VALIDATION

	PDSE checks (IBMPDSE)
	PDSE_SMSPDSE1

	Predictive failure analysis checks (IBMPFA)
	RACF checks (IBMRACF)
	Write your own RACF resource checks!
	RACF_AIM_STAGE
	RACF_CERTIFICATE_EXPIRATION
	RACF_classname_ACTIVE
	RACF_ENCRYPTION_ALGORITHM
	RACF_GRS_RNL
	RACF_IBMUSER_REVOKED
	RACF_ICHAUTAB_NONLPA
	RACF_PASSWORD_CONTROLS
	RACF_RRSF_RESOURCES
	RACF_SENSITIVE_RESOURCES
	RACF_UNIX_ID
	ZOSMIGV1R13_DEFAULT_UNIX_ID

	Reconfiguration checks (IBMRCF)
	RCF_PCCA_ABOVE_16M
	ZOSMIGV1R12_RCF_PCCA_ABOVE_16M

	RMM checks (IBMRMM)
	ZOSMIGV1R10_RMM_REJECTS_DEFINED
	ZOSMIGV1R10_RMM_VOL_REPLACE_LIM
	ZOSMIGV1R10_RMM_VRS_DELETED
	ZOSMIGV1R11_RMM_DUPLICATE_GDG
	ZOSMIGV1R11_RMM_REXX_STEM
	ZOSMIGV1R11_RMM_VRSEL_OLD

	RRS checks (IBMRRS)
	RRS_ArchiveCFStructure
	RRS_DUROffloadSize
	RRS_MUROffloadSize
	RRS_RMDataLogDuplexMode
	RRS_RMDOffloadSize
	RRS_RSTOffloadSize
	RRS_Storage_NumLargeLOGBlks
	RRS_Storage_NumLargeMSGBlks
	RRS_Storage_NumServerReqs
	RRS_Storage_NumTransBlks

	RSM checks (IBMRSM)
	RSM_HVSHARE
	RSM_MEMLIMIT
	RSM_MAXCADS
	RSM_AFQ
	RSM_REAL
	RSM_RSU

	RTM checks (IBMRTM)
	RTM_IEAVTRML

	SDSF checks (IBMSDSF)
	SDSF_CLASS_SDSF_ACTIVE
	SDSF_ISFPARMS_IN_USE

	SDUMP checks (IBMSDUMP)
	SDUMP_AVAILABLE
	SDUMP_AUTO_ALLOCATION

	Serviceability checks (IBMSLIP)
	SLIP_PER

	SMB checks (IBMSMB)
	SMB_NO_ZFS_SYSPLEX_AWARE
	ZOSMIGREC_SMB_RPC

	SMS checks (IBMSMS)
	SMS_CDS_REUSE_OPTION
	SMS_CDS_SEPARATE_VOLUMES

	Supervisor checks (IBMSUP)
	IEA_ASIDS
	IEA_LXS
	SUP_HIPERDISPATCH
	SUP_HiperDispatchCPUConfig
	SUP_LCCA_ABOVE_16M
	SUP_SYSTEM_SYMBOL_TABLE_SIZE
	ZOSMIGV1R12_SUP_LCCA_ABOVE_16M

	System logger checks (IBMIXGLOGR)
	IXGLOGR_STAGINGDSFULL
	IXGLOGR_ENTRYTHRESHOLD
	IXGLOGR_STRUCTUREFULL

	System trace checks (IBMSYSTRACE)
	SYSTRACE_BRANCH
	SYSTRACE_MODE

	Timer supervisor checks (IBMTIMER)
	ZOSMIGREC_SUP_TIMER_INUSE

	TSO/E (IBMTSOE)
	TSOE_OPERSEWAIT_SETTING
	TSOE_PARMLIB_ERROR
	TSOE_USERLOGS

	z/OS UNIX System Services checks (IBMUSS)
	USS_AUTOMOUNT_DELAY
	USS_CLIENT_MOUNTS
	USS_FILESYS_CONFIG
	USS_HFS_DETECTED
	USS_KERNEL_PVTSTG_THRESHOLD
	USS_KERNEL_RESOURCES_THRESHOLD
	USS_KERNEL_STACKS_THRESHOLD
	USS_MAXSOCKETS_MAXFILEPROC
	USS_PARMLIB
	USS_PARMLIB_MOUNTS
	ZOSMIGREC_ROOT_FS_SIZE
	ZOSMIGV1R13_RO_SYMLINKS

	VLF checks (IBMVLF)
	VLF_MAXVIRT

	VSAM checks (IBMVSAM)
	VSAM_INDEX_TRAP

	VSAM RLS checks (IBMVSAMRLS)
	VSAMRLS_CFCACHE_MINIMUM_SIZE
	VSAMRLS_CFLS_FALSE_CONTENTION
	VSAMRLS_DIAG_CONTENTION
	VSAMRLS_QUIESCE_STATUS
	VSAMRLS_SHCDS_CONSISTENCY
	VSAMRLS_SHCDS_MINIMUM_SIZE
	VSAMRLS_SINGLE_POINT_FAILURE
	VSAMRLS_TVS_ENABLED

	VSM checks (IBMVSM)
	VSM_ALLOWUSERKEYCSA
	VSM_CSA_LARGEST_FREE
	VSM_CSA_LIMIT
	VSM_SQA_LIMIT
	VSM_PVT_LIMIT
	VSM_CSA_THRESHOLD
	VSM_SQA_THRESHOLD
	VSM_CSA_CHANGE

	XCF checks (IBMXCF)
	XCF_CDS_MAXSYSTEM
	XCF_CDS_SEPARATION
	XCF_CDS_SPOF
	XCF_CF_ALLOCATION_PERMITTED
	XCF_CF_CONNECTIVITY
	XCF_CF_MEMORY_UTILIZATION
	XCF_CF_PROCESSORS
	XCF_CF_SCM_UTILIZATION
	XCF_CF_STR_AVAILABILITY
	XCF_CF_STR_DUPLEX
	XCF_CF_STR_EXCLLIST
	XCF_CF_STR_MAXSCM
	XCF_CF_STR_MAXSPACE
	XCF_CF_STR_NONVOLATILE
	XCF_CF_STR_POLICYSIZE
	XCF_CF_STR_PREFLIST
	XCF_CF_STR_SCM_AUGMENTED
	XCF_CF_STR_SCMMAXSIZE
	XCF_CF_STR_SCM_MINCOUNTS
	XCF_CF_STR_SCM_UTILIZATION
	XCF_CF_SYSPLEX_CONNECTIVITY
	XCF_CFRM_MSGBASED
	XCF_CLEANUP_VALUE
	XCF_DEFAULT_MAXMSG
	XCF_FDI
	XCF_MAXMSG_NUMBUF_RATIO
	XCF_SFM_ACTIVE
	XCF_SFM_CFSTRHANGTIME
	XCF_SFM_CONNFAIL
	XCF_SFM_SSUMLIMIT
	XCF_SFM_SUM_ACTION
	XCF_SIG_CONNECTIVITY
	XCF_SIG_PATH_SEPARATION
	XCF_SIG_STR_SIZE
	XCF_SYSPLEX_CDS_CAPACITY
	XCF_SYSSTATDET_PARTITIONING
	XCF_TCLASS_CLASSLEN
	XCF_TCLASS_CONNECTIVITY
	XCF_TCLASS_HAS_UNDESIG

	z/OS File System checks (IBMZFS)
	ZFS_CACHE_REMOVALS
	ZOSMIGV1R11_ZFS_INTERFACELEVEL
	ZOSMIGV1R11_ZFS_RM_MULTIFS
	ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE
	ZFS_VERIFY_CACHESIZE

	Part 4. Appendixes
	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware

	Trademarks
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

